WO2020177647A1 - 一种利用无线电信号进行目标物探测的方法及相关装置 - Google Patents

一种利用无线电信号进行目标物探测的方法及相关装置 Download PDF

Info

Publication number
WO2020177647A1
WO2020177647A1 PCT/CN2020/077337 CN2020077337W WO2020177647A1 WO 2020177647 A1 WO2020177647 A1 WO 2020177647A1 CN 2020077337 W CN2020077337 W CN 2020077337W WO 2020177647 A1 WO2020177647 A1 WO 2020177647A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
radio signal
detection device
signal
radio
Prior art date
Application number
PCT/CN2020/077337
Other languages
English (en)
French (fr)
Inventor
宋思达
马莎
高鲁涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20766242.0A priority Critical patent/EP3923016A4/en
Publication of WO2020177647A1 publication Critical patent/WO2020177647A1/zh
Priority to US17/462,690 priority patent/US20210396839A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0235Avoidance by time multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/536Discriminating between fixed and moving objects or between objects moving at different speeds using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/418Theoretical aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0232Avoidance by frequency multiplex

Definitions

  • the present invention relates to wireless communication technologies in the fields of Automated Driving System (ADS), intelligent driving, intelligent networked vehicles, intelligent vehicles, electric vehicles/electric vehicles, and in particular to a method for detecting targets using radio signals and Related devices.
  • ADS Automated Driving System
  • intelligent driving intelligent networked vehicles
  • intelligent vehicles intelligent vehicles
  • electric vehicles/electric vehicles and in particular to a method for detecting targets using radio signals and Related devices.
  • ADAS Advanced Driving Assistant System
  • the sensing layer includes vehicle detection devices, such as vision sensors such as vehicle cameras and radar sensors such as vehicle millimeter wave radar, vehicle laser radar, and vehicle ultrasonic radar.
  • Millimeter-wave radar is the first to become the main sensor of unmanned driving system due to its low cost and relatively mature technology.
  • ADAS has developed more than ten functions, including adaptive cruise control (Adaptive Cruise Control, ACC), automatic emergency braking (Autonomous Emergency Braking, AEB), lane change assistance (Lance Change Assist, LCA), blind spot monitoring (Blind) Spot (Monitoring, BSD) is inseparable from vehicle-mounted detection devices, such as millimeter wave radar.
  • Millimeter waves refer to electromagnetic waves with a wavelength within a certain range, such as 1-10mm, and the corresponding frequency range is 30-300GHz. In this frequency band, the characteristics of millimeter waves are very suitable for applications in the field of vehicle or autonomous driving. For example, large bandwidth, rich frequency domain resources, low antenna sidelobe, which is conducive to imaging or quasi-imaging; short wavelength, reduced radar equipment volume and antenna aperture, and weight reduction; narrow beam, millimeter wave under the same antenna size The beam is much narrower than the microwave beam, and the radar resolution is high; it has strong penetration. Compared with the laser radar and optical system, it has the ability to penetrate smoke, dust and fog, and can work around the clock.
  • the embodiment of the invention discloses a method and related devices for detecting a target object by using radio signals, which can reduce interference between detection devices.
  • an embodiment of the present application provides a method for detecting a target object using radio signals, which is used in a first detection device, and the method includes: determining a first time domain range, where the first time domain range is L times And transmit a first radio signal within the first time domain range; wherein any one of the L time domain ranges is at least one of the other L-1 time domain ranges A time-domain range partially overlaps, and the absolute value of the difference between the time-domain start positions of any two time-domain ranges in the L time-domain ranges is not less than the first threshold F, and is less than in the L time-domain ranges The time domain length of the time domain range with the shortest time domain length; wherein, the L is a positive integer greater than 1.
  • any two time domain ranges in the L time domain ranges partially overlap in the time domain, or in other words, do not completely overlap.
  • the complete overlap means that the two time domain ranges are completely the same, or that one of the two time domain ranges is completely contained in the other time domain range.
  • the L time domain ranges may be preset or defined.
  • the L time domain ranges are set or defined by setting or defining the time domain interval and time domain length of the L time domain ranges.
  • the time domain length may be indicated by the interval of at least one of the minimum time point, the maximum time point, and the center time point of at least two time domain ranges in the L time domain ranges. There is no specific limitation, and the time domain length can be clarified as the standard.
  • each detection device transmits radio signals within the determined time domain that can avoid mutual interference to avoid interference caused by the transmission signal or related signals of any detection device to the target determined by other detection devices.
  • the waste of time domain resources caused by the complete separation of the sweep cycles of multiple detection devices in the time domain can be avoided, and the time domain resources can be effectively used and realized at a lower time domain resource cost.
  • the method provided in this application improves the ADAS capabilities of the car’s autonomous driving or advanced driving assistance system, and can be applied to the Internet of Vehicles, such as Vehicle to Everything (V2X), Long Term Evolution-Vehicle, LTE -V), Vehicle-to-Vehicle (V2V), etc.
  • Vehicles such as Vehicle to Everything (V2X), Long Term Evolution-Vehicle, LTE -V), Vehicle-to-Vehicle (V2V), etc.
  • the first threshold F is greater than or equal to the sweep period of the first radio signal, and the first threshold F is an integer multiple of the sweep period of the first radio signal.
  • the absolute value of the difference between the time domain start position of any one of the L time domain ranges except the first time domain range and the time domain start position of the first time domain range The value is a positive integer multiple of the first threshold F, the first threshold F is greater than or equal to the sweep period of the first radio signal, and the first threshold F is the sweep period of the first radio signal An integer multiple of.
  • the first threshold F can be an integer multiple of the sweep period of the first radio signal to ensure that the time domain range of measuring interference is equal to or greater than one sweep period, thereby ensuring the resolution of measuring interference signals , Improve the effect of interference cancellation.
  • the absolute value of the aforementioned difference is limited to a positive integer multiple of the first threshold F, and this multiple relationship can be used to more accurately eliminate the interference signal when performing interference cancellation.
  • the time domain lengths of the L time domain ranges are the same, and the time domain length is an integer multiple of the frequency sweep period of the first radio signal. It is understandable that if the length of the time domain that defines the L time domain ranges is the same, then the subsequent first detection device performs relatively simple processing according to this characteristic to achieve interference cancellation without requiring more complicated mathematical transformations.
  • the L time domain ranges include T time domain lengths of time domain ranges.
  • the time domain range of each time domain length corresponds to the corresponding type of detection device.
  • each type of detection device corresponds to the time domain range of the corresponding time domain length.
  • the corresponding type of detection device can only transmit radio signals within the time domain range of the corresponding time domain length.
  • each time domain length of the T types of time domain lengths is an integer multiple of the frequency sweep period of the first radio signal.
  • the above method further includes: within the L time domain ranges, at a time domain location other than the first time domain range, receiving a second radio signal, the second radio signal From at least one second detection device. It is understandable that the second radio signal can be used to determine the interference signal of the at least one second detection device in the first time domain, and the interference signal is used to subsequently eliminate the first detection device in the first time domain resource. Interference of the received echo signal.
  • the L time domain ranges include at least one second time domain range, and the at least one second time domain range corresponds to the at least one second detection device. That is to say, both the first time domain range and the second time domain range belong to the above L time domain ranges, and in each second time domain range there is a second detection device using the first time domain.
  • Two time domains transmit radio signals for radar detection.
  • the first detection device is used to transmit a first radio signal on a first time domain range for radar detection
  • the second detection device 1 is used to transmit a first radio signal on a second time domain range 1 for radar detection
  • the second detection device 2 is used to transmit the first radio signal in the second time domain range 2 for radar detection.
  • the second detection device here is different from the first detection device, but the types of the first and second detection devices may be the same or different.
  • the time domain lengths of the time domain ranges corresponding to the first and second detection devices are the same.
  • the above method further includes: receiving a third radio signal within the first time domain range, where the third radio signal includes a reflected signal of the first radio signal.
  • the third radio signal includes the reflected signal of the first radio signal, and also includes the signal emitted and/or reflected by the at least one second detection device.
  • the first detection device can strip the reflected signal of the first radio signal from the third radio signal for subsequent determination of the intermediate frequency signal.
  • the method further includes: determining information of the target object according to the third radio signal and the second radio signal.
  • the second radio signal contains at least one radio signal reflected and/or reflected by the second detection device. Therefore, it can be determined from the second radio signal that it contains at least one second detection device after reflection and/or emission. Reflected radio signal; in addition, since the interference signal on the third radio signal also originates from the at least one second detection device, it can be eliminated based on the determined radio signal reflected by and/or reflected by the at least one second detection device Interfering signal on the third radio signal.
  • the intermediate frequency signal can be obtained based on the signal after the interference is eliminated, and then the information of the target object can be obtained based on the intermediate frequency signal, for example, the distance to the target, the angle to the target, and the radial relative speed to the target. And other information.
  • the determining the information of the target object according to the third radio signal and the second radio signal includes: according to the second radio signal and the first radio signal determining a phase difference ⁇ i between two adjacent sweep period of the second radio signal; a phase difference between two adjacent sweep period of the second radio signal and the second ⁇ i
  • the radio signal performs interference cancellation on the third radio signal to obtain an intermediate frequency signal; the information of the target is determined according to the intermediate frequency signal.
  • a detection device which has the method and function described in any one of the possible implementations of the first aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • a detector in a third aspect, includes a processor and a transmitting antenna.
  • the processor is used to determine a first time domain range, where the first time domain range is one of L time domain ranges;
  • the antenna is used to transmit a first radio signal in the first time domain range; wherein any one of the L time domain ranges and at least one of the other L-1 time domain ranges Partially overlapping, the absolute value of the difference between the time domain start positions of any two time domain ranges in the L time domain ranges is not less than the first threshold F, and is less than the shortest time domain length in the L time domain ranges
  • the time domain length of the time domain range wherein, the L is a positive integer greater than 1.
  • any two time domain ranges in the L time domain ranges partially overlap in the time domain, or in other words, do not completely overlap.
  • the complete overlap means that the two time domain ranges are completely the same, or that one of the two time domain ranges is completely contained in the other time domain range.
  • each detection device transmits radio signals within a determined time domain that can avoid mutual interference to avoid any detection device's transmitted signal or related signals from causing other detection devices to determine targets. Interference.
  • the waste of time domain resources caused by the complete separation of the sweep cycles of multiple detection devices in the time domain can be avoided, and the time domain resources can be effectively used and realized at a lower time domain resource cost. Higher anti-jamming performance, while supporting a larger number of radar communications.
  • the detector further includes a receiving antenna for receiving a second radio signal at a time domain location other than the first time domain range within the L time domain ranges,
  • the second radio signal comes from at least one second detection device and is used to receive a third radio signal within the first time domain, and the third radio signal includes a reflection signal of the first radio signal.
  • the processor is configured to determine the information of the target object according to the third radio signal and the second radio signal.
  • An embodiment of the present application also provides a detection device, including: at least one processor, at least one memory, and a communication interface, the communication interface, the at least one memory are coupled with the at least one processor; the terminal communicates with other devices through the communication interface
  • the at least one memory is used to store a computer program, so that when the computer program is executed by the at least one processor, the method for detecting a target object using radio signals as described in the first aspect and various possible implementation manners thereof is implemented.
  • the embodiment of the present application also provides a computer-readable storage medium, such as a non-transitory computer-readable storage medium.
  • a computer program is stored thereon, and when the computer program runs on the computer, the computer is caused to execute any one of the possible methods of the first aspect.
  • the computer may be at least one storage node.
  • the embodiments of the present application also provide a computer program product, which when running on a computer, enables any method provided in the first aspect to be executed.
  • the computer may be at least one storage node.
  • the embodiment of the present application also provides a chip, which is used to support the detection device to realize the functions involved in any possible method of the above-mentioned first aspect, such as generating or processing the data and/or information involved in the above-mentioned method.
  • the chip further includes a memory, and the memory is used to store the necessary program instructions and data of the detection device.
  • the embodiment of the present application also provides a chip, the chip includes a processing module and a communication interface, the processing module is used to control the communication interface to communicate with the outside, the processing module is also used to implement any one of the first aspect A possible way.
  • any of the terminals or computer storage media, computer program products, or chips provided above are used to execute the corresponding methods provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding methods The beneficial effects of, will not be repeated here.
  • FIG. 1 is a schematic diagram of a possible application scenario provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a vehicle-mounted millimeter wave radar device provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of frequency changes of a transmitted signal, a reflected signal, and an intermediate frequency signal according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of a frequency-modulated continuous wave multi-cycle time frequency according to an embodiment of the application
  • FIG. 5 is a schematic diagram of the relationship between a transmitted signal, a received signal, and an intermediate frequency signal according to an embodiment of the application;
  • FIG. 6 is a schematic diagram of mutual interference of a vehicle-mounted radar provided by an embodiment of the application.
  • FIG. 7A and 7B are schematic diagrams of a possible false intermediate frequency signal provided by an embodiment of this application.
  • 8A and 8B are schematic diagrams of a result of an interference signal flooding a target signal according to an embodiment of the application.
  • FIG. 9A is a schematic diagram of a small slope radar interfering with a high slope radar according to an embodiment of the application.
  • 9B is a schematic diagram of a high-slope radar interfering with a low-slope radar according to an embodiment of the application.
  • 10A and 10B are schematic diagrams of a possible solution provided by an embodiment of this application.
  • FIGS. 11A and 11B are schematic diagrams of another possible solution provided by an embodiment of this application.
  • FIG. 12 is a schematic flowchart of a method for detecting a target object using radio signals according to an embodiment of the application
  • FIG. 13 is a schematic diagram of the relationship between three time domain ranges according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a time domain range provided by an embodiment of the present invention.
  • 15 is a schematic diagram of radar interference cancellation provided by an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a time domain range provided by an embodiment of the present invention.
  • Figure 17 is a schematic diagram of radar interference cancellation provided by an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of a time domain range provided by an embodiment of the present invention.
  • 19 is a schematic diagram of radar interference cancellation provided by an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of a first detection device according to an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of a first detection device according to an embodiment of the present invention.
  • FIG. 22 is a schematic structural diagram of a first detection device provided by an embodiment of the present invention.
  • FIG. 1 it is a schematic diagram of a possible application scenario of an embodiment of this application.
  • the above application scenarios can be unmanned driving, autonomous driving, intelligent driving, networked driving, etc.
  • the detection device can be installed in motor vehicles (such as unmanned vehicles, smart cars, electric vehicles, digital cars, etc.), drones, rail cars, bicycles, signal lights, speed measurement devices, or network equipment (such as base stations and terminals in various systems) Equipment) and so on.
  • motor vehicles such as unmanned vehicles, smart cars, electric vehicles, digital cars, etc.
  • drones drones, rail cars, bicycles, signal lights, speed measurement devices, or network equipment (such as base stations and terminals in various systems) Equipment) and so on.
  • This application is not only applicable to detection devices between vehicles, but also to detection devices of other devices such as vehicles and drones, or detection devices between other devices. This application does not limit the installation location and function of the detection device.
  • Radar Or called a radar device, it can also be called a detector, a detection device or a radio signal sending device. Its working principle is to detect the corresponding target object by transmitting a signal (or called a detection signal) and receiving the reflected signal reflected by the target object.
  • Transmission cycle or sweep cycle the transmission cycle during which the detection device transmits a complete waveform of the radio signal.
  • the detection device generally transmits radio signals with multiple sweep cycles in a continuous period of time.
  • the continuous duration please refer to the radio sounding subframe (or time domain range) below.
  • the following "radio detection subframe” and “time domain range” may appear alternately, but they have the same meaning and both indicate the duration of continuous radio signal transmission by the detection device at one time.
  • Initial frequency At the beginning of a transmission cycle, the radar will transmit radar signals at an initial frequency, and the transmission frequency will change within the transmission cycle based on the initial frequency.
  • Sweep bandwidth the bandwidth occupied by the radar signal waveform. What needs to be explained here is that the "sweep bandwidth" is defined for the convenience of explanation, and is technically the bandwidth occupied by the radar signal waveform. Further, the frequency band occupied by the radar signal waveform can be referred to as the sweep frequency band. The transmission period of the radar signal is also called the sweep time, which is the time for transmitting a complete waveform.
  • FM continuous wave An electromagnetic wave whose frequency changes with time.
  • Chirp continuous wave An electromagnetic wave whose frequency changes linearly with time.
  • the linear change here generally refers to a linear change within a transmission period.
  • the waveform of the chirp continuous wave is generally a sawtooth wave or a triangle wave, and there may also be other possible waveforms, such as pulses.
  • Maximum ranging distance or maximum detection distance, it is a parameter related to the configuration of the radar itself (factory setting parameters or related to factory setting parameters).
  • the long-range adaptive cruise control (Adaptive Cruise Control, ACC) radar has a maximum ranging distance of 250m
  • the medium-range radar has a maximum ranging distance of 70-100m. If the maximum ranging distance is 250m, the specific application scenario does not require high range resolution of the radar.
  • the range resolution is related to the frequency sweep bandwidth.
  • Intermediate Frequency (IF) signal The signal after the radar local oscillator signal and the received target reflection signal are processed by the mixer, that is, the intermediate frequency signal. Specifically, part of the frequency modulated continuous wave signal generated by the oscillator is used as the local oscillator signal, and the other part is used as the transmitting signal to be transmitted through the transmitting antenna, and the reflected signal of the transmitting signal received by the receiving antenna will be combined with the local oscillator signal. Mixing to obtain the "intermediate frequency signal". Through the intermediate frequency signal, at least one of position information, speed information and angle information of the target object can be obtained. Wherein, the position information, speed information and angle information may be relative position, relative speed and relative angle information relative to the current radar. Further, the frequency of the intermediate frequency signal is an intermediate frequency frequency.
  • Figure 2 provides a schematic diagram of an exemplary structure of a vehicle-mounted millimeter wave radar device, which generally includes an oscillator, a transmitting antenna, a receiving antenna, a mixer, a processor, and other devices.
  • the controller in Figure 2 is generally not included in the vehicle-mounted millimeter-wave radar device, but is included in the receiving end of the signal output by the vehicle-mounted millimeter-wave radar device. For example, it may be located in a car or a processing device used to control the driving of the car. The embodiments of the present application do not specifically limit this.
  • the oscillator generates a Frequency Modulated Continuous Wave (FMCW), such as a signal whose frequency increases linearly with time.
  • FMCW Frequency Modulated Continuous Wave
  • LFMCW Linear Frequency Modulated Continuous Wave
  • Part of the above-mentioned FM continuous wave is output to the mixer through the directional coupler as a local oscillator signal, and a part is transmitted through the transmitting antenna, and the signal reflected by the object in front of the vehicle is received through the receiving antenna, and the mixer is mixed with the local oscillator signal.
  • the intermediate frequency signal is obtained.
  • the intermediate frequency signal contains the information of the target object.
  • the information of the target object may be the relative parameter between the target object and the vehicle where the on-board radar is located, such as the relative distance between the target object and the vehicle.
  • the intermediate frequency signal (for example, it may be an intermediate frequency signal that has passed through a low-pass filter and undergoes amplification processing, and the low-pass filter is not shown in Figure 2) is sent to the processor, and the processor processes the intermediate frequency signal (for example, The signal is subjected to fast Fourier transform, or spectrum analysis) to obtain the information of the target object, and finally output to the controller for vehicle control.
  • the IF frequency corresponding to the maximum ranging distance is considered to be the largest IF frequency, and signals greater than this IF frequency will be filtered by a low-pass filter.
  • the analysis signal is used for analysis (the distance measurement and speed measurement principle of the triangle wave is similar to the sawtooth wave).
  • the FM continuous wave is a signal whose frequency changes linearly with time.
  • the period of the FM continuous wave is T c
  • the slope is a 0
  • the bandwidth is B
  • its starting frequency is b 0 .
  • A is the amplitude of the equivalent baseband signal
  • a 0 is the slope of the chirp signal sent by the oscillator of the detection radar
  • b 0 is the intercept
  • Is the initial phase
  • N is the total number of cycles in which the FM continuous wave is continuously transmitted. Since frequency is defined as the rate of change of phase with respect to time. Therefore, the frequency f of the above equivalent baseband signal can be expressed as formula (1.2):
  • Figure 4 is a schematic diagram of the function corresponding to formula (1.2).
  • f c is the carrier frequency and the radiated signal After encountering an obstacle (also called a target), it will be reflected back.
  • the shape of the transmitted wave and the reflected wave are the same, but there is a delay.
  • the received signal of the n-th cycle FM continuous wave It can be expressed as formula (1.4):
  • A' is the signal The signal amplitude after transmitting antenna gain, target reflection, propagation loss, and receiving antenna gain, f d is the Doppler frequency formed by the radial relative velocity between the target and the detection radar, and ⁇ is the radar signal (also called radio signal) from The total time delay of the signal echo received by the transmitter of the detection radar reflected by the target object to the receiver of the detection radar, the relationship between ⁇ and the target distance d (ie the radial relative distance between the target object and the detection radar) can be expressed Is the formula (1.5):
  • the mixer of the detection radar mixes the received signal with the transmitted signal, and after passing an intermediate frequency filter, outputs an intermediate frequency (IF) signal, an intermediate frequency signal As shown in formula (1.6):
  • IF signal Send it to the processor for Fourier transform to get the intermediate frequency (frequency of the intermediate frequency signal) f IF , and the intermediate frequency f IF is expressed as the formula (1.7):
  • the time interval of radar signal detection is ⁇ max ⁇ T c
  • ⁇ max is the echo delay corresponding to the maximum detection distance.
  • the intermediate frequency f IF is the ratio of the slope of the transmitted wave and the delay ⁇ .
  • Doppler frequency f d can be obtained by Fourier transform of the phase sequence of the echo intermediate frequency signal of multiple consecutive cycles at the same time sampling point, and the relationship between the detection radar and the target's radial relative velocity v can be expressed as a formula (1.11):
  • is the wavelength of the carrier wave of the radar signal. Therefore, the radial relative velocity v between the detection radar and the target is as the formula (1.12):
  • the above derivation is for one target.
  • the above principle is also applicable to the case of multiple targets, that is, multiple intermediate frequency signals will be obtained after receiving and mixing, and then sent to the processor for Fourier transform to obtain multiple targets.
  • the corresponding IF frequency From the above derivation, it can be seen that the frequency difference (intermediate frequency signal frequency) and time delay between the transmitted signal of the detection radar and the received signal are linear: the farther the object is, the later the return wave will be received, and then it will follow the incident The greater the wave frequency difference.
  • the distance between the detection radar and the target can be judged by judging the frequency of the intermediate frequency signal.
  • the slope of the transmit signal reflects the degree of change in the transmit frequency or the receive frequency over time.
  • the frequency of the transmission signal decreases as time increases, and the slope is negative, and the frequency of the transmission signal increases with time, and the slope is positive.
  • the slopes of the rising and falling edges are opposite.
  • the absolute value of the slope may also be referred to as the frequency change range per unit time, and the two expressions involved in the embodiments of the present application have the same meaning.
  • FIG. 6 it is a schematic diagram of a vehicle-mounted radar mutual interference.
  • Radar 1 (which can be regarded as the above-mentioned detection radar) sends out a transmission signal and receives the reflected signal reflected by the transmission signal on the target.
  • the radar 1 receives the target reflection signal
  • its receiving antenna receives the transmitted signal or the reflected signal of the radar 2 (which can be regarded as an interference radar), that is, the interference signal.
  • radar 1 detects the interference signal from radar 2 within the time range between the transmitted signal and the received reflected signal, radar 1 will mistakenly believe that the interference signal in front corresponds to the "target", but in fact the "target” "Does not exist, the so-called "Ghost” or "false alarm”. After the false alarm is generated, the self-driving car will perform wrong driving control due to the misjudgment of the target.
  • Fig. 7A and Fig. 7B are schematic diagrams of a possible false intermediate frequency signal.
  • radar 1 transmits a signal to the target and receives a reflected signal from the target, but within the time range between the transmission of radar 1 and the reception of the reflected signal, the receiving antenna of radar 1 receives radar 2’s Emit or reflect the signal (dashed line).
  • the signal waveform of radar 1 is consistent with the signal waveform of radar 2 and the sweep bandwidth of the two is the same.
  • radar 1 In the time interval when radar 1 transmits the signal but the reflected signal has not been received, radar 1 detects the dashed signal of the corresponding frequency, then the radar 1 It is considered that there is "target 1"; radar 1 starts to receive the reflected signal and detects the dotted signal and the reflected signal of the solid line within the time interval of signal detection ( ⁇ max ⁇ T c ), and radar 1 considers that there is both a "target”1" and "Target 2". Then the radar 1 will mistake the received dashed signal as a reflection signal from an object in front, and a false intermediate frequency signal will be generated at this time. After the fast Fourier transform, the spectrum analysis can find two peaks, as shown in Figure 7B, each peak corresponds to a target. Radar 1 mistakenly believes that there is "target 1" ahead, but in fact the "target 1" does not exist, and is also called “Ghost” or "false alarm”.
  • FIGs 8A and 8B are schematic diagrams of a possible interference signal overwhelming the target signal.
  • radar 1 transmits a signal to the target and receives a reflected signal from the target. However, within the time range between the transmission of radar 1 and the reception of the reflected signal, the receiving antenna of radar 1 receives the signal of radar 2. Emit or reflect the signal (dashed line). There is a difference in slope between the signal waveform of radar 1 and the signal waveform of radar 2.
  • the signal received at a certain moment or period of time may be an interference signal, or may be a reflected signal of a target object, and the relative changes in the frequency of the transmitted/reflected signal through time can be Clearly reflect the detection situation of the radar. Therefore, in the subsequent explanations of this application, most of the graphs reflecting the slope of the transmitted/reflected signal (the range of frequency change per unit time) are used to represent the mutual interference between radars.
  • FIG. 10A is a schematic diagram of a possible solution.
  • the waveform slope and transmission parameters of radar 1 are inconsistent with those of radar 2.
  • radar 1 receives the signal of radar 2, because of the inconsistency of waveforms, when passing through the mixer, both When the frequency is different, it will not produce a constant frequency intermediate frequency signal. Because only the intermediate frequency signal with a constant frequency will be reflected as a peak signal in the spectrum analysis, this method can reduce the probability of ghost occurrence.
  • FIG. 10B is a schematic diagram of a possible false alarm result. The result is that there is an obstacle in front of the vehicle but it is not detected, thereby generating a false alarm, which has a bad influence on the safety of the vehicle, especially the safety of unmanned vehicles.
  • FIG. 11A is a schematic diagram of another possible solution.
  • the technology used in this solution is radar waveform frequency shift technology. If the radar detects interference from other radars in its sweep frequency band, it will jump to another sweep frequency band to prevent interference between multiple radars.
  • the frequency shift interval in the frequency shift technology can be greater than the radar sweep bandwidth, as shown in Figure 11A. In this case, the radar waveforms are completely frequency divided and there is no overlap, but the frequency shift interval is set so that The frequency domain resources are occupied too much, and the frequency domain resources allocated to vehicle radars are currently limited. Or the frequency shift technology is still applied, but after the radar detects interference from other radars in the working frequency band, it performs a random frequency shift (shift), as shown in Figure 11B.
  • 11B is a schematic diagram of another possible solution.
  • the interference can be reduced to a certain extent, but the completely randomized frequency shift (shift) will inevitably cause the two radar waveforms after the frequency shift (shift) to be too close in the frequency domain, resulting in ghost or interference signals.
  • the increased strength of the object leads to missed inspections.
  • the absolute value of the difference is used, and the issue of positive and negative is not considered, and the difference itself can distinguish between positive and negative.
  • the difference involved in determining the positive and negative intermediate frequencies may be distinguished between positive and negative.
  • the embodiments of the present application provide a detection method, which solves the problem of mutual interference between multiple detection devices by transmitting radio signals (for example, radar signals) in time division, and at the same time, can improve the utilization efficiency of time domain resources.
  • This method can support as many detection devices as possible to not interfere with each other or reduce mutual interference within the same time domain resource.
  • the detection device is mostly a radar, such as a millimeter wave radar, as an example in the following in this application to explain and describe the embodiments.
  • this application does not limit the detection device to only millimeter wave radar or radar.
  • multiple detection devices that send radio signals in corresponding time domain ranges within L time domain ranges have the same frequency sweep period, for example, in the first time domain within the L time domain ranges
  • the detection device 1 sends radio signals in the range
  • the detection device 2 sends radio signals in the second time domain within the L time domain ranges. Then the scanning period of the detection device 1 and the detection device 2 is the same.
  • the detection device needs to continuously transmit radio signals with multiple sweep cycles.
  • the time domain length of each of the L time domain ranges is an integer multiple of the frequency sweep period. For example, if the duration of a certain time domain range is 500 sweep cycles, the corresponding detection device needs to transmit radio signals of 500 sweep cycles within this time domain range.
  • the time domain lengths of the L time domain ranges are the same. In other scenarios, the time domain lengths of the L time domain ranges may not be exactly the same.
  • the detection device transmits radio signals at a certain transmission timing.
  • the actual transmission time of radio signals may exist. Error can also be called signal transmission error.
  • Error can also be called signal transmission error.
  • errors caused by the accuracy of the global positioning system In another possible situation, in the manufacturing process, different detection devices may cause slight errors in signal transmission due to manufacturing differences. In other cases, there may be errors caused by other reasons.
  • the design method provided in this application can be considered in specific implementation. In order to provide a clearer solution, the embodiments of the book application ignore these errors and describe the solution according to a unified standard and transmission timing. Compared with the granularity consideration and timing accuracy requirements of the time domain range of the present application, the above-mentioned error can also be ignored, and does not substantially affect the implementation and beneficial effects of the embodiments of the present application.
  • Fig. 12 is a schematic flowchart of a possible target detection method using radio signals.
  • the first detection device may be a radar, a device integrated with a radar, or a device independent or integrated with a radar.
  • the first detection device may be a set of chips, Independent or integrated in the radar; or the first detection device may be a set of modules or components, independent or integrated in the radar; or the first detection device may be a set of software modules, stored in a computer-readable storage device in.
  • the following takes the first detection device as a radar as an example for solution description.
  • the method shown in FIG. 12 includes but is not limited to the following steps:
  • Step 1201 Determine a first time domain range, where the first time domain range is one of L time domain ranges.
  • the L time domain ranges may be referred to as a radio sounding frame, and each time domain range in the L time domain ranges may be referred to as a radio sounding subframe.
  • the L time domain ranges Each time domain range within the L time domain ranges can also be defined as other names, no matter how the name is defined, L time domain ranges refer to a larger granular time length, each time domain range It refers to a time length with a smaller granularity, and L is a positive integer greater than 1.
  • any one of the L time domain ranges partially overlaps with at least one of the other L-1 time domain ranges, and any two of the L time domain ranges are The absolute value of the difference between the start positions of the time domain is not less than the first threshold F, and is less than the time domain length of the time domain range with the shortest time domain length among the L time domain ranges.
  • any two time domain ranges in the L time domain ranges partially overlap (incompletely overlap) in the time domain, and the time domain start positions of any two time domain ranges in the L time domain ranges are The absolute value of the difference is not less than the first threshold F.
  • the complete overlap means that the two time domain ranges are completely the same, or that one of the two time domain ranges is completely contained in the other time domain range.
  • the absolute value of the difference between the time-domain start positions of any two time-domain ranges in the L time-domain ranges is not less than the first threshold F specifically includes the following two cases, that is, the absolute value of the difference is equal to Or greater than the first threshold.
  • the starting positions of the time domains of the L time domain ranges are equally spaced in the time domain.
  • any two of the L time domain ranges are "adjacent" in the time domain.
  • the absolute value of the difference between the start positions of the time domain is equal to F
  • the absolute value of the difference between the start positions of the time domains of any two “non-adjacent” time domain ranges is equal to X times F
  • X is A positive integer greater than 1.
  • the L time domain ranges specifically refer to 3 time domain ranges, and according to the time domain starting position, they are the first time domain range, the second time domain range, and the third time domain from front to back.
  • the absolute value of the difference between the time domain start position of the first time domain range and the second time domain range is equal to 20 sweep cycles, the second time domain range and the third time domain range
  • the absolute value of the difference between the start position of the time domain is equal to 20 sweep cycles, and the absolute value of the difference between the start position of the first time domain and the third time domain is equal to 40 sweep cycles It can be seen that F in this specific example is equal to 20 sweep cycles.
  • the time domain start positions of the L time domain ranges are not equally spaced in the time domain.
  • which two time domain start positions of the L time domain ranges are The absolute value of the difference is the smallest, then the absolute value of the difference between the time domain start positions of the two time domain ranges is equal to F, and the time domain start of any two time domain ranges except these two time domain ranges
  • the absolute value of the position difference can be greater than F.
  • the L time domain ranges specifically refer to 3 time domain ranges, and according to the time domain starting position, they are the first time domain range, the second time domain range, and the third time domain from front to back.
  • the absolute value of the difference between the time domain start position of the first time domain range and the second time domain range is equal to 20 sweep cycles, the second time domain range and the third time domain range
  • the absolute value of the difference between the start position of the time domain is equal to 30 sweep cycles, and the absolute value of the difference between the start position of the first time domain and the third time domain is equal to 50 sweep cycles It can be seen that F in this specific example is equal to 20 sweep cycles.
  • At least one radio detection frame is distributed in a predefined or configured manner in the time domain. Further, the distribution can be defined or configured in a periodic or aperiodic manner. This application does not make specific restrictions.
  • the multiple radio detection frames there are multiple radio detection frames in the time domain, and the multiple radio detection frames may be distributed in the time domain in a certain period. Further, the multiple radio detection frames are continuous in the time domain, or discontinuous in the time domain.
  • the multiple radio detection frames may be distributed in the time domain in an aperiodic manner. Further, there may be at least two radio detection frames that are discontinuous in the time domain among the plurality of radio detection frames.
  • the detection device When the detection device performs radio signal transmission, it may perform signal transmission in one or more radio detection subframes in the radio detection frame. Different detection devices correspond to different radio detection subframes in a radio detection frame. For example, the first detection device transmits radio signals in the first radio detection subframe in the first radio detection frame, and the second detection device transmits radio signals in the second radio detection subframe in the first radio detection frame.
  • the above-mentioned design method of partial overlap of multiple time domain ranges can avoid waste of time domain resources caused by completely separating the sweep periods of multiple detection devices in the time domain, and can effectively use time domain resources with a lower time domain.
  • the resource cost realizes higher anti-jamming performance, and at the same time can support a larger number of detection devices to communicate.
  • Figure 13 illustrates an optional case when L is equal to 3.
  • the three time domain ranges can be called the first time domain range, the second time domain range, and the third time domain range.
  • any one of the time domains partially overlaps with the other two time domains.
  • the overlapping area of the first time domain and the second time domain is overlapped area 1.
  • the overlapping area between one time domain and the third time domain is overlapped area 3; the overlapping area between the second time domain and the third time domain is marked as overlapping area 2.
  • the absolute value of the difference between the time domain start positions of any two of the three time domain ranges is an integer multiple of the sweep period and is not less than the first threshold F, where the first time domain
  • the absolute value of the difference between the start position of the time domain of the domain range and the start position of the second time domain is the length of interval 1
  • the time domain start position of the second time domain and the third time domain is the length of interval area 2
  • the absolute value of the difference between the time domain start position of the third time domain range and the start position of the first time domain range is the interval area
  • the length of 3, in the embodiment of the present application, the length of the interval area 1, the length of the interval area 2, and the length of the interval area 3 are all integer multiples of the sweep period and not less than the first threshold F.
  • the L time domain ranges include the first time domain range, the second time domain range, and the third time domain range in the order of the time domain from front to back, it is called the first time domain range
  • the absolute value of the difference between the time domain starting position of the second time domain range and the first absolute value is the absolute value of the difference between the time domain starting position of the second time domain range and the third time domain range If the value is the second absolute value, the first absolute value may be equal to or not equal to the second absolute value. However, both the first absolute value and the second absolute value are integer multiples of the sweep period of the first radio signal.
  • the first threshold F is greater than or equal to the sweep period of the first radio signal, and the first threshold F is a positive integer multiple of the sweep period of the first radio signal .
  • the first threshold F is equal to 2 times, or 10 times, or other multiples of the frequency sweep period.
  • the specific multiples can be configured as required, or defined in advance in a standard or protocol document. It should be noted that by setting the first threshold F to a positive integer multiple of the sweep period, it can be ensured that the time domain range of measuring interference is equal to or greater than one sweep period, thereby ensuring the resolution of measuring interference signals and ensuring the effect of interference cancellation .
  • the absolute value of the difference between the time domain start positions of any two time domain ranges in the L time domain ranges is a positive integer multiple of the frequency sweep period.
  • the time domain start position of any one of the L time domain ranges except the first time domain range and the time domain of the first time domain range The absolute value of the difference between the domain start positions is a positive integer multiple of the first threshold F, the first threshold F is greater than or equal to the sweep period of the first radio signal, and the first threshold F is A positive integer multiple of the sweep period of the first radio signal. For example, if the first threshold F is 10 sweep cycles, then the time domain start position of any one of the L time domain ranges except the first time domain range is The absolute value of the difference between the time domain start positions of the first time domain range may be equal to 10 frequency sweep periods, or 20 frequency sweep periods, or 50 frequency sweep periods.
  • the time domain start positions of the L time domain ranges are set at equal intervals, and the interval between the start position of each subsequent time domain range and the start position of the previous time domain range is equal
  • the same value for example, the above 10 sweep cycles.
  • the above interval can be configured or pre-defined by a standard or protocol.
  • the interval can be different for different types of detection devices.
  • the absolute value of the difference between the time domain start positions of any two time domain ranges in the L time domain ranges is a positive integer multiple of the frequency sweep period.
  • the detection device generally transmits radio signals of multiple sweep cycles within a continuous period of time.
  • This continuous period of time can be referred to as a time domain range or radio sounding subframe.
  • the detection device will determine a time domain range and continuously transmit radio signals until the time domain range ends.
  • the next radio detection subframe of the radio signal transmitted by the detection device will be in another radio detection frame after the radio detection frame, which may be continuous in the time domain, or may be the lower one of multiple radio detection frames configured periodically.
  • One, or any possible radio detection frame It depends on when the detection device is configured or triggered to continue transmitting radio signals.
  • the format or pattern of the L time domain ranges there are also many possible designs.
  • the time domain length of each time domain range of the L time domain ranges is the same, and the time domain length is a positive integer multiple of the sweep period of the first radio signal;
  • the time domain length of the first time domain range, the time domain length of the second time domain range, and the time domain length of the third time domain range are the same, and they are all sweeps of the first radio signal.
  • An integer multiple of the frequency period for example, 400 times, or 500 times, etc.
  • the specific number of times can be configured according to needs, such as pre-configuration or dynamic configuration, or pre-defined in the protocol.
  • the time domain length of the time domain range with the shortest time domain length among the L time domain ranges is the time domain length of any one of the L time domain ranges.
  • the time domain length of each time domain range is a positive integer multiple of the frequency sweep period of the first radio signal.
  • the L time domain ranges may include T time domain lengths.
  • the time domain range of each time domain length corresponds to a corresponding type of detection device.
  • each type of detection device corresponds to a time domain with a corresponding time domain length.
  • the corresponding type of detection device can only transmit radio signals within the time domain of the corresponding time domain length.
  • each time domain length of the T types of time domain lengths is an integer multiple of the frequency sweep period of the first radio signal.
  • L time-domain ranges contain 3 time-domain ranges
  • the time-domain length of the first time-domain range is 200 sweep cycles
  • the time-domain length of the second time-domain range is 300 sweep cycles.
  • the time domain length of the three time domain ranges is 300 sweep cycles
  • the first time domain range corresponds to one type of detection device
  • the second and third time domain ranges correspond to another type of detection device.
  • the other type of detection device can determine the time domain range for transmitting radio signals from the second and third time domain ranges.
  • the T is a positive integer.
  • one possibility is that there are multiple types of detection devices due to the performance or configuration of the detection device itself. For example, the duration of continuous radio signal transmission by radars from different manufacturers may be different. This kind of detection device is flexible when used together. Another possibility is that there are multiple possible application scenarios, and the detection devices in different application scenarios are configured or belong to corresponding types, resulting in different lengths of the time domain range for continuously transmitting radio signals.
  • the detection device is configured or triggered to continuously send radio signals for a long time (radio detection sub-frame or long time domain range), while in another scene or road condition, the detection device is configured or triggered The device continuously transmits radio signals for a short period of time (radio sounding subframes or a short time domain range).
  • This application does not specifically limit the specific classification of detection device types.
  • time domain positions other than the first time domain range are continuous or discontinuous.
  • Figure 13 as an example for description. If the first time domain range is the first time domain range in Figure 13, then the time domain positions except the first time domain range are continuous; if the first time domain range is the figure The second time domain range in 13, then the time domain positions other than the first time domain range are not continuous.
  • the first time domain range specifically refers to which of the L time domain ranges is not limited here.
  • the first detection device can be configured from the L time domain ranges. A time domain range is determined in the time domain range, and the determined time domain range is the first time domain range.
  • the configuration may be a specifically configured time domain range, or may be a pre-defined or configured rule or policy.
  • the first detection device may randomly determine a time domain range from the L time domain ranges to send the radio signal.
  • Step S1202 Transmit a first radio signal in the first time domain range.
  • the above method may further include the following steps:
  • Step S1203 Receive a second radio signal at a time domain location other than the first time domain range within L time domain ranges.
  • the second radio signal may be one or more second radio signals, and the second radio signals come from at least one second detection device (such as one second detection device or multiple second detection devices).
  • the detection device is different from the first detection device.
  • the first detection device is a vehicle-mounted radar on a certain vehicle
  • the second detection device is a vehicle-mounted radar on another vehicle.
  • the second radio signals are multiple second radio signals, respectively corresponding to the multiple second detection devices.
  • time domain positions other than the first time domain range include at least one time domain position within a second time domain range, and at least one second time domain range Belonging to the L time domain ranges, and the at least one second time domain range corresponds to the at least one second detection device.
  • the second detection device here is different from the first detection device, but the types of the first and second detection devices may be the same or different.
  • the time domain lengths of the time domain ranges corresponding to the first and second detection devices are the same.
  • the second radio signal comes from two second detection devices, called the second detection device 1 and the second detection device 2, then the above-mentioned first detection device must be in two second time domain ranges (the two time domains)
  • the second radio signal is received within the time domain range partially overlapping in the time domain, specifically, the radio signal of the second detection device 1 is received in one of the two time domain ranges, and the radio signal of the second detection device 1 is received in the other one.
  • the radio signal of the second detection device 2 is received in the time domain, and the radio signals from the second detection device 1 and the second detection device 2 constitute the above-mentioned second radio signal.
  • the first detection device must be Receive the second radio within the domain range (respectively referred to as the second time domain range 1, the second time domain range 2 and the second time domain range 3, and any two of the second time domain ranges partially overlap in the time domain)
  • the signal specifically, receives the radio signal of the second detection device 1 in the second time domain range 1, and receives the radio signal of the second detection device 2 in the second time domain range 2, and in the second time domain range 3
  • the radio signal of the second detection device 3 is received, and the radio signals from the second detection device 1, the second detection device 2 and the second detection device 3 constitute the above-mentioned second radio signal.
  • the first detection device will In the 4 second time domain ranges (respectively called the second time domain range 1, the second time domain range 2, the second time domain range 3 and the second time domain range 4, and any two of the second time domain ranges There is a partial overlap in the time domain) to receive the second radio signal, specifically, the radio signal of the second detection device 1 is received in the second time domain range 1, and the second detection device is received in the second time domain range 2
  • the radio signal of the second detection device 3 is received in the second time domain range 3, and the radio signal of the second detection device 4 is received in the second time domain range 4, from the second detection device 1, the second The radio signals of the detection device 2, the second detection device 3 and the second detection device 4 constitute the second radio signal described above.
  • the relationship between the second radio signal, the second detection device, and the second time domain range can be described with reference to the above example, which will not be repeated here.
  • Step S1204 Receive a third radio signal within the first time domain, where the third radio signal includes a reflected signal of the first radio signal.
  • the first detection device transmits a first radio signal in the first time domain range and receives a radio signal; for the convenience of the subsequent description, the radio signal received in the first time domain range may be referred to as a third radio signal. It is understood that after the first radio signal is transmitted, it will be reflected back by some objects, for example, by vehicles, buildings, rocks, etc., so the third radio signal includes the reflected signal of the first radio signal.
  • the first time domain range overlaps with the at least one second time domain range
  • there may be at least one second detection device transmitting radio signals in the at least one second time domain range that is, There is the radio signal transmitted by the second detection device at the overlap, that is, the radio signal transmitted by the second detection device exists in the third radio signal received in the first time domain, and there may also be the radio signal transmitted by the second detection device passing through other radio signals.
  • the radio signal transmitted by the second detection device received during this period is The signal is an interference signal, and the interference signal will affect the information (such as angle, distance, etc.) of the target measured by the first detection device based on the first radio signal.
  • the first detection device transmits the first radio signal in the first time domain
  • a second detection device transmits the radio signal in the second time domain
  • the signal received in the time domain represented by the interval area 1 includes the reflected signal of the first radio signal
  • the signal received in the time domain represented by the overlap area 1 includes the reflected signal of the first radio signal
  • the second detection device The radio signal transmitted in overlap area 1 (because overlap area 1 is also part of the second time domain range), so in the first time domain range, the third radio signal received by the first detection device includes the first detection device
  • the reflected signal of the transmitted first radio signal may also include the radio signal transmitted by the second detection device, and may also include the wireless signal transmitted by the second detection device after being reflected or refracted by other targets and reaching the receiver of the first detection device signal of.
  • Step S1205 Determine the information of the target object according to the third radio signal and the second radio signal.
  • an interference signal other than the reflected signal of the first radio signal in the third radio signal is estimated based on the second radio signal (using the second radio signal as the estimated signal of the interference signal). Then perform interference cancellation on the third radio signal to remove or weaken the interference signal, thereby obtaining a reflected signal of the first radio signal. Then, the intermediate frequency signal is determined according to the reflected signal of the first radio signal and the currently transmitted first radio signal, and then the information of the target object is determined based on the intermediate frequency signal, for example, the distance between the target object and the distance between the target object Angle, radial relative speed with the target and other information.
  • a period of time includes multiple time periods, and any two time periods of the multiple time periods have the same time length and the any two time periods do not overlap each other.
  • each of the multiple time periods includes the L time domain ranges described above, that is, each time period is the radio detection frame described above.
  • the first detection device Before transmitting the radio signal, the first detection device first selects or randomly selects a radio detection frame from the multiple time periods according to a predefined selection strategy, or pre-configures the one radio detection frame for the first detection device After sending a radio signal, the first radio detection frame selects a radio detection subframe (that is, the first time domain range) from the one radio detection frame according to a predefined strategy or randomly, or configures the one radio detection frame in advance One radio detection subframe in is used for the first detection device to send a radio signal, and then the radio signal is transmitted through the selected or pre-configured radio detection subframe, that is, the first radio signal.
  • a radio detection subframe that is, the first time domain range
  • Optional Embodiment 1 (In the scenario involved in this embodiment, the length of the radio sounding subframe included in each radio sounding frame is the same)
  • each radio detection frame includes 2 radio detection subframes, one of the radio detection subframes is represented by a left slash grid, and the other radio detection subframe is represented by a right slash grid, and each radio
  • the length M of the detection frame is equal to 750 sweep cycles (as shown in the vertical line area in Figure 14). For ease of description, these 750 sweep cycles can be numbered. The numbers from the first to the 750th are 0, 1, 2, 3, ...
  • the length of each radio detection subframe is equal to 500 sweep cycles, that is, NT chirp
  • the time domain start position of these two radio detection subframes are separated by 250 sweeps Period, that is, 0.5N*T chirp
  • the time domain length between one radio detection subframe and the other radio detection subframe is 0.5N*T chirp (as shown in the left diagonal grid and right It can be seen that the time domain length M of each radio detection frame is equal to 1.5N*T chirp .
  • the transmission period of the radio signal is 10 us
  • the duration of the radio detection subframe is 5 ms
  • the duration of the radio detection frame is 7.5 ms
  • the overlap duration of the two radio detection subframes in the time domain is 2.5 ms.
  • the first detection device outputs a measurement result in about 50ms
  • 52.5ms can be taken as the measurement result output period of the first detection device, then there are 7 7.5ms long radio detection frames and 14 radio detection subframes in 52.5ms.
  • the first detection device can select a radio detection subframe (that is, the first time domain range) in the 14 radio detection subframes as its working period, that is, it is used to transmit the first radio signal and receive the third radio signal .
  • the first detection device transmits the first radio signal and receives the third radio signal in the previous radio detection subframe in the above 2 radio detection subframes
  • the second detection device is in the above 2 radio detection subframes
  • the fourth radio signal is transmitted in the next radio detection subframe and the fifth radio signal is received.
  • the first detection device is the radar 1 in Figure 15, using the number 0-499 in the above 750 sweep cycles
  • the frequency sweep period detects the target
  • the second detection device is the radar 2 in Fig. 15, which uses the sweep period numbered 250 to 749 among the 750 sweep periods to detect the target.
  • the overlap area contains the radio signal transmitted by the second detection device and received by the first detection device.
  • the radio signal transmitted by the second detection device The specific number of the signal received by the first detection device after propagation can be determined by the radio signal transmitted by the second detection device in the time domain represented by the vertical grid (that is, the second radio signal).
  • the first detection device determines the first After the radio signal transmitted by the second detection device propagates the signal received by the first detection device, the radio signal can be used to eliminate the radio signal received by the first detection device in the previous radio detection subframe (that is, the third radio signal) ) In the interference part.
  • the specific way to eliminate interference can be as follows. Please refer to Figure 15.
  • the first detection device will mix the signal received in the time domain represented by the vertical grid with its own local oscillator signal to obtain an interference intermediate frequency signal, where:
  • the phase of the intermediate frequency signal is the n-th cycle sweep the i-th interference radio signals is formed
  • a 'i is the i th interference radio signal through the transmitting antenna gain
  • the object reflector if a direct interference, there is no object reflector, if It is non-direct interference, it may be the interference signal reflected by other targets
  • propagation loss signal amplitude after receiving antenna gain
  • ⁇ i is the i-th interfering radio signal emitted from the transmitter to the interfered radar (such as the first detection device).
  • f c is the carrier frequency of the radio signal emitted by the i-th jamming radar
  • a 0 is the slope of the FM continuous wave of the jamming radar
  • b 0 is the intercept of the FM continuous wave of the jamming radar
  • T c is the FM continuous wave of the jamming radar
  • N is the total number of cycles in which the jamming radar continuously sends FM continuous waves. It is the initial phase of the local oscillator signal of the first detection device.
  • the interference IF signal of the n-th sweep period As shown in formula (1.14).
  • the phase of the intermediate frequency signal is the n-th cycle sweep the i-th interference radio signals is formed
  • a 'i is the i th interference radio signal through the transmitting antenna gain
  • the object reflector if a direct interference, there is no object reflector, if It is non-direct interference, it may be the interference signal reflected by other targets
  • propagation loss signal amplitude after receiving antenna gain
  • ⁇ i is the i-th interfering radio signal emitted from the transmitter to the interfered radar (such as the first detection device).
  • f c is the carrier frequency of the radio signal emitted by the jamming radar
  • a 0 is the slope of the FM continuous wave of the jamming radar
  • b 0 is the intercept of the FM continuous wave of the jamming radar
  • T c is the period of the FM continuous wave of the jamming radar.
  • N is the total number of cycles in which the jamming radar continuously sends FM continuous waves.
  • a i is the slope of the i-th jamming radar signal, It is the initial phase of the local oscillator signal of the first detection device.
  • phase difference ⁇ i is also the phase difference between two adjacent periodic radio signals of the interference signal received by the first detection device.
  • the interference radio frequency signal of the second detection device received by the first detection device (equivalent to the above-mentioned second radio signal) is On the n-th sweep cycle in the time domain represented by the overlapping area, the radio signal (part of the third radio signal) received by the first detection device is Then, in the time domain represented by the overlapping area, the useful radio signal on the n-th sweep period received by the first detection device after interference is eliminated As shown in the formula (1.15):
  • q in formula (1.15) can take a value, that is, the first detection device can use the radio frequency signal of interfering radar received in a certain period in the time domain represented by the vertical grid into formula (1.15) , Traverse the radio frequency signals received in all cycles in the overlapping area to eliminate interference.
  • the second detection device is in the above 2 radio detection subframes
  • the fourth radio signal is transmitted in the previous radio detection sub-frame and the fifth radio signal is received.
  • the first detection device is radar 2 in Figure 15, using scan numbers 250 to 749 in the above 750 scan cycles
  • the target is detected by frequency period.
  • the second detection device is the radar 1 in Fig. 15, which uses the sweep period numbered from 0 to 499 among the 750 sweep periods to detect the target.
  • the overlapping area contains the radio signal transmitted by the second detection device and received by the first detection device.
  • the radio signal transmitted by the second detection device The specific number of signals received by the first detection device after propagation can be determined by the radio signal transmitted by the second detection device in the time domain represented by the horizontal grid (that is, the second radio signal).
  • the first detection device determines the first After the radio signal transmitted by the second detection device propagates the signal received by the first detection device, the radio signal can be used to eliminate the radio signal received by the first detection device in the previous radio detection subframe (that is, the third radio signal) ) In the interference part.
  • the interference radio frequency signal of the second detection device received by the first detection device (equivalent to the above-mentioned second radio signal) is On the n-th sweep period in the time domain represented by the overlap area, the radio signal received by the first detection device (equivalent to the overlap portion of the third radio signal) is In the time domain represented by the overlapping area, the useful radio signal received by the first detection device after the interference is eliminated As shown in the formula (1.16):
  • q in formula (1.16) can take a value, that is, the first detection device can use the radio frequency signal of interference radar received in a certain period in the time domain represented by the vertical grid into formula (1.16) , Traverse the radio frequency signals received in all cycles in the overlapping area to eliminate interference.
  • the first detection device After the first detection device obtains the interference-eliminated radio signal (that is, the third radio signal eliminates the interference signal), it determines the intermediate frequency signal based on the radio signal and the transmitted radio signal, and then determines the target information based on the intermediate frequency signal (for example, The distance to the target, the angle to the target, the radial relative speed to the target, etc.).
  • Optional Embodiment 2 (In the scenario involved in this embodiment, the length of the radio detection subframe included in each radio detection frame is the same)
  • each radio detection frame includes 3 radio detection subframes
  • the first radio detection subframe 1601 is represented by the right slash grid
  • the second radio detection subframe 1602 is represented by the left slash grid
  • the length M of each radio detection frame is equal to 1000 sweep cycles (as shown in the vertical line area in Figure 16). For the convenience of description, it can be 1000 Sweep cycles are numbered. The numbers from the 1st to the 1000th are 0, 1, 2, 3,...998, 999.
  • each radio detection subframe is equal to 600 sweep cycles, that is NT chirp , the time domain start positions of these 3 radio sounding subframes are separated by 200 sweep periods, namely Correspondingly, the length of time domain overlap between any two adjacent radio sounding subframes in time domain is (The area where the left slash grid and the right slash grid intersect in Figure 16, and the area where the left diagonal grid and the small grid cross in Figure 16), it can be seen that the time domain length of each radio detection frame M is equal to If the transmission period of the radio signal is 10us, the duration of the radio detection subframe is 6ms, and the duration of the radio detection frame is 10ms.
  • the overlap area between the first radio detection subframe 1601 and the second radio detection subframe 1602 The length is 4ms.
  • the length of the overlap area between the first radio detection subframe 1601 and the third radio detection subframe 1603 is 2ms, and the overlap area between the second radio detection subframe 1602 and the third radio detection subframe 1603 The length is 4ms. If the first detection device outputs a measurement result in about 50ms, then 50ms can be taken as the measurement result output period of the first detection device, then there are 5 10ms long radio detection frames and 15 radio detection subframes within 50ms.
  • the first detection device can select a radio detection subframe (ie, the first time domain range) in these 15 radio detection subframes as its working period, that is, it is used to transmit the first radio signal and receive the third radio signal .
  • the second detection device 1 If the first detection device 1 transmits the first radio signal and receives the third radio signal in the first radio detection subframe 1601 of the above 3 radio detection subframes, the second detection device 1 is used in the above 3 radio detection subframes.
  • the second radio detection subframe 1602 in the subframe transmits the fourth radio signal and receives the fifth radio signal.
  • the second detection device 2 is the third radio detection subframe 1603 among the above three radio detection subframes.
  • the sixth radio signal is transmitted inside and the seventh radio signal is received.
  • the first detection device is the radar 1 in Fig. 17, and the target is detected using the sweep period numbered 0 to 599 among the above 1000 sweep periods.
  • the second detection device 1 is the radar 2 in FIG.
  • the second detection device 2 is the radar 3 in FIG.
  • the scanning period numbered from 400 to 999 in 1000 scanning periods detects the target.
  • the overlapping area contains the radio signals transmitted by the second detection device 1 and the second detection device 2 that are transmitted by the first detection device, and the second detection device 1 and
  • the radio signal transmitted by the second detection device 2 propagates and the signal received by the first detection device can be determined based on the above-mentioned second radio signal, which is specifically received in the time domain represented by the vertical grid in FIG. 17 .
  • the time domain represented by the vertical grid area can be divided into two parts.
  • the latter part can measure the interference generated by the second detection device 2, and the front part can measure the second detection device 1 and the first part.
  • the first detection device determines the interference emitted by the second detection device 1
  • the interference signal can be used to eliminate the radio signal received by the first detection device in the first radio detection subframe ( That is, the interference part in the third radio signal), which is illustrated below with an example.
  • the lower part of the vertical grid area measures the interfering radio frequency signal generated by the second detection device 2 during the nth sweep period (equivalent to the latter part of the second radio signal)
  • the sum of the interference signals of the second detection device 1 and the second detection device 2 measured on the n-th sweep period measured in the front part of the vertical grid area (equivalent to the front part of the above second radio signal) is On the n-th sweep period in the time domain represented by the overlap area, the radio signal received by the first detection device (equivalent to the overlap portion of the third radio signal) is Similarly to the formula (1.15), the interference signal generated by the second detection device 1 measured in the nth sweep cycle of the front part of the vertical grid area can be obtained As shown in the formula (1.17):
  • q in formula (1.18) can take a value, that is, the first detection device can use the interference radar radio frequency signal received in a certain period in the time domain represented by the vertical grid into the formula ( 1.18), you can get
  • the separated interference signal generated by the second detection device 1 in the nth sweep period Perform signal processing (same as Embodiment 1) to obtain the phase difference of the interference radio frequency signal generated by the second detection device 1 received by the first detection device between two adjacent periodic radio signals Then, in the time domain represented by the overlapping area, the useful radio signal received by the first detection device on the nth sweep period after interference is eliminated As shown in formula (1.19):
  • q in formula (1.19) can take a value, that is, the first detection device can use the radio frequency signal of interference radar received in a certain period in the time domain represented by the vertical grid into formula (1.19) , Traverse the radio frequency signals received in all cycles in the overlapping area to eliminate interference.
  • the first detection device 1 transmits the first radio signal and receives the third radio signal in the second radio detection subframe 1602 of the above 3 radio detection subframes
  • the second detection device 1 is used in the above 3 radio detection subframes.
  • the fourth radio signal is transmitted in the first radio detection subframe 1601 in the subframe, and the fifth radio signal is received
  • the second detection device 2 is the third radio detection subframe 1603 in the above three radio detection subframes.
  • the sixth radio signal is transmitted inside and the seventh radio signal is received.
  • the first detection device is the radar 2 in Fig. 17, using the sweep period numbered 200 to 799 among the above 1000 sweep periods to detect the target
  • the second detection device 1 is the radar 1 in FIG.
  • the second detection device 2 is the radar 3 in FIG.
  • the scanning period numbered from 400 to 999 in 1000 scanning periods detects the target.
  • the overlapping area contains the radio signals transmitted by the second detection device 1 and the second detection device 2 that are transmitted by the first detection device, and the second detection device 1 and
  • the radio signal transmitted by the second detection device 2 propagated and the signal received by the first detection device can be determined based on the above-mentioned second radio signal.
  • the second radio signal is specifically received in the time domain represented by the horizontal grid in FIG. 17 . As shown in Figure 17, the time domain represented by the horizontal grid area can be divided into two parts.
  • the front part can measure the interference signal generated by the second detection device 1, and the back part can measure the second detection device 2. Interfering signal. If there is no overlap between the two parts of interference signals, the method in the first embodiment can be used to eliminate interference on the third radio signal. After the first detection device determines that the interference signal emitted by the second detection device 1 and the interference signal emitted by the second detection device 2 have propagated the signal received by the first detection device, the interference signal can be used to eliminate the interference signal of the first detection device.
  • the interference part of the radio signal (that is, the third radio signal) received in the first radio detection subframe.
  • the second detection device 1 is used in the above 3 radio detection subframes.
  • the fourth radio signal is transmitted in the first radio detection subframe 1601 in the subframe, and the fifth radio signal is received, and the second detection device 2 is the second radio detection subframe 1602 in the above three radio detection subframes.
  • the sixth radio signal is transmitted inside and the seventh radio signal is received.
  • the first detection device is the radar 3 in Fig. 17, using the sweep period numbered 400 to 999 among the above 1000 sweep periods to detect the target
  • the second detection device 1 is the radar 1 in FIG.
  • the second detection device 2 is the radar 2 in FIG.
  • the sweep period numbered 200 to 799 in 1000 sweep periods detects the target.
  • the overlapping area contains the radio signals transmitted by the second detection device 1 and the second detection device 2 that are transmitted by the first detection device, and the second detection device 1 and
  • the radio signal transmitted by the second detection device 2 propagated and the signal received by the first detection device can be determined based on the above-mentioned second radio signal, which is specifically received in the time domain represented by the dotted grid in FIG. 17. As shown in Figure 17, the time domain represented by the grid area can be divided into two parts.
  • the front part can measure the interference generated by the second detection device 1, and the back part can measure the second detection device 1 and the second detection device 1.
  • the sum of the interference signals of the detection device 2 can separate the interference signals generated by the second detection device 1 and the second detection device 2 respectively through the propagation of the signals received by the first detection device through the two-part interference measurement results.
  • the interference signal can be used to eliminate the interference signal of the first detection device.
  • the interference part of the radio signal that is, the third radio signal received in the first radio detection subframe.
  • the interfering radio frequency signal generated by the second detection device 2 (equivalent to the front part of the above-mentioned second radio signal) is measured on the n-th sweep period of the front part of the dot grid area:
  • the sum of the interference signals of the second detection device 1 and the second detection device 2 measured on the n-th sweep period of the rear part of the dot grid area (equivalent to the latter part of the above-mentioned second radio signal) is On the n-th sweep period in the time domain represented by the overlap area, the radio signal received by the first detection device (equivalent to the overlap portion of the third radio signal) is Similarly to the formula (1.16), the interference signal generated by the second detection device 1 measured on the nth sweep cycle of the rear part of the dot grid area can be obtained As shown in the formula (1.20):
  • q in formula (1.21) can take a value, that is, the first detection device can use the radio frequency signal of interference radar received in a certain period in the time domain represented by the dot grid into formula (1.21) ), you can get
  • the separated interference signal generated by the second detection device 1 in the nth sweep period Perform signal processing (same as the first embodiment) to obtain the phase difference between two adjacent periodic radio signals of the interference radio frequency signal generated by the second detection device 1 received by the first detection device, Then, in the time domain represented by the overlapping area, the useful radio signal received by the first detection device on the nth sweep period after interference is eliminated As shown in formula (1.22):
  • q in formula (1.22) can take a value, that is, the first detection device can use the radio frequency signal of the interference radar received in a certain period in the time domain represented by the dot grid into formula (1.22), It traverses the radio frequency signals received in all cycles in the overlapping area to eliminate interference.
  • the first detection device After the first detection device obtains the interference-removed radio signal, it determines the intermediate frequency signal based on the radio signal and the transmitted radio signal, and then determines the target information based on the intermediate frequency signal (for example, the distance to the target, the distance between the target and the target). The angle between them, the radial relative speed with the target, and other information).
  • each detection device transmits radio signals within the time domain that is determined to avoid mutual interference to avoid any detection device's transmission signal or related signals from causing other detection devices to determine targets. Interference.
  • the waste of time domain resources caused by the complete separation of the sweep cycles of multiple detection devices in the time domain can be avoided, and the time domain resources can be effectively used and realized at a lower time domain resource cost. Higher anti-jamming performance, while supporting a larger number of radar communications.
  • Optional embodiment 3 (In the scenario involved in this embodiment, the lengths of the radio detection subframes included in each radio detection frame are not completely the same)
  • each radio detection frame includes 2 radio detection subframes, one of the radio detection subframes is represented by the left slash grid, and the other radio detection subframe is represented by the right slash grid.
  • the length M of the detection frame is equal to 1000 sweep cycles (as shown in the vertical line in Figure 18). For the convenience of description, these 1000 sweep cycles can be numbered.
  • the numbers from the first to the 1000th are 0, 1, 2, 3,...998, 999, the length of the first radio detection subframe is equal to 500 sweep cycles, that is NT chirp , and the length of the second radio detection subframe is equal to 750 sweep cycles, that is 1.5 N*T chirp .
  • the time domain start positions of these two radio detection subframes are separated by 250 sweep cycles, that is, 0.5N*T chirp , correspondingly, the time domain overlapping between one radio detection subframe and the other radio detection subframe
  • the length is 0.5N*T chirp (as shown in the area where the left diagonal grid and the right diagonal grid intersect in Figure 18). It can be seen that the time domain length M of each radio detection frame is equal to 2N*T chirp . If the transmission period of the radio signal is 10us, the duration of the first radio detection subframe is 5ms, the duration of the second radio detection subframe is 7.5ms, and the duration of the radio detection frame is 10ms.
  • the two radio detection subframes are in time The duration of overlap on the domain is 2.5 ms.
  • the first detection device can output a measurement result in about 50ms, then 50ms can be taken as the measurement result output period of the first detection device, then there are 5 10ms long radio detection frames in 50ms, including 5 5ms radio detection subframes Five 7.5ms radio sounding subframes.
  • the first detection device can select a radio detection subframe (that is, the first time domain range) in these 5 5ms radio detection subframes as its working period, that is, it is used to transmit the first radio signal and receive the third radio signal. Radio signal, or select a radio detection subframe (that is, the first time domain range) within 5 7.5ms radio detection subframes, as its working period, that is, used to transmit the first radio signal and receive the third radio signal .
  • the second detection device is after the above-mentioned 2 radio detection subframes.
  • the fourth radio signal is transmitted and the fifth radio signal is received.
  • the first detection device is radar 1 in Fig. 19, and the sweep frequency numbered from 0 to 499 in the above 1000 sweep cycles is used.
  • the target is detected periodically, and the second detection device is the radar 2 in Fig. 19, and the target is detected by using the 250-999 sweep cycles of the above 1000 sweep cycles.
  • the overlapping area contains the radio signal transmitted by the second detection device and received by the first detection device.
  • the radio signal transmitted by the second detection device The specific number of the signal received by the first detection device after propagation can be determined by the radio signal transmitted by the second detection device in the time domain represented by the vertical grid (that is, the second radio signal).
  • the first detection device determines the first After the radio signal transmitted by the second detection device propagates the signal received by the first detection device, the radio signal can be used to eliminate the radio signal received by the first detection device in the previous radio detection subframe (that is, the third radio signal) ) In the interference part.
  • the interference radio frequency signal of the second detection device received by the first detection device (equivalent to the above-mentioned second radio signal) is On the n-th sweep period in the time domain represented by the overlapping area, the radio signal received by the first detection device (part of the third radio signal) is Then, in the time domain represented by the overlapping area, the useful radio signal on the n-th sweep period received by the first detection device after interference is eliminated As shown in the formula (1.23):
  • q in formula (1.23) can take a value, that is, the first detection device can use the radio frequency signal of interference radar received in a certain period in the time domain represented by the vertical grid into formula (1.23) , Traverse the radio frequency signals received in all cycles in the overlapping area to eliminate interference.
  • the second detection device is in the above 2 radio detection subframes
  • the fourth radio signal is transmitted in the previous radio detection subframe and the fifth radio signal is received.
  • the first detection device is radar 2 in Figure 19, using the above-mentioned 1000 sweep cycles numbered 250-999.
  • the target is detected by frequency period.
  • the second detection device is the radar 1 in Fig. 19, which detects the target by using the sweep period numbered from 0 to 499 among the above 1000 sweep periods.
  • the overlap area contains the radio signal transmitted by the second detection device and received by the first detection device.
  • the radio signal transmitted by the second detection device The specific number of signals received by the first detection device after propagation can be determined by the radio signal transmitted by the second detection device in the time domain represented by the horizontal grid (that is, the second radio signal).
  • the first detection device determines the first After the radio signal transmitted by the second detection device propagates the signal received by the first detection device, the radio signal can be used to eliminate the radio signal received by the first detection device in the previous radio detection subframe (that is, the third radio signal) ) In the interference part.
  • the interference radio frequency signal of the second detection device received by the first detection device (equivalent to the above-mentioned second radio signal) is On the n-th sweep period in the time domain represented by the overlap area, the radio signal received by the first detection device (equivalent to the overlap portion of the third radio signal) is In the time domain represented by the overlapping area, the useful radio signal received by the first detection device after the interference is eliminated As shown in the formula (1.24):
  • q in formula (1.24) can take a value, that is, the first detection device can use the radio frequency signal of interference radar received in a certain period in the time domain represented by the vertical grid into formula (1.24) , Traverse the radio frequency signals received in all cycles in the overlapping area to eliminate interference.
  • the first detection device After the first detection device obtains the interference-eliminated radio signal (that is, the third radio signal eliminates the interference signal), it determines the intermediate frequency signal based on the radio signal and the transmitted radio signal, and then determines the target information based on the intermediate frequency signal (for example, The distance to the target, the angle to the target, the radial relative speed to the target, etc.).
  • each device such as the first detection device, includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the first detection device into functional modules.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 20 shows a possible schematic structural diagram of the first detection device involved in the above-mentioned embodiment of the present application.
  • the first detection device 18 may include a processing unit 1801 for determining a first time domain range, where the first time domain range is one of L time domain ranges; a transmitting unit 1802, for determining a first time domain range;
  • the first radio signal is transmitted within the domain range; wherein any one of the L time domain ranges partially overlaps with at least one of the other L-1 time domain ranges, and the L time domains
  • the absolute value of the difference between the time domain start positions of any two time domain ranges in the range is not less than the first threshold F, and is less than the time domain length of the time domain range with the shortest time domain length among the L time domain ranges.
  • any two time domain ranges in the L time domain ranges partially overlap (incompletely overlap) in the time domain, and the time domain start positions of any two time domain ranges in the L time domain ranges are The absolute value of the difference is not less than the first threshold F.
  • the L is a positive integer greater than 1.
  • the first threshold F is greater than or equal to the sweep period of the first radio signal, and the first threshold F is an integer multiple of the sweep period of the first radio signal; or the L In the time domain range, the absolute value of the difference between the time domain start position of any time domain range other than the first time domain range and the time domain start position of the first time domain range is the first A positive integer multiple of a threshold F, the first threshold F is greater than or equal to the sweep period of the first radio signal, and the first threshold F is an integer multiple of the sweep period of the first radio signal.
  • the time domain lengths of the L time domain ranges are the same, and the time domain length is an integer multiple of the frequency sweep period of the first radio signal.
  • time domain ranges with different time domain lengths among the L time domain ranges.
  • time domain length of each time domain range is a positive integer multiple of the frequency sweep period of the first radio signal.
  • the transmitting unit is further configured to: receive a second radio signal at a time domain location other than the first time domain range within the L time domain ranges, and the second radio signal is from at least A second detection device.
  • the second radio signal may be one or more second radio signals.
  • the second radio signals are multiple second radio signals, respectively corresponding to the multiple second detection devices.
  • time domain positions other than the first time domain range include at least one time domain position within a second time domain range, and at least one second time domain range Belonging to the L time domain ranges, and the at least one second time domain range corresponds to the at least one second detection device.
  • the first detection device 18 further includes a receiving unit 1803, configured to receive a third radio signal within the first time domain, and the third radio signal includes a reflection signal of the first radio signal .
  • the processor 1801 is further configured to: according to the third radio signal and the second radio signal, Identify the target's information.
  • the first detection device may further include a memory 1804 for storing program instructions and/or data for the processor 1801 to read.
  • This optional design can be implemented independently or integrated with any of the above optional designs.
  • FIG. 21 is a schematic diagram of another possible structure of the first detection device provided by an embodiment of the application.
  • the first detection device 18 may include a processor 1901, a transmitter 1902, and a receiver 1903. The functions thereof can respectively correspond to the specific functions of the processing unit 1801, the transmitting unit 1802, and the receiving unit 1803 shown in FIG. 20, and will not be repeated here.
  • the detection device may further include a memory 1904 for storing program instructions and/or data for the processor 1801 to read.
  • FIG. 2 provides a schematic structural diagram of a radar device.
  • Fig. 22 provides a schematic diagram of another possible structure of the first detection device.
  • the first detection device provided in Figure 20-22 can be part or all of the radar device in the actual communication scenario, and can be integrated in the radar device or located outside the radar device, subject to the realization of the corresponding function, and the structure and composition are not correct. Make specific restrictions.
  • the first detection device 18 includes a transmitting antenna 2001, a receiving antenna 2002, and a processor 2003. Further, the first detection device further includes a mixer 2004 and/or an oscillator 2005. Further, the first detection device may also include a low-pass filter and/or a directional coupler. Wherein, the transmitting antenna and the receiving antenna are used to support the detection device to perform radio communication, the transmitting antenna supports the transmission of radio signals, and the receiving antenna supports the reception of radio signals and/or the reception of reflected signals, so as to finally realize Detection function.
  • the processor performs some possible determination and/or processing functions. Further, the operation of the transmitting antenna and/or receiving antenna is also controlled.
  • the signal to be transmitted is transmitted by the processor controlling the transmitting antenna, and the signal received through the receiving antenna can be transmitted to the processor for corresponding processing.
  • the various components included in the detection device can be used to implement any implementation related to the method embodiments of the present application.
  • the detection device may further include a memory for storing program instructions and/or data.
  • the transmitting antenna and the receiving antenna may be set independently, or may be integrated as a transmitting and receiving antenna to perform corresponding transmitting and receiving functions.
  • the second detection device or any detection device in the embodiments of the present application may have the same structure as the first detection device, that is, it is also applicable to the structural schematic diagrams described in FIGS. 20-22.
  • the detection device when implemented by software, it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the processor included in the detection device used to execute the detection method provided by the embodiment of the application may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit. (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, mobile hard disk, CD-ROM or any other form of storage known in the art Medium.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the detection device.
  • the processor and the storage medium may also exist as discrete components in the detection device.
  • Figures 20-22 only show the simplified design of the detection device. In practical applications, detection can include any number of transmitters, receivers, processors, controllers, memories, and other possible components.
  • An embodiment of the present application also provides a communication system, which includes at least one detection device and/or at least one target object that executes the aforementioned embodiments of the present application.
  • An embodiment of the present application also provides a communication system, which includes at least one detection device and/or at least one central processing unit/central controller that executes the aforementioned embodiments of the present application.
  • the central processing unit/central controller is used for controlling the driving of the vehicle and/or processing of other detection devices according to the output of the at least one detection device.
  • the central processing unit/central controller may be located in the vehicle, or other possible locations, subject to the realization of the control.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, which are stored in a storage medium.
  • a device which may be a single-chip microcomputer, a chip, etc.
  • a processor processor
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种利用无线电信号进行目标物探测的方法及相关装置,方法包括:确定第一时域范围(S1201),第一时域范围为L个时域范围中的一个;和在第一时域范围内发射第一无线电信号(S1202);其中,L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域范围部分重叠,L个时域范围中任两个时域范围的时域起始位置的差值的绝对值不小于第一阈值F,且小于第一时域范围的时域长度。该L个时域范围也可以称为时域栅格,为雷达提供可用的时域资源。可应用于自动驾驶、智能驾驶、智能网联车、智能汽车等相关领域,能够降低探测装置,尤其是协同式雷达,之间的干扰。

Description

一种利用无线电信号进行目标物探测的方法及相关装置 技术领域
本发明涉及自动驾驶系统(Automated Driving System,ADS)、智能驾驶、智能网联车、智能汽车、电动车/电动汽车领域的无线通信技术,尤其涉及一种利用无线电信号进行目标物探测的方法及相关装置。
背景技术
随着社会的发展,现代生活中越来越多的机器向自动化、智能化发展,移动出行用的汽车也不例外,智能汽车正在逐步进入人们的日常生活中。近些年,高级驾驶辅助系统(Advanced Driving Assistant System,ADAS)在智能汽车中发挥着十分重要的作用,该系统利用安装在车上的各式各样传感器,在汽车行驶过程中感应或感知周围的环境、收集数据,进行静止、移动物体的辨识、侦测与追踪,并结合导航仪地图数据,进行系统的运算与分析,从而预先让驾驶者察觉到可能发生的危险,有效增加汽车驾驶的舒适性和安全性。
在无人驾驶(或者辅助驾驶、智能驾驶)架构中,传感层包括车载探测装置,例如车载摄像头等视觉系传感器和车载毫米波雷达、车载激光雷达和车载超声波雷达等雷达系传感器。毫米波雷达由于成本较低、技术比较成熟率先成为无人驾驶系统主力传感器。目前ADAS已开发出十多项功能,其中自适应巡航控制(Adaptive Cruise Control,ACC)、自动紧急制动(Autonomous Emergency Braking,AEB)、变道辅助(Lance Change Assist,LCA)、盲点监测(Blind Spot Monitoring,BSD)都离不开车载探测装置,例如毫米波雷达。毫米波是指波长介于一定范围内的电磁波,例如1-10mm,所对应的频率范围为30-300GHz。在这个频段,毫米波相关的特性非常适合应用于车载或者自动驾驶领域。例如,带宽大,频域资源丰富,天线副瓣低,有利于实现成像或准成像;波长短,雷达设备体积和天线口径得以减小,重量减轻;波束窄,在相同天线尺寸下毫米波的波束要比微波的波束窄得多,雷达分辨率高;穿透强,相比于激光雷达和光学系统,更加具有穿透烟、灰尘和雾的能力,可全天候工作。
随着车载探测装置的广泛使用,车载探测装置所在的车辆之间的互干扰越来越严重。由于互干扰会降低车载探测装置检测概率或提升其虚警(Ghost)概率,对车辆行驶安全或舒适性造成不可忽视的影响。在这种前提下,如何降低车载探测装置之间的干扰是亟需解决的一个技术问题。
发明内容
本发明实施例公开了一种利用无线电信号进行目标物探测的方法及相关装置,能够降低探测装置之间的干扰。
第一方面,本申请实施例提供一种利用无线电信号进行目标物探测的方法,用于第一探测装置,该方法包括:确定第一时域范围,所述第一时域范围为L个时域范围中的一个;和在所述第一时域范围内发射第一无线电信号;其中,所述L个时域范围中的任一个时域 范围与其它L-1个时域范围中的至少一个时域范围部分重叠,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值不小于第一阈值F,且小于所述L个时域范围中时域长度最短的时域范围的时域长度;其中,所述L为大于1的正整数。
进一步,所述L个时域范围中任两个时域范围在时域上部分重叠,或者说,不完全重叠。这里的完全重叠是指两个时域范围完全相同,或者,两个时域范围中一个时域范围完全包含于另一个时域范围。
其中,所述L个时域范围可以是预先设置或者定义的。例如通过设置或者定义L个时域范围的时域间隔、时域长度等来设置或者定义所述L个时域范围。其中,所述时域长度可以是通过L个时域范围中至少两个时域范围的最小时间点、最大时间点、中心时间点的至少一项的间隔来指示的。具体不做限定,以能明确所述时域长度为准。
通过执行上述方法,每一个探测装置通过在确定好的可以避免互干扰的时域范围内发射无线电信号来避免任一个探测装置的发射信号或相关信号对其他探测装置确定目标物造成的干扰。通过各个时域间的部分重叠,可以避免将多个探测装置的扫频周期完全在时域上分开而造成的时域资源浪费,可以有效利用时域资源,以较低的时域资源代价实现较高的抗干扰性能,同时又可以支持更多数目的探测装置通信。
本申请提供的方法提升了汽车的自动驾驶或高级驾驶辅助系统ADAS能力,可以应用于车联网,例如车辆外联(Vehicle to Everything,V2X)、车间通信长期演进技术(Long Term Evolution-Vehicle,LTE-V)、车辆-车辆(Vehicle-to-Vehicle,V2V)等。
在一种可能的实现方式中,所述第一阈值F大于或等于所述第一无线电信号的扫频周期,所述第一阈值F为所述第一无线电信号的扫频周期的整数倍。或者所述L个时域范围中除所述第一时域范围之外的任一个时域范围的时域起始位置与所述第一时域范围的时域起始位置的差值的绝对值为所述第一阈值F的正整数倍,所述第一阈值F大于或等于所述第一无线电信号的扫频周期,所述第一阈值F为所述第一无线电信号的扫频周期的整数倍。可以理解的是,限定第一阈值F为所述第一无线电信号的扫频周期的整数倍,就能够保证测量干扰的时域范围等于或者大于一个扫频周期,从而确保测量干扰信号的分辨率,提高干扰消除的效果。另外,限定上述差值的绝对值为所述第一阈值F的正整数倍,后续在进行干扰消除时就可以采用该倍数关系更精确地进行干扰信号的消除。
在一种可能的实现方式中,所述L个时域范围的时域长度相同,所述时域长度为所述第一无线电信号的扫频周期的整数倍。可以理解的是,限定L个时域范围的时域长度相同,那么后续第一探测装置根据这一特性进行相对简单的处理就可以实现干扰消除,而无需做更复杂的数学变换。
在一种可能的实现方式中,所述L个时域范围中存在至少两个时域长度不同的时域范围。可选的,所述L个时域范围包含T种时域长度的时域范围。每种时域长度的时域范围对应相应类型的探测装置。或者说,探测装置存在多种可能的类型,每种类型的探测装置对应相应时域长度的时域范围。进一步,相应类型的探测装置只能在相应时域长度的时域范围内发射无线电信号。可选的,所述T种时域长度的每一种时域长度均为所述第一无线电信号的扫频周期的整数倍。
在一种可能的实现方式中,上述方法还包括:在该L个时域范围内,除所述第一时域范 围之外的时域位置,接收第二无线电信号,所述第二无线电信号来自至少一个第二探测装置。可以理解的是,该第二无线电信号可以用来确定该至少一个第二探测装置在第一时域范围内的干扰信号,该干扰信号用于后续消除第一探测装置在第一时域资源内接收的回波信号的干扰。
在一种可能的实现方式中,所述L个时域范围包含至少一个第二时域范围,所述至少一个第二时域范围对应所述至少一个第二探测装置。也即是说,第一时域范围、第二时域范围均属于上述L个时域范围中的时域范围,并且在每个第二时域范围上各存在有第二探测装置使用该第二时域范围发射无线电信号以进行雷达探测。例如,第一探测装置用于在第一时域范围上发射第一无线电信号以进行雷达探测,第二探测装置1用于在第二时域范围1上发射第一无线电信号以进行雷达探测,第二探测装置2用于在第二时域范围2上发射第一无线电信号以进行雷达探测。这里的第二探测装置不同于第一探测装置,但是第一和第二探测装置的类型可以相同或者不同。在第一和第二探测装置类型相同的情况下,第一和第二探测装置所对应的时域范围的时域长度相同。
在一种可能的实现方式中,上述方法还包括:在所述第一时域范围内,接收第三无线电信号,所述第三无线电信号包含所述第一无线电信号的反射信号。可以理解,该第三无线电信号包含了第一无线电信号的反射信号,还包括了上述至少一个第二探测装置发射和/或发射后反射的信号。总而言之,该第一探测装置可以从该第三无线电信号中剥离出该第一无线电信号的反射信号,以用于后续确定中频信号。
在一种可能的实现方式中,该方法还包括:根据所述第三无线电信号以及所述第二无线电信号,确定所述目标物的信息。具体来说,该第二无线电信号中包含了至少一个第二探测装置反射和/发射后反射的无线电信号,因此可以根据第二无线电信号确定出包含了至少一个第二探测装置反射和/发射后反射的无线电信号;另外,由于第三无线电信号上的干扰信号也来源于该至少一个第二探测装置,因此可以根据确定出的至少一个第二探测装置反射和/发射后反射的无线电信号来消除第三无线电信号上的干扰信号。再根据消除干扰后的信号就可以得到中频信号,从而基于中频信号得到上述目标物的信息,例如,与目标物之间的距离、与目标物之间的角度、与目标物的径向相对速度等信息。
在一种可能的实现方式中,所述根据所述第三无线电信号以及所述第二无线电信号,确定所述目标物的信息,包括:根据所述第二无线电信号和所述第一无线电信号确定所述第二无线电信号的相邻两个扫频周期之间的相位差ΔΦ i;根据所述第二无线电信号的相邻两个扫频周期之间的相位差ΔΦ i和所述第二无线电信号对所述第三无线电信号执行干扰消除,得到中频信号;根据所述中频信号确定所述目标物的信息。
第二方面,提供一种探测装置,该探测装置具有实现上述第一方面任一种可能的实现方式中的所述的方法和功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第三方面,提供一种探测器,该探测器包括处理器、发射天线,该处理器用于确定第一时域范围,所述第一时域范围为L个时域范围中的一个;该发射天线用于在所述第一时域范围内发射第一无线电信号;其中,所述L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域范围部分重叠,所述L个时域范围中任两个时域范围的时域起 始位置的差值的绝对值不小于第一阈值F,且小于所述L个时域范围中时域长度最短的时域范围的时域长度;其中,所述L为大于1的正整数。
进一步,所述L个时域范围中任两个时域范围在时域上部分重叠,或者说,不完全重叠。这里的完全重叠是指两个时域范围完全相同,或者,两个时域范围中一个时域范围完全包含于另一个时域范围。
上述第三方面提供的技术方案,每一个探测装置通过在确定好的可以避免互干扰的时域范围内发射无线电信号来避免任一个探测装置的发射信号或相关信号对其他探测装置确定目标物造成的干扰。通过各个时域间的部分重叠,可以避免将多个探测装置的扫频周期完全在时域上分开而造成的时域资源浪费,可以有效利用时域资源,以较低的时域资源代价实现较高的抗干扰性能,同时又可以支持更多数目的雷达通信。
在一种可能的实现方式中,该探测器还包括接收天线,用于在所述L个时域范围内,除所述第一时域范围之外的时域位置,接收第二无线电信号,所述第二无线电信号来自至少一个第二探测装置,以及用于在所述第一时域范围内,接收第三无线电信号,所述第三无线电信号包含所述第一无线电信号的反射信号。相应的,该处理器用于根据所述第三无线电信号以及所述第二无线电信号,确定所述目标物的信息。
本申请实施例还提供了一种探测装置,包括:至少一个处理器、至少一个存储器以及通信接口,该通信接口、该至少一个存储器与该至少一个处理器耦合;终端通过该通信接口与其他设备通信,该至少一个存储器用于存储计算机程序,使得该计算机程序被该至少一个处理器执行时实现如第一方面及其各种可能的实现方式所述的利用无线电信号进行目标物探测方法。
本申请实施例还提供了一种计算机可读存储介质,如计算机非瞬态的可读存储介质。其上储存有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述第一方面的任一种可能的方法。例如,该计算机可以是至少一个存储节点。
本申请实施例还提供了一种计算机程序产品,当其在计算机上运行时,使得第一方面提供的任一方法被执行。例如,该计算机可以是至少一个存储节点。
本申请实施例还提供了一种芯片,用于支持探测装置实现上述第一方面的任一种可能的方法所涉及的功能,例如生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片还包括存储器,所述存储器,用于保存所述探测装置必要的程序指令和数据。
本申请实施例还提供了一种芯片,所述芯片包括处理模块与通信接口,所述处理模块用于控制所述通信接口与外部进行通信,该处理模块还用于实现第一方面的任一种可能的方法。
可以理解的,上述提供的任一种终端或计算机存储介质、计算机程序产品或芯片等均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
以下对本发明实施例用到的附图进行介绍。
图1为本申请实施例提供的一种可能的应用场景示意图;
图2为本申请实施例提供的一种车载毫米波雷达装置结构示意图;
图3为本申请实施例提供的一种发射信号、反射信号与中频信号的频率变化示意图;
图4为本申请实施例提供的一种调频连续波多周期时间频率示意图;
图5为本申请实施例提供的一种发射信号、接收信号与中频信号的关系示意图;
图6为本申请实施例提供的一种车载雷达互干扰示意图;
图7A和图7B为本申请实施例提供的一种可能的虚假中频信号的示意图;
图8A和图8B为本申请实施例提供的一种干扰信号淹没目标信号的结果示意图;
图9A为本申请实施例提供的一种小斜率雷达干扰大斜率雷达的示意图;
图9B为本申请实施例提供的一种大斜率雷达干扰小斜率雷达的示意图;
图10A和图10B为本申请实施例提供的一种可能的解决方案示意图;
图11A和图11B为本申请实施例提供的另一种可能的解决方案示意图;
图12为本申请实施例提供的一种利用无线电信号进行目标物探测方法的流程示意图;
图13是本发明实施例提供的一种3个时域范围的关系示意图;
图14是本发明实施例提供的一种时域范围的结构示意图;
图15是本发明实施例提供的一种雷达干扰消除示意图;
图16是本发明实施例提供的一种时域范围的结构示意图;
图17是本发明实施例提供的一种雷达干扰消除示意图;
图18是本发明实施例提供的一种时域范围的结构示意图;
图19是本发明实施例提供的一种雷达干扰消除示意图;
图20是本发明实施例提供的一种第一探测装置的结构示意图;
图21是本发明实施例提供的一种第一探测装置的结构示意图;
图22是本发明实施例提供的一种第一探测装置的结构示意图。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图1所示,为本申请实施例的一种可能的应用场景示意图。上述应用场景可以为无人驾驶、自动驾驶、智能驾驶、网联驾驶等。探测装置可以安装在机动车辆(例如无人车、智能车、电动车、数字汽车等)、无人机、轨道车、自行车、信号灯、测速装置或网络设备(如各种系统中的基站、终端设备)等等。本申请既适用于车与车之间的探测装置,也适用于车与无人机等其他装置的探测装置,或其他装置之间的探测装置。本申请对探测装置安装的位置和功能不做限定。
以下,对本申请实施例可能出现的术语进行解释。
雷达(Radar):或称为雷达装置,也可以称为探测器、探测装置或者无线电信号发送装置。其工作原理是通过发射信号(或者称为探测信号),并接收经过目标物体反射的反射 信号,来探测相应的目标物体。
发射周期或者扫频周期:探测装置进行一个完整波形的无线电信号发射的发射周期。探测装置一般会在一段连续的时长内进行多个扫频周期的无线电信号发送。这里的一段连续的时长可以参见下文中的无线电探测子帧(或者时域范围)。为阐述方便,下文中的“无线电探测子帧”、“时域范围”可能交替出现,但是含义相同,均指示探测装置一次连续发射无线电信号的时长。
初始频率:在一个发射周期的开始,雷达会以一个初始频率发射雷达信号,并且发射频率以所述初始频率为基础在所述发射周期内变化。
扫频带宽:雷达信号波形所占用的带宽。这里需要说明的是,“扫频带宽”是为了阐述方便而定义的,技术上为雷达信号波形所占用的带宽。进一步,雷达信号波形所占用的频带可以称为扫频频带。雷达信号的发射周期又称为扫频时间,即发射一个完整波形的时间。
调频连续波:频率随时间变化的电磁波。
线性调频连续波:频率随时间线性变化的电磁波。这里的线性变化一般是指在一个发射周期内线性变化。具体的,线性调频连续波的波形一般是锯齿波或者三角波,也可能存在其它可能的波形,例如脉冲。
最大测距距离:或称最大探测距离,是与雷达自身配置有关的参数(出厂设置参数或与出厂设置参数相关)。例如,长距自适应巡航控制(Adaptive Cruise Control,ACC)雷达的最大测距距离为250m,中距雷达的最大测距距离为70-100m。若最大测距距离为250m,具体的应用场景对雷达的距离分辨率要求不高。可选的,所述距离分辨率与扫频带宽有关。
中频(Intermediate Frequency,IF)信号:雷达本振信号与接收到的目标反射信号经过混频器处理后的信号,即为中频信号。具体来说,通过振荡器产生的调频连续波信号,一部分作为本振信号,一部分作为发射信号通过发射天线发射出去,而接收天线接收的所述发射信号的反射信号,会与所述本振信号混频,得到所述“中频信号”。通过所述中频信号,可以得到目标物体的位置信息、速度信息和角度信息中的至少一个。其中,所述位置信息、速度信息和角度信息可以为相对当前的雷达的相对位置、相对速度和相对角度信息。进一步,所述中频信号的频率为中频频率。
下面结合图2以车载毫米波雷达装置的参考架构阐述一下雷达信号的处理和发射过程。图2提供了一种车载毫米波雷达装置示例性结构的示意图,一般包括振荡器、发射天线、接收天线、混频器、处理器等装置。图2中的控制器一般不包括在车载毫米波雷达装置中,而包括在车载毫米波雷达装置所输出信号的接收端,例如,可以位于汽车中,或者用于控制汽车行驶的处理装置等,本申请实施例对此不作具体限制。振荡器会产生一个调频连续波(Frequency Modulated Continuous Wave,FMCW),例如频率随时间线性增加的信号,该信号可以称为线性调频连续波(LinearFrequency Modulated Continuous Wave,LFMCW)。上述调频连续波的一部分经过定向耦合器输出至混频器作为本振信号,一部分通过发射天线发射出去,并通过接收天线接收车辆前方物体反射回来的信号,在混频器与本振信号进行混频,得到中频信号,所述中频信号包含目标物体的信息,所述目标物体的信息可以为目标物体与所述车载雷达所在的车辆之间的相对参数,例如目标物体与车辆之间的相对距离、速度、角度中的至少一项信息。中频信号(例如,可以为经过低通滤波器并经过放大 处理后的中频信号,图2中并未示出低通滤波器)输送到处理器,处理器对中频信号进行处理(例如,可以对信号进行快速傅里叶变换,或者,进行频谱分析)以得到所述目标物体的信息,最后输出到控制器以进行车辆控制。一般来说,基于雷达自身的配置,最大测距距离对应的中频频率被认为是最大的中频频率,大于该中频频率的信号会被低通滤波器过滤掉。
以下以锯齿波为例详细介绍一下毫米波雷达的测距、测速原理,为分析方便,使用解析信号进行分析(三角波的测距、测速原理与锯齿波类似)。
如图3所示,调频连续波是频率随时间线性变化的信号,如图4所示,调频连续波的周期为T c,斜率为a 0,带宽为B,其起始频率为b 0
则振荡器输出的第n个周期的调频连续波的等效基带信号
Figure PCTCN2020077337-appb-000001
可以表示为公式(1.1):
Figure PCTCN2020077337-appb-000002
其中A是该等效基带信号的幅度,a 0是探测雷达的振荡器发送的线性调频信号的斜率,b 0是截距,
Figure PCTCN2020077337-appb-000003
是初相,N是连续发送调频连续波的周期总数数。由于频率定义为相位相对于时间的变化率。因此,上述等效基带信号的频率f可以表示为公式(1.2):
Figure PCTCN2020077337-appb-000004
图4即为公式(1.2)对应的函数示意图。
该N个周期中的第n个周期调频连续波的等效基带信号
Figure PCTCN2020077337-appb-000005
经过上变频后由发射天线向外辐射,辐射的信号
Figure PCTCN2020077337-appb-000006
可表示为公式(1.3):
Figure PCTCN2020077337-appb-000007
其中f c是载波频率,该辐射的信号
Figure PCTCN2020077337-appb-000008
遇到障碍物(也称目标物)后,会反射回来,发射波与反射波的形状相同,只是有一段时延,第n个周期调频连续波的接收信号
Figure PCTCN2020077337-appb-000009
可以表示为公式(1.4):
Figure PCTCN2020077337-appb-000010
在公式(1.4)中,A'是信号
Figure PCTCN2020077337-appb-000011
经过发射天线增益、目标反射、传播损耗、接收天线增益后的信号幅度,f d是目标物与探测雷达的径向相对速度形成的多普勒频率,τ是雷达信号(也称无线电信号)从探测雷达的发射机发射,经过目标物反射到该探测雷达的接收机接收到信号回波的总时延,τ与目标距离d(即目标物与探测雷达的径向相对距离)的关系可以表示为公式(1.5):
Figure PCTCN2020077337-appb-000012
在公式(1.5)中,c为光速。
探测雷达的混频器将接收信号与发射信号混频,并经中频滤波器后,输出中频(IF)信号,中频信号
Figure PCTCN2020077337-appb-000013
如公式(1.6)所示:
Figure PCTCN2020077337-appb-000014
在公式(1.6)中,
Figure PCTCN2020077337-appb-000015
将中频信号
Figure PCTCN2020077337-appb-000016
送入处理器进行傅里叶变换可得到中频频率(中频信号的频率)f IF,中频频率f IF表示为公式(1.7):
f IF=a 0τ+f d          (1.7)
在公式(1.7)中,由于f d<<a 0τ,因此f IF≈a 0·τ。
另外,在图5中,雷达信号检测的时间区间是τ max~T c,τ max是最大探测距离对应的回波时延,可以看出,中频频率f IF为发射波斜率与时延τ的乘积,具体如公式(1.8):
Figure PCTCN2020077337-appb-000017
基于公式(1.8)可以得出,探测雷达与目标物之间的目标距离d为如公式(1.9):
Figure PCTCN2020077337-appb-000018
对于速度检测,由式(1.6)可以看出,相邻两个周期的回波中频信号在同一个时间采样点上的相位差ΔΦ是一个定值,可以表示为公式(1.10):
ΔΦ=Φ n+1n=2π*f d*T c       (1.10)
对连续多个周期的回波中频信号在同一个时间采样点上的相位序列进行傅里叶变换可以得到多普勒频率f d,探测雷达与目标物径向相对速度v的关系可以表示为公式(1.11):
Figure PCTCN2020077337-appb-000019
公式(1.11)中,λ为雷达信号的载波的波长。因此探测雷达与目标物的径向相对速度v如公式(1.12):
Figure PCTCN2020077337-appb-000020
以上推导是针对于一个目标物进行的,上述原理对于多目标物的情况同样适用,即接收混频后会得到多个中频信号,送入处理器进行傅里叶变换后可得到多个目标物各自对应的中频频率。通过上面的推导可以看出,探测雷达的发射信号与接收信号的频率差(中频信号频率)和时延呈线性关系:物体越远,返回的波收到的时间就越晚,那么它跟入射波的频率差值就越大。通过判断中频信号频率的高低就可以判断探测雷达与目标物之间的距离。需要说明的是,发射信号的斜率反映的是发射频率或者接收频率随时间的变化程度。发射信号的频率随时间增加而降低,则所述斜率为负值,发射信号的频率随时间增加而升高,则所述斜率为正值。对于三角波来说,上升沿和下降沿的斜率为相反数。所述斜率的绝对值也可以称为单位时间内频率的变化范围,本申请实施例中涉及的两种表述方式含义相同。
如图6所示,为一种车载雷达互干扰示意图,如图6所示,雷达1(可以看做是上述探测雷达)发出发射信号,并接收该发射信号在目标物上反射回来的反射信号,在雷达1接收目标反射信号的同时,其接收天线接收到了雷达2(可以看做是干扰雷达)的发射信号或者反射后的信号,即干扰信号。若雷达1在发射信号和接收到反射信号之间的时间范围内检测到来自雷达2的干扰信号,雷达1会误认为前方该干扰信号对应的为“目标物”,而实际上该“目标物”是不存在的,即所谓的“Ghost”或者“虚警”。虚警产生后会使得自动驾驶汽车由于对于目标物的误判进行错误的驾驶控制。
图7A、图7B为一种可能的虚假中频信号的示意图。如图7A所示,雷达1向目标物发射信号,并从目标物接收反射信号,但是在雷达1发射信号和接收到反射信号之间的时间范围内,雷达1的接收天线接收到了雷达2的发射信号或者反射信号(虚线)。雷达1的信号波形与雷达2的信号波形一致且两者的扫频带宽相同,在雷达1发射出信号但反射信号还未接收的时间区间内,雷达1检测到了对应频率的虚线信号,则雷达1认为有“目标物1”存在;雷达1开始接收反射信号并在信号检测的时间区间(τ max~T c)内检测到虚线信号和实线的反射信号,雷达1认为同时存在“目标物1”以及“目标物2”。那么雷达1会把接收到的虚线信号误认为是前方存在的物体的反射信号,此时就会产生虚假的中频信号。经过快速傅里叶变换后进行频谱分析可以发现两个峰值,如图7B所示,每个峰值对应着一个目标物。雷达1误认为前方存在“目标物1”,而实际上该“目标物1”是不存在的,也被称为“Ghost”或者“虚警”。
图8A、图8B为一种可能的干扰信号淹没目标信号的示意图。如图8A所示,雷达1向目标物发射信号,并从目标物接收反射信号,但是在雷达1发射信号和接收到反射信号之间的时间范围内,雷达1的接收天线接收到了雷达2的发射信号或者反射信号(虚线)。雷达1 的信号波形与雷达2的信号波形在斜率上存在差异,在雷达1在信号检测的时间区间(τ max~T c)内,会同时检测到雷达1的反射信号和雷达2的相关信号,检测到的雷达2的相关信号与雷达1的反射信号混频之后会产生一个包含各种频率分量的中频信号,经过快速傅里叶变换后如图8B所示,会出现一个干扰平台,使得真是目标的“凸出”程度不够,对检测带来困难,提升出现漏检的可能。漏检产生后会使得自动驾驶汽车在前方有物体的情况下,误以为没有物体,不采取减速或制动,造成交通事故,降低车辆行驶的安全性。
具体来说,雷达1的信号波形与雷达2的信号波形在斜率上存在差异,假若雷达1的波形斜率为a 0,雷达2的波形斜率为a 1,那么两个斜率的差异可以分为以下两种情况:
当a 1<a 0时,如图9A所示,会产生干扰平台问题,从而导致漏检问题。
当a 1>a 0时,如图9B所示,也会产生干扰平台问题,从而导致漏检问题。
这里需要说明的是,本领域技术人员可知,在某一时刻或一段时间接收到的信号,可能为干扰信号,可能为目标物的反射信号,通过时间和发射/反射信号频率的相关变化情况能清楚的体现雷达的探测情况。因此,本申请后续的阐述中,大多以反映发射/反射信号的斜率(单位时间内频率的变化范围)的曲线图来表示雷达之间的互干扰情况。
为了解决上述问题,一种可能的解决方案中,可以设置不同雷达具有不同的波形斜率、周期等参数。图10A为一种可能的解决方案示意图。如图10A所示,雷达1的波形斜率、发射等参数与雷达2的不一致,如此一来,即使雷达1接收到了雷达2的信号,由于其波形不一致,在通过混频器时,即两者的频率在做差时,不会产生恒定频率的中频信号。因为只有恒定频率的中频信号才会在在频谱分析中体现为峰值信号,所以该方法能够减小Ghost发生的概率。但是,若雷达1接收到了雷达2的信号,经过混频器后,干扰信号落在有效的接收中频带宽内,就会抬升干扰信号的强度。干扰信号水平经过抬升后,会使得原有目标被干扰淹没掉,参见图10B。图10B为一种可能的误警结果示意图。产生的后果即为车辆前方有障碍物却没有被检测出来,从而产生误警,这对车辆行驶的安全造成了恶劣的影响,尤其是无人驾驶车辆的安全。
图11A为又一种可能的解决方案示意图。该方案所采用的技术为雷达波形频率切换(shift)技术。若雷达在其扫频频带检测到有其他雷达产生的干扰后,跳到另一个扫频频带,以防止多雷达之间的干扰。频率切换(shift)技术中频率切换(shift)的间隔可以大于雷达扫频带宽,如图11A,这种情况下各雷达波形完全频分,没有重叠情况,但是频率切换(shift)间隔的设置使得频域资源被占用太多,而目前分配给车载雷达的频域资源是有限的。又或者仍然应用频率切换(shift)技术,但是雷达在工作频段检测到有其他雷达产生的干扰后,进行随机频率切换(shift),如图11B。图11B为再一种可能的解决方案示意图。这种情况下能在一定程度上减弱干扰,但是完全随机化的频率切换(shift)难免会造成频率切换(shift)后的两个雷达的波形在频域上过于接近而导致出现Ghost或者干扰信号的强度提升而导致物体被漏检。
需要说明的是,本申请实施例中涉及与阈值进行大小对比时,都采用差值的绝对值,不考虑正负的问题,差值本身可以区分正负。例如,涉及正负中频的确定时所涉及的差值可以存在正负的区分。
因此,本申请实施例提供了一种探测方法,通过将无线电信号(例如,雷达信号)时 分发射以解决多探测装置之间相互干扰的问题,同时,又可以提高时域资源利用效率。该方法可以实现在相同的时域资源内尽可能支持较多数目的探测装置之间相互不干扰或者降低相互干扰。
为阐述方便,本申请下文中多以探测装置为雷达,例如毫米波雷达,为例,进行实施例的解释和说明。但是本申请不限定探测装置仅为毫米波雷达或者雷达。进一步,本申请实施例中在L个时域范围内相应的时域范围发送无线电信号的多个探测装置有着相同的扫频周期,例如,在该L个时域范围内的第1个时域范围发送无线电信号的为探测装置1,在该L个时域范围内的第2个时域范围发送无线电信号的为探测装置2,那么探测装置1和探测装置2的扫频周期相同。
需要说明的是,在L个时域范围内,有多个探测装置在相应的时域范围上发射无线电信号。在相应的时域范围的整个时域内,探测装置需要连续发射多个扫频周期的无线电信号。也可以说,L个时域范围中的每个时域范围的时域长度都是扫频周期的整数倍。例如,某一时域范围的时长为500个扫频周期,则相应的探测装置在这个时域范围内需要发射500个扫频周期的无线电信号。在一些场景下,L个时域范围的时域长度相同。在另一些场景下,L个时域范围的时域长度可以不完全相同。
另外需要说明的是,一种可能的情况下,探测装置以一定的发射定时进行无线电信号发射,但是由于实际通信场景、环境或硬件设备存在的可能的差异,无线电信号的实际发送时刻可能会存在误差,也可以称为信号发射误差。例如由全球定位系统的精度所带来的误差。又一种可能的情况下,在生产制造过程中,不同的探测装置由于生产制造的差异可能导致在信号发射时出现些许误差。在其他情况下,还可能存在其它原因导致的误差。对于上述所有可能的误差,本申请所提供的设计方法在具体实现是都可以考虑。为了提供较为明确的方案,书本申请实施例忽略了这些误差,按照统一的标准和发射定时,进行方案阐述。相对于本申请时域范围的粒度考量和定时精度的要求,上述误差也可以被忽略,不实质影响本申请实施例的实现及有益效果。
图12为一种可能的利用无线电信号进行目标物探测方法的流程示意图。下面结合图12,对本申请实施例提供的一种利用无线电信号进行目标物探测方法进行示例性说明,该方法可以应用于第一探测装置中。需要说明的是,所述第一探测装置可以为一个雷达,也可以为集成了雷达的装置,还可以为独立或集成于雷达的装置,例如,所述第一探测装置可以为一组芯片,独立或集成于雷达;或者所述第一探测装置可以为一组模块或者元件,独立或集成于该雷达;又或者所述第一探测装置可以为一组软件模块,存储于计算机可读存储装置中。为阐述方便,下面以该第一探测装置为雷达为例进行方案说明。
图12所示的方法包括但不限于如下步骤:
步骤1201:确定第一时域范围,所述第一时域范围为L个时域范围中的一个。
在本申请实施例中,该L个时域范围可以称为一个无线电探测帧,该L个时域范围中每个时域范围可以称为一个无线电探测子帧,当然,该L个时域范围、该L个时域范围内的每个时域范围,也可以定义为其他名称,无论其名称如何定义,L个时域范围指代的是一个较大粒度的时间长度,每个时域范围指代的是一个较小粒度的时间长度,L为大于1的正整数。
其中,所述L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域 范围部分重叠,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值不小于第一阈值F,且小于所述L个时域范围中时域长度最短的时域范围的时域长度。或者说,所述L个时域范围中任两个时域范围在时域上部分重叠(不完全重叠),所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值不小于第一阈值F。这里的完全重叠是指两个时域范围完全相同,或者,两个时域范围中一个时域范围完全包含于另一个时域范围。通过这种设计,能够实现避免完全时分的资源设计,节约时域资源;又能够适当的调整探测装置在时域上的分布密度,在保证高性能通信的基础上,使得尽量多的探测装置在一定时域长度内进行无线电信号的发射。
进一步地,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值不小于第一阈值F具体包括如下两种情况,即该差值的绝对值等于或者大于第一阈值。
例如,这L个时域范围的时域起始位置在时域上是等间距划分的,在这个例子中,这L个时域范围中任意两个时域上“相邻”的时域范围的时域起始位置的差值的绝对值等于F,任意两个时域上“不相邻”的时域范围的时域起始位置的差值的绝对值等于F的X倍,X为大于1的正整数。下面进行举例说明,假若这L个时域范围具体指3个时域范围,且按照时域起始位置从前往后依次为第1个时域范围、第2个时域范围、第3个时域范围,那么,第1个时域范围与第2个时域范围的时域起始位置的差值的绝对值等于20个扫频周期,第2个时域范围与第3个时域范围的时域起始位置的差值的绝对值等于20个扫频周期,第1个时域范围与第3个时域范围的时域起始位置的差值的绝对值等于40个扫频周期,可以看出,这个具体例子中F等于20个扫频周期。
再如,这L个时域范围的时域起始位置在时域上不是等间距划分的,在这个例子中,这L个时域范围中哪两个时域范围的时域起始位置的差值的绝对值最小,则这两个时域范围的时域起始位置的差值的绝对值等于F,除这两个时域范围之外的任意两个时域范围的时域起始位置的差值的绝对值可以大于F。下面进行举例说明,假若这L个时域范围具体指3个时域范围,且按照时域起始位置从前往后依次为第1个时域范围、第2个时域范围、第3个时域范围,那么,第1个时域范围与第2个时域范围的时域起始位置的差值的绝对值等于20个扫频周期,第2个时域范围与第3个时域范围的时域起始位置的差值的绝对值等于30个扫频周期,第1个时域范围与第3个时域范围的时域起始位置的差值的绝对值等于50个扫频周期,可以看出,这个具体例子中F等于20个扫频周期。
在具体的实现中,至少一个无线电探测帧在时域上以预先定义或者配置的方式分布。进一步,所述分布可以定义或者配置为周期或者非周期的方式。本申请不做具体的限定。
一种可选的设计中,在时域上存在多个无线电探测帧,所述多个无线电探测帧可以以一定周期的方式在时域上分布。进一步,所述多个无线电探测帧在时域上连续,或者,在时域上不连续。
另一种可选的设计中,在时域上存在多个无线电探测帧,所述多个无线电探测帧可以以非周期的方式在时域上分布。进一步,所述多个无线电探测帧中可以存在至少两个无线电探测帧在时域上不连续。
探测装置进行无线电信号发送时,可以在一个或多个无线电探测帧内的无线电探测子帧中进行信号发送。不同的探测装置对应一个无线电探测帧中的不同无线电探测子帧。例 如第一探测装置在第一无线电探测帧中的第一无线电探测子帧中发送无线电信号,第二探测装置在第一无线电探测帧中的第二无线电探测子帧中发送无线电信号。
上述多个时域范围部分重叠的设计方式,可以避免将多个探测装置的扫频周期完全在时域上分开而造成的时域资源浪费,可以有效利用时域资源,以较低的时域资源代价实现较高的抗干扰性能,同时又可以支持更多数目的探测装置通信。
下面结合图13进行举例说明。
图13示意了L等于3时的一种可选案例,L等于3时,3个时域范围可以分别称为第1个时域范围、第2个时域范围、第3个时域范围,这3个时域范围中,任意一个时域范围与其它2个时域范围部分重叠,在图13中,第1个时域范围与第2个时域范围的重叠区域为重叠区域1,第1个时域范围与第3个时域范围的重叠区域为重叠区域3;第2个时域范围与第3个时域范围的重叠区域标记为重叠区域2。在图13中,3个时域范围中任两个时域范围的时域起始位置的差值的绝对值为扫频周期的整数倍且不小于第一阈值F,其中,第1个时域范围的时域起始位置与第2个时域范围的起始位置的差值的绝对值为间隔区域1的长度,第2个时域范围的时域起始位置与第3个时域范围的起始位置的差值的绝对值为间隔区域2的长度,第3个时域范围的时域起始位置与第1个时域范围的起始位置的差值的绝对值为间隔区域3的长度,本申请实施例中,间隔区域1的长度、区间隔域2的长度、间隔区域3的长度均为扫频周期的整数倍且不小于第一阈值F。
需要说明的是,假若该L个时域范围按照时域从前到后的顺序依次包括第1个时域范围、第2个时域范围、第3个时域范围,称第1个时域范围与第2个时域范围的时域起始位置的差值的绝对值为第一绝对值,称第2个时域范围与第3个时域范围的时域起始位置的差值的绝对值为第二绝对值,那么第一绝对值可以等于第二绝对值,也可以不等于第二绝对值。但是第一绝对值和第二绝对值都是第一无线电信号的扫频周期的整数倍。
在一种可选的方案中,所述第一阈值F大于或等于所述第一无线电信号的扫频周期,所述第一阈值F为所述第一无线电信号的扫频周期的正整数倍。例如,第一阈值F等于扫频周期的2倍,或者10倍,或者其他倍数,具体是多少倍可以根据需要进行配置,或者在标准或者协议文档中预先定义。需要说明的是,通过设置第一阈值F为扫频周期的正整数倍,可以保证测量干扰的时域范围等于或者大于一个扫频周期,从而确保测量干扰信号的分辨率,保证干扰消除的效果。具体的,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值为扫频周期的正整数倍。
在又一种可选的方案中,所述L个时域范围中除所述第一时域范围之外的任一个时域范围的时域起始位置与所述第一时域范围的时域起始位置的差值的绝对值为所述第一阈值F的正整数倍,所述第一阈值F大于或等于所述第一无线电信号的扫频周期,所述第一阈值F为所述第一无线电信号的扫频周期的正整数倍。举例来说,假若第一阈值F为10个扫频周期,那么所述L个时域范围中除所述第一时域范围之外的任一个时域范围的时域起始位置与所述第一时域范围的时域起始位置的差值的绝对值可以等于10个扫频周期、或者20个扫频周期,或者50个扫频周期。进一步可选的,所述L个时域范围的时域起始位置是等间隔设置的,每个在后的时域范围的起始位置与在先的时域范围的起始位置的间隔均为相同的值,例如上述10个扫频周期。上述间隔可以为配置的,或者也可以是标准或协议预先定义的。对于 不同类型的探测装置,所述间隔可以不同。具体的,在一种可选的方案中,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值为扫频周期的正整数倍。
对于上述L个时域范围,上文中阐述了探测装置一般会在一段连续的时长内进行多个扫频周期的无线电信号的发送。这段连续的时长可以称为一个时域范围或者无线电探测子帧。在一个无线电探测帧中(L个时域范围),探测装置会确定一个时域范围并连续发射无线电信号,直到这个时域范围结束。而探测装置下次发射无线电信号的无线电探测子帧,会在该无线电探测帧之后另一个无线电探测帧内,可能是时域上连续的,也可能是周期配置的多个无线电探测帧中的下一个,又或者是任何一个可能的无线电探测帧。具体取决于探测装置被配置或触发何时继续发射无线电信号。关于L个时域范围的格式或者样式(pattern),也存在多种可能的设计。
一种可能的设计中,所述L个时域范围中各个时域范围的时域长度相同,所述时域长度为所述第一无线电信号的扫频周期的正整数倍;同样以图13为例进行说明,第1个时域范围的时域长度、第2个时域范围的时域长度、第3个时域范围的时域长度是相同的,并且都是第一无线电信号的扫频周期的整数倍,例如,400倍,或者500倍,等等。具体多少倍可以根据需要进行配置,例如预先配置或者动态配置,或者协议中预先定义。在这种设计中,所述L个时域范围中时域长度最短的时域范围的时域长度,为L个时域范围中任一个时域范围的时域长度。
另一种可能的设计中,所述L个时域范围中存在至少两个时域长度不同的时域范围。进一步,每个时域范围的时域长度为所述第一无线电信号的扫频周期的正整数倍。在该可能的设计中,可选的,所述L个时域范围可以包含T种时域长度的时域范围。其中,每种时域长度的时域范围对应相应类型的探测装置。或者说,存在多种类型的探测装置,每种类型的探测装置对应相应时域长度的时域范围。相应类型的探测装置只能在相应时域长度的时域范围内发射无线电信号。进一步可选的,所述T种时域长度的每一种时域长度均为所述第一无线电信号的扫频周期的整数倍。例如,L个时域范围内包含3个时域范围,第1个时域范围的时域长度为200个扫频周期,第2个时域范围的时域长度为300个扫频周期,第3个时域范围的时域长度为300个扫频周期,则第1个时域范围对应一种类型的探测装置,第2个和第3个时域范围对应另一种类型的探测装置,所述另一种类型的探测装置可以从第2个和第3个时域范围内确定用于发射无线电信号的时域范围。其中,所述T为正整数。
关于上述探测装置的类型的划分,一种可能是由于探测装置本身的性能或者配置而导致存在多种类型的探测装置,例如来自不同厂家的雷达连续发射无线电信号的时长可能不同,这样提高了多种探测装置配合使用时的灵活度。另一种可能是由于存在多种可能的应用场景,在不同应用场景中的探测装置被配置或者被归属于相应的类型,进而导致连续发射无线电信号的时域范围的长度不同。例如,在一定场景或者路况条件下,配置或触发探测装置连续发送较长时间(无线电探测子帧或时域范围较长)无线电信号的,而在另外的场景或路况条件下,配置或触发探测装置连续发送较短时间(无线电探测子帧或时域范围较短)无线电信号。本申请对于探测装置类型的具体划分不做具体限定。
另外,在所述L个时域范围内,除所述第一时域范围之外的时域位置连续,或者不连续。同样以图13为例进行说明,假若第一时域范围为图13中的第1个时域范围,那么除第一时域 范围之外的时域位置连续;假若第一时域范围为图13中的第2个时域范围,那么除第一时域范围之外的时域位置不连续。在本申请实施例中,该第一时域范围具体为该L个时域范围中的哪一个时域范围此处不做限定,可选的,该第一探测装置可以根据配置从该L个时域范围中确定一个时域范围,确定出的时域范围即为该第一时域范围。具体的,所述配置可以是具体配置的时域范围,或者可以是预先定义或配置的规则或者策略。可选的,该第一探测装置可以从该L个时域范围中随机确定一个时域范围进行无线电信号的发送。
步骤S1202:在所述第一时域范围内发射第一无线电信号。
可选的,上述方法还可以包括如下步骤:
步骤S1203:在L个时域范围内,除第一时域范围之外的时域位置,接收第二无线电信号。
具体的,所述第二无线电信号可以为一个或多个第二无线电信号,该第二无线电信号来自至少一个第二探测装置(如一个第二探测装置或者多个第二探测装置),第二探测装置不同于第一探测装置,例如,该第一探测装置为某一个车辆上的车载雷达,而第二探测装置为其他车辆上的车载雷达。在存在多个第二探测装置的情况下,所述第二无线电信号为多个第二无线电信号,分别对应所述多个第二探测装置。可选的,在所述L个时域范围内,除所述第一时域范围之外的时域位置,包含至少一个第二时域范围内的时域位置,至少一个第二时域范围属于所述L个时域范围,所述至少一个第二时域范围对应所述至少一个第二探测装置。这里的第二探测装置不同于第一探测装置,但是第一和第二探测装置的类型可以相同或者不同。在第一和第二探测装置类型相同的情况下,第一和第二探测装置所对应的时域范围的时域长度相同。
下面进行举例说明。
例如,假若该第二无线电信号来自2个第二探测装置,称为第二探测装置1和第二探测装置2,那么上述第一探测装置要在2个第二时域范围(这两个时域范围在时域上部分重叠)内接收第二无线电信号,具体来说,在该2个时域范围中的1个时域范围内接收第二探测装置1的无线电信号,以及在另1个时域范围内接收第二探测装置2的无线电信号,来自第二探测装置1和第二探测装置2的无线电信号组成上述第二无线电信号。
再如,假若该第二无线电信号来自3个第二探测装置,称为第二探测装置1、第二探测装置2和第二探测装置3,那么上述第一探测装置要在3个第二时域范围(分别称为第二时域范围1、第二时域范围2和第二时域范围3,且其中任意两个第二时域范围在时域上存在部分重叠)内接收第二无线电信号,具体来说,在第二时域范围1内接收第二探测装置1的无线电信号,在第二时域范围2内接收第二探测装置2的无线电信号,在第二时域范围3内接收第二探测装置3的无线电信号,来自第二探测装置1、第二探测装置2和第二探测装置3的无线电信号组成上述第二无线电信号。
再如,假若该第二无线电信号来自4个第二探测装置,称为第二探测装置1、第二探测装置2、第二探测装置3和第二探测装置4,那么上述第一探测装置要在4个第二时域范围(分别称为第二时域范围1、第二时域范围2、第二时域范围3和第二时域范围4,且其中任意两个第二时域范围在时域上存在部分重叠)内接收第二无线电信号,具体来说,在第二时域范围1内接收第二探测装置1的无线电信号,在第二时域范围2内接收第二探测装置2的无线 电信号,在第二时域范围3内接收第二探测装置3的无线电信号,在第二时域范围4内接收第二探测装置4的无线电信号,来自第二探测装置1、第二探测装置2、第二探测装置3和第二探测装置4的无线电信号组成上述第二无线电信号。
当第二无线电信号来自其他数量的第二探测装置时,第二无线电信号、第二探测装置和第二时域范围之间的关系可以参照以上举例描述,此处不再赘述。
步骤S1204:在所述第一时域范围内,接收第三无线电信号,所述第三无线电信号包含所述第一无线电信号的反射信号。
具体地,该第一探测装置在第一时域范围内发射第一无线电信号,并接收无线电信号;为了便于后续描述可以称在第一时域范围内接收的无线电信号为第三无线电信号,可以理解的是,第一无线电信号发射出去之后,会被一些物体反射回来,例如,被车辆、建筑物、石块等反射回来,因此该第三无线电信号包含第一无线电信号的反射信号。除此之外,由于第一时域范围与至少一个第二时域范围与存在重叠之处,而该至少一个第二时域范围内可能有相应的至少一个第二探测装置发射无线电信号,即重叠之处存在第二探测装置发射的无线电信号,即第一时域范围内接收的第三无线电信号中存在第二探测装置发射的无线电信号,还可能存在第二探测装置发射的无线信号经过其它目标物反射或折射后到达第一探测装置接收机处的信号,对于在第一时域范围内发射第一无线电信号的第一探测装置来说,在这期间接收的第二探测装置发射的无线电信号属于干扰信号,该干扰信号会影响第一探测装置基于第一无线电信号测量目标物的信息(如角度、距离等)。
同样以图13为例,假若第一探测装置在第1个时域范围内发射第一无线电信号,一个第二探测装置在第2个时域范围内发射无线电信号,那么在第1个时域范围内,在间隔区域1代表的时域上接收的信号包括第一无线电信号的反射信号,在重叠区域1代表的时域上接收的信号包括第一无线电信号的反射信号,和第二探测装置在重叠区域1发射的无线电信号(因为重叠区域1也属于第2个时域范围的一部分),因此在第一个时域范围内,第一探测装置接收的第三无线电信号包括第一探测装置发射的第一无线电信号的反射信号,还包括该一个第二探测装置发射的无线电信号,还可能包括第二探测装置发射的无线信号经过其它目标物反射或折射后到达第一探测装置接收机处的信号。
步骤S1205:根据所述第三无线电信号以及所述第二无线电信号,确定所述目标物的信息。
具体地,根据该第二无线电信号估计该第三无线电信号中除第一无线电信号的反射信号之外的干扰信号,(以第二无线电信号作为干扰信号的估计信号)。然后对该第三无线电信号执行干扰消除,去除或者弱化该干扰信号,从而得到第一无线电信号的反射信号。然后,根据该第一无线电信号的反射信号和当前发射的第一无线电信号确定中频信号,进而基于该中频信号确定目标物的信息,例如,与目标物之间的距离、与目标物之间的角度、与目标物的径向相对速度等信息。
在一种可选的方案中,一段时长内包含多个时间段,所述多个时间段中任意两个时间段的时间长度相等且所述任意两个时间段互不重叠。在本申请实施例中,该多个时间段中每个时间段包括以上描述的L个时域范围,也即是说每个时间段即为以上描述的无线电探测帧。第一探测装置在发射无线电信号之前,先从该多个时间段中按照预先定义的选择策略 选择或随机选择出一个无线电探测帧,或者预先配置该一个无线电探测帧用于供该第一探测装置发送无线电信号,之后,该第一无线电探测帧按照预先定义的策略或随机从该一个无线电探测帧中选择出一个无线电探测子帧(即第一时域范围),或者预先配置该一个无线电探测帧中的一个无线电探测子帧用于供该第一探测装置发送无线电信号,接着通过选择出的或者预先配置的无线电探测子帧上发射无线电信号,即第一无线电信号。
以上对本申请技术方案的原理进行了介绍,下面结合一些具体参数进行举例说明。
可选实施例一:(该实施例涉及的场景中,每个无线电探测帧包含的无线电探测子帧的长度相同)
请参见图14,假若每1个无线电探测帧包括2个无线电探测子帧,其中一个无线电探测子帧通过左斜线格表示,另外一个无线电探测子帧通过右斜线格表示,每1个无线电探测帧的长度M等于750个扫频周期(如图14中竖线区域),为了方便描述,可以为这750个扫频周期进行编号,从第1个到第750个的编号依次为0、1、2、3、……748、749,每1个无线电探测子帧的长度等于500个扫频周期,即NT chirp,这2个无线电探测子帧的时域起始位置间隔250个扫频周期,即0.5N*T chirp,相应的,其中一个无线电探测子帧与另一个无线电探测子帧之间交叠的时域长度为0.5N*T chirp(如图14中左斜线格与右斜线格交叉的区域),可以看出,每1个无线电探测帧的时域长度M等于1.5N*T chirp。假若无线电信号的发射周期为10us,则无线电探测子帧的时长是5ms,无线电探测帧的时长是7.5ms,该2个无线电探测子帧在时域上交叠的时长是2.5ms。假若第一探测装置约50ms输出一次测量结果,则可取52.5ms为第一探测装置的测量结果输出周期,那么在52.5ms内存在7个7.5ms长的无线电探测帧,14个无线电探测子帧。第一探测装置即可以在这14个无线电探测子帧内选择一个无线电探测子帧(即第一时域范围),作为其工作时段,即用来发射第一无线电信号,以及接收第三无线电信号。
假若第一探测装置是在上述2个无线电探测子帧中的前一个无线电探测子帧内发射第一无线电信号,以及接收第三无线电信号,第二探测装置是在上述2个无线电探测子帧中的后一个无线电探测子帧内发射第四无线电信号,以及接收第五无线电信号,此时第一探测装置为图15中的雷达1,使用上述750个扫频周期中编号为0~499号的扫频周期探测目标物,第二探测装置为图15中的雷达2,使用上述750个扫频周期中编号为250~749号扫频周期探测目标物。那么,前一个无线电探测子帧内,交叠区域中包含了第二探测装置发射的无线电信号经过传播被第一探测装置接收的信号,如图15所示,该第二探测装置发射的无线电信号经过传播被第一探测装置接收的信号具体是多少可以通过第二探测装置在竖线格子代表的时域上发射的无线电信号(即上述第二无线电信号)来确定,第一探测装置确定出第二探测装置发射的无线电信号经过传播被第一探测装置接收的信号之后,就可以通过该无线电信号消除第一探测装置在该前一个无线电探测子帧内接收到的无线电信号(即第三无线 电信号)中的干扰部分。
消除干扰的具体方式可以如下,请参照图15,第一探测装置将从竖线格子代表的时域上接收到的信号,与自身的本振信号进行混频,得到干扰中频信号,其中:
如果第一探测装置发射的调频连续波的斜率与第二探测装置发射的调频连续波的频率变化率相同,那么干扰中频信号
Figure PCTCN2020077337-appb-000021
如公式(1.13)所示:
Figure PCTCN2020077337-appb-000022
在公式(1.13)中,
Figure PCTCN2020077337-appb-000023
Figure PCTCN2020077337-appb-000024
是第n个扫频周期第i个干扰无线电信号形成的中频信号的相位,A' i是第i个干扰无线电信号经过发射天线增益、目标反射(如果是直射干扰,就不存在目标反射,如果是非直射干扰,就有可能是干扰信号经过其它目标反射)、传播损耗、接收天线增益后的信号幅度,
Figure PCTCN2020077337-appb-000025
是第i个干扰无线电信号的初相,
Figure PCTCN2020077337-appb-000026
是第i个干扰雷达信号由于目标物与第一探测装置的径向相对速度形成的多普勒频率,τ i是第i个干扰无线电信号从发射机发射,到被干扰雷达(如第一探测装置)的接收机接收到信号的时延。f c是第i个干扰雷达发射的无线电信号的载波频率,a 0是干扰雷达的调频连续波的斜率,b 0是干扰雷达的调频连续波的截距,T c是干扰雷达的调频连续波的周期。N是干扰雷达连续发送调频连续波的周期总数。
Figure PCTCN2020077337-appb-000027
是第一探测装置的本振信号的初相。
如果第一探测装置发射的调频连续波的斜率与第二探测装置发射的调频连续波的斜率不相同,那么第n个扫频周期的干扰中频信号
Figure PCTCN2020077337-appb-000028
如公式(1.14)所示。
Figure PCTCN2020077337-appb-000029
在公式(1.14)中,
Figure PCTCN2020077337-appb-000030
Figure PCTCN2020077337-appb-000031
是第n个扫频周期第i个干扰无线电信号形成的中频信号的相位,A' i是第i个干扰无线电信号经过发射天线增益、目标反射(如果是直射干扰,就不存在目标反射,如果是非直射干扰,就有可能是干扰信号经过其它目标反射)、传播损耗、接收天线增益后的信号幅度,
Figure PCTCN2020077337-appb-000032
是第i个干扰无线电信 号的初相,
Figure PCTCN2020077337-appb-000033
是第i个干扰雷达信号由于目标物与第一探测装置的径向相对速度形成的多普勒频率,τ i是第i个干扰无线电信号从发射机发射,到被干扰雷达(如第一探测装置)的接收机接收到信号的时延。f c是干扰雷达发射的无线电信号的载波频率,a 0是干扰雷达的调频连续波的斜率,b 0是干扰雷达的调频连续波的截距,T c是干扰雷达的调频连续波的周期。N是干扰雷达连续发送调频连续波的周期总数。a i是第i个干扰雷达信号的斜率,
Figure PCTCN2020077337-appb-000034
是第一探测装置的本振信号的初相。
基于公式(1.13)或(1.14)中的
Figure PCTCN2020077337-appb-000035
对竖线格子代表的时域上的连续多个周期的干扰中频信号在同一个时间采样点上的相位序列进行傅里叶变换,可以得到干扰中频信号在同一个时间采样点上的相位差ΔΦ i。该相位差ΔΦ i同样也是第一探测装置接收到的干扰信号相邻两个周期无线电信号的相位差。假设在竖线格子代表的时域的第n个扫频周期上,该第一探测装置接收到的第二探测装置的干扰射频信号(相当于上述第二无线电信号)为
Figure PCTCN2020077337-appb-000036
在交叠区域代表的时域上的第n个扫频周期上,该第一探测装置接收到的无线电信号(属于上述第三无线电信号的部分信号)为
Figure PCTCN2020077337-appb-000037
则在交叠区域代表的时域上,消除干扰后第一探测装置接收到的第n个扫频周期上的有用无线电信号
Figure PCTCN2020077337-appb-000038
如公式(1.15)所示:
Figure PCTCN2020077337-appb-000039
实际应用时,公式(1.15)中的q取一个值即可,即第一探测装置可利用在竖线格子代表的时域上的某一个周期接收到的干扰雷达射频信号带入公式(1.15),遍历交叠区域所有周期接收到的射频信号来消除干扰。
假若第一探测装置是在上述2个无线电探测子帧中的后一个无线电探测子帧内发射第一无线电信号,以及接收第三无线电信号,第二探测装置是在上述2个无线电探测子帧中的前一个无线电探测子帧内发射第四无线电信号,以及接收第五无线电信号,此时第一探测装置为图15中的雷达2,使用上述750个扫频周期中编号为250~749号扫频周期探测目标物,第二探测装置为图15中的雷达1,使用上述750个扫频周期中编号为0~499号的扫频周期探测目标物。那么,后一个无线电探测子帧内,交叠区域中包含了第二探测装置发射的无线电信号经过传播被第一探测装置接收的信号,如图15所示,该第二探测装置发射的无线电信号经过传播被第一探测装置接收的信号具体是多少可以通过第二探测装置在横线格子代表的时域上发射的无线电信号(即上述第二无线电信号)来确定,第一探测装置确定出第二探测装置发射的无线电信号经过传播被第一探测装置接收的信号之后,就可以通过该无线电信号消除第一探测装置在该前一个无线电探测子帧内接收到的无线电信号(即第三无线电信号)中的干扰部分。
举例来说,假设在横线格子代表的时域上的第n个扫频周期上,该第一探测装置接收到 的第二探测装置的干扰射频信号(相当于上述第二无线电信号)为
Figure PCTCN2020077337-appb-000040
在交叠区域代表的时域上的第n个扫频周期上,该第一探测装置接收到的无线电信号(相当于上述第三无线电信号的交叠部分)为
Figure PCTCN2020077337-appb-000041
则在交叠区域代表的时域上,消除干扰后第一探测装置接收到的有用无线电信号
Figure PCTCN2020077337-appb-000042
如公式(1.16)所示:
Figure PCTCN2020077337-appb-000043
实际应用时,公式(1.16)中的q取一个值即可,即第一探测装置可利用在竖线格子代表的时域上的某一个周期接收到的干扰雷达射频信号带入公式(1.16),遍历交叠区域所有周期接收到的射频信号来消除干扰。
第一探测装置得到消除干扰后的无线电信号(即第三无线电信号消除干扰后的信号)之后,根据该无线电信号和发射的无线电信号确定中频信号,再基于中频信号确定目标物的信息(例如,与目标物之间的距离、与目标物之间的角度、与目标物的径向相对速度等信息)。
可选实施例二:(该实施例涉及的场景中,每个无线电探测帧包含的无线电探测子帧的长度相同)
请参见图16,假若每1个无线电探测帧包括3个无线电探测子帧,其中第一个无线电探测子帧1601通过右斜线格表示,其中第二个无线电探测子帧1602通过左斜线格表示,其中第三个无线电探测子帧通过小方格1603表示,每1个无线电探测帧的长度M等于1000个扫频周期(如图16中竖线区域),为了方便描述,可以为这1000个扫频周期进行编号,从第1个到第1000个的编号依次为0、1、2、3、……998、999,每1个无线电探测子帧的长度等于600个扫频周期,即NT chirp,这3个无线电探测子帧的时域起始位置间隔200个扫频周期,即
Figure PCTCN2020077337-appb-000044
相应的,其中任意两个时域上相邻的两个无线电探测子帧之间交叠的时域长度为
Figure PCTCN2020077337-appb-000045
(如图16中左斜线格与右斜线格交叉的区域,再如图16中左斜线格与小方格交叉的区域),可以看出,每1个无线电探测帧的时域长度M等于
Figure PCTCN2020077337-appb-000046
假若无线电信号的发射周期为10us,则无线电探测子帧的时长是6ms,无线电探测帧的时长是10ms,其中,第一个无线电探测子帧1601与第二个无线电探测子帧1602的交叠区域长度为4ms,第一个无线电探测子帧1601与第三个无线电探测子帧1603的交叠区域长度为2ms,第二个无线电探测子帧1602与第三个无线电探测子帧1603的交叠区域长度为4ms。 假若第一探测装置约50ms输出一次测量结果,则可取50ms为第一探测装置的测量结果输出周期,那么在50ms内存在5个10ms长的无线电探测帧,15个无线电探测子帧。第一探测装置即可以在这15个无线电探测子帧内选择一个无线电探测子帧(即第一时域范围),作为其工作时段,即用来发射第一无线电信号,以及接收第三无线电信号。
假若第一探测装置是在上述3个无线电探测子帧中的第一个无线电探测子帧1601内发射第一无线电信号,以及接收第三无线电信号,第二探测装置1是在上述3个无线电探测子帧中的第二个无线电探测子帧1602内发射第四无线电信号,以及接收第五无线电信号,第二探测装置2是在上述3个无线电探测子帧中的第三个无线电探测子帧1603内发射第六无线电信号,以及接收第七无线电信号,此时第一探测装置为图17中的雷达1,使用上述1000个扫频周期中编号为0~599号的扫频周期探测目标物,第二探测装置1为图17中的雷达2,使用上述1000个扫频周期中编号为200~799号的扫频周期探测目标物,第二探测装置2为图17中的雷达3,使用上述1000个扫频周期中编号为400~999号的扫频周期探测目标物。那么,第一个无线电探测子帧1601内,交叠区域中包含了第二探测装置1和第二探测装置2发射的无线电信号经过传播被第一探测装置接收的信号,第二探测装置1和第二探测装置2发射的无线电信号经过传播被第一探测装置接收的信号可以根据上述第二无线电信号来确定,该第二无线电信号具体在图17中的竖线格代表的时域上接收到。如图17所示,竖线格区域代表的时域可以分成两部分,其中靠后的部分可以测量到第二探测装置2产生的干扰,靠前的部分可以测量到第二探测装置1和第二探测装置2的干扰的和。通过两部分干扰测量结果可以分离出第二探测装置1、第二探测装置2分别产生的干扰信号经过传播被第一探测装置接收的信号,第一探测装置确定出第二探测装置1发射的干扰信号和第二探测装置2发射的干扰信号经过传播被第一探测装置接收的信号之后,就可以通过该干扰信号消除第一探测装置在该第一个无线电探测子帧内接收到的无线电信号(即第三无线电信号)中的干扰部分,下面举例来说明。
假设竖线格区域靠后的部分测量到第二探测装置2在第n个扫频周期上产生的干扰射频信号(相当于上述第二无线电信号的靠后部分)为
Figure PCTCN2020077337-appb-000047
竖线格区域靠前的部分测量到的第n个扫频周期上第二探测装置1和第二探测装置2的干扰信号的和表示(相当于上述第二无线电信号的靠前部分)为
Figure PCTCN2020077337-appb-000048
在交叠区域代表的时域上的第n个扫频周期上,该第一探测装置接收到的无线电信号(相当于上述第三无线电信号的交叠部分)为
Figure PCTCN2020077337-appb-000049
同理于公式(1.15),可以得到竖线格区域靠前的部分的第n个扫频周期上测量到的第二探测装置1产生的干扰信号
Figure PCTCN2020077337-appb-000050
如公式(1.17)所示:
Figure PCTCN2020077337-appb-000051
其中
Figure PCTCN2020077337-appb-000052
是第一探测装置接收到的第二探测装置2产生的干扰射频信号相邻两个周期无线电信号的相位差,可以通过对竖线格区域靠后部分的干扰中频信号进行信号处理得到(同实施例一)。由上式可知竖线格区域靠前区域中的第n个扫频周期上第一探测装置接收到的第二探测装置2产生的干扰射频信号
Figure PCTCN2020077337-appb-000053
可以由公式(1.18)求得:
Figure PCTCN2020077337-appb-000054
实际应用时,公式(1.18)中的q取一个值即可,即第一探测装置可利用在竖线格子靠后代表的时域上的某一个周期接收到的干扰雷达射频信号带入公式(1.18),即可求得
Figure PCTCN2020077337-appb-000055
进一步,对分离出来的第二探测装置1在第n个扫频周期上产生的干扰信号
Figure PCTCN2020077337-appb-000056
进行信号处理(同实施例一),得到第一探测装置接收到的第二探测装置1产生的干扰射频信号相邻两个周期无线电信号的相位差
Figure PCTCN2020077337-appb-000057
则在交叠区域代表的时域上,消除干扰后第一探测装置接收到的在第n个扫频周期上的有用无线电信号
Figure PCTCN2020077337-appb-000058
如公式(1.19)所示:
Figure PCTCN2020077337-appb-000059
其中
Figure PCTCN2020077337-appb-000060
是第一探测装置接收到的第二探测装置1或第二探测装置2产生的干扰射频信号相邻两个周期无线电信号的相位差。
实际应用时,公式(1.19)中的q取一个值即可,即第一探测装置可利用在竖线格子代表的时域上的某一个周期接收到的干扰雷达射频信号带入公式(1.19),遍历交叠区域所有周期接收到的射频信号来消除干扰。
假若第一探测装置是在上述3个无线电探测子帧中的第2个无线电探测子帧1602内发射第一无线电信号,以及接收第三无线电信号,第二探测装置1是在上述3个无线电探测子帧中的第一个无线电探测子帧1601内发射第四无线电信号,以及接收第五无线电信号,第二探测装置2是在上述3个无线电探测子帧中的第三个无线电探测子帧1603内发射第六无线电信号,以及接收第七无线电信号,此时第一探测装置为图17中的雷达2,使用上述 1000个扫频周期中编号为200~799号的扫频周期探测目标物,第二探测装置1为图17中的雷达1,使用上述1000个扫频周期中编号为0~599号的扫频周期探测目标物,第二探测装置2为图17中的雷达3,使用上述1000个扫频周期中编号为400~999号的扫频周期探测目标物。那么,第二个无线电探测子帧1602内,交叠区域中包含了第二探测装置1和第二探测装置2发射的无线电信号经过传播被第一探测装置接收的信号,第二探测装置1和第二探测装置2发射的无线电信号经过传播被第一探测装置接收的信号可以根据上述第二无线电信号来确定,该第二无线电信号具体在图17中的横线格代表的时域上接收到。如图17所示,横线格区域代表的时域可以分成两部分,其中靠前的部分可以测量到第二探测装置1产生的干扰信号,靠后的部分可以测量到第二探测装置2的干扰信号。这两部分干扰信号之间没有交叠,则可以利用实施例一的方法,对第三无线电信号进行干扰消除。第一探测装置确定出第二探测装置1发射的干扰信号和第二探测装置2发射的干扰信号经过传播被第一探测装置接收的信号之后,就可以通过该干扰信号消除第一探测装置在该第一个无线电探测子帧内接收到的无线电信号(即第三无线电信号)中的干扰部分。
假若第一探测装置是在上述3个无线电探测子帧中的第3个无线电探测子帧1603内发射第一无线电信号,以及接收第三无线电信号,第二探测装置1是在上述3个无线电探测子帧中的第一个无线电探测子帧1601内发射第四无线电信号,以及接收第五无线电信号,第二探测装置2是在上述3个无线电探测子帧中的第二个无线电探测子帧1602内发射第六无线电信号,以及接收第七无线电信号,此时第一探测装置为图17中的雷达3,使用上述1000个扫频周期中编号为400~999号的扫频周期探测目标物,第二探测装置1为图17中的雷达1,使用上述1000个扫频周期中编号为0~599号的扫频周期探测目标物,第二探测装置2为图17中的雷达2,使用上述1000个扫频周期中编号为200~799号的扫频周期探测目标物。那么,第三个无线电探测子帧1603内,交叠区域中包含了第二探测装置1和第二探测装置2发射的无线电信号经过传播被第一探测装置接收的信号,第二探测装置1和第二探测装置2发射的无线电信号经过传播被第一探测装置接收的信号可以根据上述第二无线电信号来确定,该第二无线电信号具体在图17中的点格代表的时域上接收到。如图17所示,点格区域代表的时域可以分成两部分,其中靠前的部分可以测量到第二探测装置1产生的干扰,靠后的部分可以测量到第二探测装置1和第二探测装置2的干扰信号的和,通过两部分干扰测量结果可以分离出第二探测装置1、第二探测装置2分别产生的干扰信号经过传播被第一探测装置接收的信号。第一探测装置确定出第二探测装置1发射的干扰信号和第二探测装置2发射的干扰信号经过传播被第一探测装置接收的信号之后,就可以通过该干扰信号消除第一探测装置在该第一个无线电探测子帧内接收到的无线电信号(即第三无线电信号)中的干扰部分。
假设点格区域靠前的部分的第n个扫频周期上测量到第二探测装置2产生的干扰射频信号(相当于上述第二无线电信号的靠前部分)为
Figure PCTCN2020077337-appb-000061
点格区域靠后的部分的第n个扫频周期上测量到的第二探测装置1和第二探测装置2的干扰信号的和表示(相当于上述第二无线电信号的靠后部分)为
Figure PCTCN2020077337-appb-000062
在交叠区域代 表的时域上的第n个扫频周期上,该第一探测装置接收到的无线电信号(相当于上述第三无线电信号的交叠部分)为
Figure PCTCN2020077337-appb-000063
同理于公式(1.16),可以得到点格区域靠后的部分的第n个扫频周期上测量到的第二探测装置1产生的干扰信号
Figure PCTCN2020077337-appb-000064
如公式(1.20)所示:
Figure PCTCN2020077337-appb-000065
其中
Figure PCTCN2020077337-appb-000066
是第一探测装置接收到的第二探测装置2产生的干扰射频信号相邻两个周期无线电信号的相位差,可以通过对点格区域靠前部分的干扰中频信号进行信号处理得到(同实施例一)。由上式可知点格区域靠后区域中的第n个扫频周期上第一探测装置接收到的第二探测装置2产生的干扰射频信号
Figure PCTCN2020077337-appb-000067
可以有下式求得
Figure PCTCN2020077337-appb-000068
实际应用时,公式(1.21)中的q取一个值即可,即第一探测装置可利用在点格子靠前代表的时域上的某一个周期接收到的干扰雷达射频信号带入公式(1.21),即可求得
Figure PCTCN2020077337-appb-000069
进一步,对分离出来的第二探测装置1在第n个扫频周期上产生的干扰信号
Figure PCTCN2020077337-appb-000070
进行信号处理(同实施例一),得到第一探测装置接收到的第二探测装置1产生的干扰射频信号相邻两个周期无线电信号的相位差,
Figure PCTCN2020077337-appb-000071
则在交叠区域代表的时域上,消除干扰后第一探测装置接收到的在第n个扫频周期上的有用无线电信号
Figure PCTCN2020077337-appb-000072
如公式(1.22)所示:
Figure PCTCN2020077337-appb-000073
其中
Figure PCTCN2020077337-appb-000074
是第一探测装置接收到的第二探测装置1或第二探测装置2产生的干 扰射频信号相邻两个周期无线电信号的相位差。
实际应用时,公式(1.22)中的q取一个值即可,即第一探测装置可利用在点格子代表的时域上的某一个周期接收到的干扰雷达射频信号带入公式(1.22),遍历交叠区域所有周期接收到的射频信号来消除干扰。
第一探测装置得到消除干扰后的无线电信号之后,根据该无线电信号和发射的无线电信号确定中频信号,再基于中频信号确定目标物的信息(例如,与目标物之间的距离、与目标物之间的角度、与目标物的径向相对速度、等信息)。
在图12所描述的方法中,每一个探测装置通过在确定好的可以避免互干扰的时域范围内发射无线电信号来避免任一个探测装置的发射信号或相关信号对其他探测装置确定目标物造成的干扰。通过各个时域间的部分重叠,可以避免将多个探测装置的扫频周期完全在时域上分开而造成的时域资源浪费,可以有效利用时域资源,以较低的时域资源代价实现较高的抗干扰性能,同时又可以支持更多数目的雷达通信。
可选实施例3:(该实施例涉及的场景中,每个无线电探测帧包含的无线电探测子帧的长度不完全相同)
请参见图18,假若每1个无线电探测帧包括2个无线电探测子帧,其中一个无线电探测子帧通过左斜线格表示,另外一个无线电探测子帧通过右斜线格表示,每1个无线电探测帧的长度M等于1000个扫频周期(如图18中竖线区域),为了方便描述,可以为这1000个扫频周期进行编号,从第1个到第1000个的编号依次为0、1、2、3、……998、999,第1个无线电探测子帧的长度等于500个扫频周期,即NT chirp,第2个无线电探测子帧的长度等于750个扫频周期,即1.5N*T chirp。这两个无线电探测子帧的时域起始位置间隔250个扫频周期,即0.5N*T chirp,相应的,其中一个无线电探测子帧与另一个无线电探测子帧之间交叠的时域长度为0.5N*T chirp(如图18中左斜线格与右斜线格交叉的区域),可以看出,每1个无线电探测帧的时域长度M等于2N*T chirp。假若无线电信号的发射周期为10us,则第1无线电探测子帧的时长是5ms,第2无线电探测子帧的时长是7.5ms,无线电探测帧的时长是10ms,该2个无线电探测子帧在时域上交叠的时长是2.5ms。假若第一探测装置约50ms输出一次测量结果,则可取50ms为第一探测装置的测量结果输出周期,那么在50ms内存在5个10ms长的无线电探测帧,其中包含5个5ms的无线电探测子帧5个7.5ms的无线电探测子帧。第一探测装置即可以在这5个5ms的无线电探测子帧内选择一个无线电探测子帧(即第一时域范围),作为其工作时段,即用来发射第一无线电信号,以及接收第三无线电信号,或者在5个7.5ms的无线电探测子帧内选择一个无线电探测子帧(即第一时域范围),作为其工作时段,即用来发射第一无线电信号,以及接收第三无线电信号。
假若第一探测装置在上述2个无线电探测子帧中的前一个无线电探测子帧内发射第一 无线电信号,以及接收第三无线电信号,第二探测装置在上述2个无线电探测子帧中的后一个无线电探测子帧内发射第四无线电信号,以及接收第五无线电信号,此时第一探测装置为图19中的雷达1,使用上述1000个扫频周期中编号为0~499号的扫频周期探测目标物,第二探测装置为图19中的雷达2,使用上述1000个扫频周期中编号为250~999号扫频周期探测目标物。那么,前一个无线电探测子帧内,交叠区域中包含了第二探测装置发射的无线电信号经过传播被第一探测装置接收的信号,如图19所示,该第二探测装置发射的无线电信号经过传播被第一探测装置接收的信号具体是多少可以通过第二探测装置在竖线格子代表的时域上发射的无线电信号(即上述第二无线电信号)来确定,第一探测装置确定出第二探测装置发射的无线电信号经过传播被第一探测装置接收的信号之后,就可以通过该无线电信号消除第一探测装置在该前一个无线电探测子帧内接收到的无线电信号(即第三无线电信号)中的干扰部分。
假设在竖线格子代表的时域的第n个扫频周期上,该第一探测装置接收到的第二探测装置的干扰射频信号(相当于上述第二无线电信号)为
Figure PCTCN2020077337-appb-000075
在交叠区域代表的时域上的第n个扫频周期上,该第一探测装置接收到的无线电信号(上述第三无线电信号的部分信号)为
Figure PCTCN2020077337-appb-000076
则在交叠区域代表的时域上,消除干扰后第一探测装置接收到的第n个扫频周期上的有用无线电信号
Figure PCTCN2020077337-appb-000077
如公式(1.23)所示:
Figure PCTCN2020077337-appb-000078
实际应用时,公式(1.23)中的q取一个值即可,即第一探测装置可利用在竖线格子代表的时域上的某一个周期接收到的干扰雷达射频信号带入公式(1.23),遍历交叠区域所有周期接收到的射频信号来消除干扰。
假若第一探测装置是在上述2个无线电探测子帧中的后一个无线电探测子帧内发射第一无线电信号,以及接收第三无线电信号,第二探测装置是在上述2个无线电探测子帧中的前一个无线电探测子帧内发射第四无线电信号,以及接收第五无线电信号,此时第一探测装置为图19中的雷达2,使用上述1000个扫频周期中编号为250~999号扫频周期探测目标物,第二探测装置为图19中的雷达1,使用上述1000个扫频周期中编号为0~499号的扫频周期探测目标物。那么,后一个无线电探测子帧内,交叠区域中包含了第二探测装置发射的无线电信号经过传播被第一探测装置接收的信号,如图19所示,该第二探测装置发射的无线电信号经过传播被第一探测装置接收的信号具体是多少可以通过第二探测装置在横线格子代表的时域上发射的无线电信号(即上述第二无线电信号)来确定,第一探测装置确定出第二探测装置发射的无线电信号经过传播被第一探测装置接收的信号之后,就可以通过该无线电信号消除第一探测装置在该前一个无线电探测子帧内接收到的无线电信号(即第三无线电信号)中的干扰部分。
举例来说,假设在横线格子代表的时域上的第n个扫频周期上,该第一探测装置接收到的第二探测装置的干扰射频信号(相当于上述第二无线电信号)为
Figure PCTCN2020077337-appb-000079
在交叠区域代表的时域上的第n个扫频周期上,该第一探测装置接收到的无线电信号(相当于上述第三无线电信号的交叠部分)为
Figure PCTCN2020077337-appb-000080
则在交叠区域代表的时域上,消除干扰后第一探测装置接收到的有用无线电信号
Figure PCTCN2020077337-appb-000081
如公式(1.24)所示:
Figure PCTCN2020077337-appb-000082
实际应用时,公式(1.24)中的q取一个值即可,即第一探测装置可利用在竖线格子代表的时域上的某一个周期接收到的干扰雷达射频信号带入公式(1.24),遍历交叠区域所有周期接收到的射频信号来消除干扰。
第一探测装置得到消除干扰后的无线电信号(即第三无线电信号消除干扰后的信号)之后,根据该无线电信号和发射的无线电信号确定中频信号,再基于中频信号确定目标物的信息(例如,与目标物之间的距离、与目标物之间的角度、与目标物的径向相对速度等信息)。
上述主要从第一探测装置(如雷达)与探测装置之间,或者与目标物之间交互的角度对本申请实施例提供的方案进行了介绍。上述方案中所涉及的公式只是一种具体的表达方式,为解决相同的技术问题并达到相同或类似的技术效果而对上述公式进行的可能的变型或者改写,都在本申请保护范围之内。可以理解的是,各个装置,例如第一探测装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以对第一探测装置进行功能模块的划分,例如,可对应各个功能划分各个功能模块,也可将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分探测装置各个功能模块的情况下,图20示出了本申请上述实施例中所涉及的第一探测装置的一种可能的结构示意图。该第一探测装置18可以包括处理单元1801,用于确定第一时域范围,所述第一时域范围为L个时域范围中的一个;发 射单元1802,用于在所述第一时域范围内发射第一无线电信号;其中,所述L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域范围部分重叠,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值不小于第一阈值F,且小于所述L个时域范围中时域长度最短的时域范围的时域长度。或者说,所述L个时域范围中任两个时域范围在时域上部分重叠(不完全重叠),所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值不小于第一阈值F。其中,所述L为大于1的正整数。
可选的,所述第一阈值F大于或等于所述第一无线电信号的扫频周期,所述第一阈值F为所述第一无线电信号的扫频周期的整数倍;或者所述L个时域范围中除所述第一时域范围之外的任一个时域范围的时域起始位置与所述第一时域范围的时域起始位置的差值的绝对值为所述第一阈值F的正整数倍,所述第一阈值F大于或等于所述第一无线电信号的扫频周期,所述第一阈值F为所述第一无线电信号的扫频周期的整数倍。
可选的,所述L个时域范围的时域长度相同,所述时域长度为所述第一无线电信号的扫频周期的整数倍。
可选的,所述L个时域范围中存在至少两个时域长度不同的时域范围。进一步,每个时域范围的时域长度为所述第一无线电信号的扫频周期的正整数倍。
可选的,该发射单元还用于:在所述L个时域范围内,除所述第一时域范围之外的时域位置,接收第二无线电信号,所述第二无线电信号来自至少一个第二探测装置。具体的,所述第二无线电信号可以为一个或多个第二无线电信号。在存在多个第二探测装置的情况下,所述第二无线电信号为多个第二无线电信号,分别对应所述多个第二探测装置。
可选的,在所述L个时域范围内,除所述第一时域范围之外的时域位置,包含至少一个第二时域范围内的时域位置,至少一个第二时域范围属于所述L个时域范围,所述至少一个第二时域范围对应所述至少一个第二探测装置。
可选的,该第一探测装置18还包括接收单元1803,用于在所述第一时域范围内,接收第三无线电信号,所述第三无线电信号包含所述第一无线电信号的反射信号。
可选的,所述接收单元1803在所述第一时域范围内,接收第三无线电信号之后,所述处理器1801还用于:根据所述第三无线电信号以及所述第二无线电信号,确定目标物的信息。
可选的,所述第一探测装置还可以包含存储器1804,用于存储程序指令和/或数据,以供处理器1801读取。
该可选的设计可以独立实现,也可以与上述任一可选的设计集成实现。
图21为本申请实施例提供的第一探测装置的另一种可能的结构示意图,该第一探测装置18可以包处理器1901、发射器1902以及接收器1903。其功能可分别与图20所展示的处理单元1801、发射单元1802以及接收单元1803的具体功能相对应,此处不再赘述。可选的,所述探测装置还可以包含存储器1904,用于存储程序指令和/或数据,以供处理器1801读取。
前述图2提供了一种雷达装置的结构示意图。参考上述内容,提出又一可选的方式。图22提供了第一探测装置再一种可能的结构示意图。图20-图22所提供的第一探测装置可以为实际通信场景中雷达装置的部分或者全部,可以是集成在雷达装置中或者位于雷达装 置外部,以实现相应的功能为准,不对结构和组成进行具体限定。
该可选的方式中,第一探测装置18包括发射天线2001、接收天线2002以及处理器2003。进一步,所述第一探测装置还包括混频器2004和/或振荡器2005。进一步,所述第一探测装置还可以包括低通滤波器和/或定向耦合器等。其中,所述发射天线和接收天线用于支持所述探测装置进行无线电通信,所述发射天线支持无线电信号的发射,所述接收天线支持无线电信号的接收和/或反射信号的接收,以最终实现探测功能。所述处理器执行一些可能的确定和/或处理功能。进一步,还控制所述发射天线和/或接收天线的操作。具体的,需要发射的信号通过处理器控制发射天线进行发射,通过接收天线接收到的信号可以传输给处理器进行相应的处理。所述探测装置所包含的各个部件可用于执行本申请方法实施例涉及的任一实施方案。可选的,所述探测装置还可以包含存储器,用于存储程序指令和/或数据。其中,所述发射天线和接收天线可以是独立设置的,也可以集成设置为收发天线,执行相应的收发功能。
需要说明的是,第二探测装置或本申请实施例中任一个探测装置可以具有与第一探测装置相同的结构,即同样适用于图20-图22中所述的结构示意图。
再一种可选的方式,当使用软件实现探测装置时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地实现本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
需要说明的是,用于执行本申请实施例提供的探测方法的上述探测装置中所包含的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请实施例所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于探测装置中。当然,处理器和存储介质也可以作为分立组件 存在于探测装置中。
可以理解的是,图20-图22仅仅示出了探测装置的简化设计。在实际应用中,探测可以包含任意数量的发射器,接收器,处理器,控制器,存储器以及其他可能存在的元件。
本申请实施例还提供一种通信系统,其包含执行本申请上述实施例所提到的至少一个探测装置和/或至少一个目标物体。
本申请实施例还提供一种通信系统,其包含执行本申请上述实施例所提到的至少一个探测装置和/或至少一个中央处理器/中央控制器。所述中央处理器/中央控制器用于根据所述至少一个探测装置的输出,控制车辆的行驶和/或其他探测装置的处理。所述中央处理器/中央控制器可以位于车辆中,或者其他可能的位置,以实现所述控制为准。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种利用无线电信号进行目标物探测的方法,用于第一探测装置,其特征在于,包括:
    确定第一时域范围,所述第一时域范围为L个时域范围中的一个;和
    在所述第一时域范围内发射第一无线电信号;
    其中,所述L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域范围部分重叠,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值不小于第一阈值F,且小于所述L个时域范围中时域长度最短的时域范围的时域长度;
    其中,所述L为大于1的正整数。
  2. 根据权利要求1所述的方法,其特征在于:
    所述第一阈值F大于或等于所述第一无线电信号的扫频周期,所述第一阈值F为所述第一无线电信号的扫频周期的整数倍;或者
    所述L个时域范围中除所述第一时域范围之外的任一个时域范围的时域起始位置与所述第一时域范围的时域起始位置的差值的绝对值为所述第一阈值F的正整数倍,所述第一阈值F大于或等于所述第一无线电信号的扫频周期,所述第一阈值F为所述第一无线电信号的扫频周期的整数倍。
  3. 根据权利要求1或2所述的方法,其特征在于:
    所述L个时域范围的时域长度相同,所述时域长度为所述第一无线电信号的扫频周期的整数倍。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,还包括:
    在所述L个时域范围内,除所述第一时域范围之外的时域位置,接收第二无线电信号,所述第二无线电信号来自至少一个第二探测装置。
  5. 根据权利要求4所述的方法,其特征在于:
    所述L个时域范围包含至少一个第二时域范围,所述至少一个第二时域范围对应所述至少一个第二探测装置。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,还包括:
    在所述第一时域范围内,接收第三无线电信号,所述第三无线电信号包含所述第一无线电信号的反射信号。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    根据所述第三无线电信号以及所述第二无线电信号,确定所述目标物的信息。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第三无线电信号以及所述第二无线电信号,确定所述目标物的信息,包括:
    根据所述第二无线电信号和所述第一无线电信号确定所述第二无线电信号的相邻两个扫频周期之间的相位差ΔΦ i
    根据所述第二无线电信号的相邻两个扫频周期之间的相位差ΔΦ i和所述第二无线电信号,对所述第三无线电信号执行干扰消除,得到中频信号;
    根据所述中频信号确定所述目标物的信息。
  9. 一种探测装置,其特征在于,包括:
    处理单元,用于确定第一时域范围,所述第一时域范围为L个时域范围中的一个;和
    发送单元,用于在所述第一时域范围内发射第一无线电信号;
    其中,所述L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域范围部分重叠,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值不小于第一阈值F,且小于所述L个时域范围中时域长度最短的时域范围的时域长度;
    其中,所述L为大于1的正整数。
  10. 根据权利要求9所述的探测装置,其特征在于:
    所述第一阈值F大于或等于所述第一无线电信号的扫频周期,所述第一阈值F为所述第一无线电信号的扫频周期的整数倍;或者
    所述L个时域范围中除所述第一时域范围之外的任一个时域范围的时域起始位置与所述第一时域范围的时域起始位置的差值的绝对值为所述第一阈值F的正整数倍,所述第一阈值F大于或等于所述第一无线电信号的扫频周期,所述第一阈值F为所述第一无线电信号的扫频周期的整数倍。
  11. 根据权利要求9或10所述的探测装置,其特征在于:
    所述L个时域范围的时域长度相同,所述时域长度为所述第一无线电信号的扫频周期的整数倍。
  12. 根据权利要求9-11任一项所述的探测装置,其特征在于,还包括:
    接收单元,用于在所述L个时域范围内,除所述第一时域范围之外的时域位置,接收第二无线电信号,所述第二无线电信号来自至少一个第二探测装置。
  13. 根据权利要求12所述的探测装置,其特征在于:
    所述L个时域范围包含至少一个第二时域范围,所述至少一个第二时域范围对应所述至少一个第二探测装置。
  14. 根据权利要求9-13任一项所述的探测装置,其特征在于,所述接收单元还用于:
    在所述第一时域范围内,接收第三无线电信号,所述第三无线电信号包含所述第一无 线电信号的反射信号。
  15. 根据权利要求14所述的探测装置,其特征在于,所述处理单元还用于:
    根据所述第三无线电信号以及所述第二无线电信号,确定所述目标物的信息。
  16. 根据权利要求15所述的探测装置,其特征在于,所述根据所述第三无线电信号以及所述第二无线电信号,确定所述目标物的信息,具体为:
    根据所述第二无线电信号和所述第一无线电信号确定所述第二无线电信号的相邻两个扫频周期之间的相位差ΔΦ i
    根据所述第二无线电信号的相邻两个扫频周期之间的相位差ΔΦ i和所述第二无线电信号对所述第三无线电信号执行干扰消除,得到中频信号;
    根据所述中频信号确定所述目标物的信息。
  17. 一种探测装置,其特征在于,包括:
    处理器,用于确定第一时域范围,所述第一时域范围为L个时域范围中的一个;和
    发射天线,用于在所述第一时域范围内发射第一无线电信号;
    其中,所述L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域范围部分重叠,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值不小于第一阈值F,且小于所述L个时域范围中时域长度最短的时域范围的时域长度;
    其中,所述L为大于1的正整数。
  18. 根据权利要求17所述的探测装置,其特征在于:
    所述第一阈值F大于或等于所述第一无线电信号的扫频周期,所述第一阈值F为所述第一无线电信号的扫频周期的整数倍;或者
    所述L个时域范围中除所述第一时域范围之外的任一个时域范围的时域起始位置与所述第一时域范围的时域起始位置的差值的绝对值为所述第一阈值F的正整数倍,所述第一阈值F大于或等于所述第一无线电信号的扫频周期,所述第一阈值F为所述第一无线电信号的扫频周期的整数倍。
  19. 根据权利要求17或18所述的探测装置,其特征在于:
    所述L个时域范围的时域长度相同,所述时域长度为所述第一无线电信号的扫频周期的整数倍。
  20. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序由至少一个处理器执行时,实现权利要求1-8中任一项所述的利用无线电信号进行目标物探测的方法。
PCT/CN2020/077337 2019-03-01 2020-02-29 一种利用无线电信号进行目标物探测的方法及相关装置 WO2020177647A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20766242.0A EP3923016A4 (en) 2019-03-01 2020-02-29 METHOD USING A RADIO SIGNAL TO PROBE A TARGET ENTITY, AND RELATED DEVICE
US17/462,690 US20210396839A1 (en) 2019-03-01 2021-08-31 Method for Detecting Target Object by Using Radio Signal and Related Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910159765.2A CN111638519B (zh) 2019-03-01 2019-03-01 一种利用无线电信号进行目标物探测的方法及相关装置
CN201910159765.2 2019-03-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/462,690 Continuation US20210396839A1 (en) 2019-03-01 2021-08-31 Method for Detecting Target Object by Using Radio Signal and Related Apparatus

Publications (1)

Publication Number Publication Date
WO2020177647A1 true WO2020177647A1 (zh) 2020-09-10

Family

ID=72329238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077337 WO2020177647A1 (zh) 2019-03-01 2020-02-29 一种利用无线电信号进行目标物探测的方法及相关装置

Country Status (4)

Country Link
US (1) US20210396839A1 (zh)
EP (1) EP3923016A4 (zh)
CN (2) CN116660900A (zh)
WO (1) WO2020177647A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113310942A (zh) * 2021-05-26 2021-08-27 东南大学 一种基于毫米波fmcw雷达的绝缘子内部缺陷识别方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE545649C2 (en) * 2022-02-17 2023-11-21 Topgolf Sweden Ab Doppler radar coexistence
GB2619075A (en) * 2022-05-27 2023-11-29 Cambridge Sensoriis Ltd Radar

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003276A1 (en) * 1986-10-30 1988-05-05 Nippon Telegraph And Telephone Corporation Method of detecting object and apparatus therefor
JP2005009886A (ja) * 2003-06-16 2005-01-13 Japan Radio Co Ltd Fm−cwレーダ装置
CN1930490A (zh) * 2003-11-25 2007-03-14 麦卡利斯有限公司 目标探测方法和设备
CN102713667A (zh) * 2009-11-23 2012-10-03 罗伯特·博世有限公司 用于检测目标的方法
CN104076328A (zh) * 2013-03-29 2014-10-01 日电(中国)有限公司 信号检测的方法及装置
CN104655929A (zh) * 2015-01-04 2015-05-27 中国科学院物理研究所 一种时域信号的数字时频测量方法及相应的目标识别方法
CN107907878A (zh) * 2017-11-08 2018-04-13 零八电子集团有限公司 高精度获取fmcw雷达距离测量值的方法
CN108802753A (zh) * 2017-05-02 2018-11-13 弗劳恩霍夫应用研究促进协会 用于确定距对象的距离的设备以及相应的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862070A (en) * 1987-10-30 1989-08-29 Teradyne, Inc. Apparatus for testing input pin leakage current of a device under test
GB2428477A (en) * 2005-07-20 2007-01-31 David Richard Andrews Inspection device for heterogeneous structures
JP4519797B2 (ja) * 2006-03-30 2010-08-04 富士通テン株式会社 車載レーダ装置及び車載レーダ管制システム
US7737885B2 (en) * 2007-08-01 2010-06-15 Infineon Technologies Ag Ramp linearization for FMCW radar using digital down-conversion of a sampled VCO signal
CN102707266B (zh) * 2012-05-24 2014-06-04 北京理工大学 一种具有抗干扰和多目标识别功能的雷达及其检测方法
DE102013210256A1 (de) * 2013-06-03 2014-12-04 Robert Bosch Gmbh Interferenzunterdrückung bei einem fmcw-radar
CN106199523B (zh) * 2015-05-27 2020-08-28 松下知识产权经营株式会社 雷达装置及干扰防止方法
DE102015221163A1 (de) * 2015-10-29 2017-05-04 Astyx Gmbh Verfahren und Vorrichtung zur Verfolgung von Objekten, insbesondere sich bewegenden Objekten, in den dreidimensionalen Raum von abbildenden Radarsensoren
EP3173812B1 (en) * 2015-11-24 2021-01-06 Veoneer Sweden AB A vehicle radar system arranged for reducing interference
CN106338727B (zh) * 2016-09-05 2019-03-05 南京理工大学 一种车载辅助驾驶雷达的目标检测方法
US10775479B2 (en) * 2017-08-18 2020-09-15 GM Global Technology Operations LLC Efficient non-interfering multi-radar transmission scheme
US11457461B2 (en) * 2018-07-18 2022-09-27 Lg Electronics Inc. Method and device for transmitting sidelink signal in wireless communications system
CN109031220A (zh) * 2018-07-23 2018-12-18 惠州市华阳光电技术有限公司 一种雷达抗干扰滤波方法及其电路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003276A1 (en) * 1986-10-30 1988-05-05 Nippon Telegraph And Telephone Corporation Method of detecting object and apparatus therefor
JP2005009886A (ja) * 2003-06-16 2005-01-13 Japan Radio Co Ltd Fm−cwレーダ装置
CN1930490A (zh) * 2003-11-25 2007-03-14 麦卡利斯有限公司 目标探测方法和设备
CN102713667A (zh) * 2009-11-23 2012-10-03 罗伯特·博世有限公司 用于检测目标的方法
CN104076328A (zh) * 2013-03-29 2014-10-01 日电(中国)有限公司 信号检测的方法及装置
CN104655929A (zh) * 2015-01-04 2015-05-27 中国科学院物理研究所 一种时域信号的数字时频测量方法及相应的目标识别方法
CN108802753A (zh) * 2017-05-02 2018-11-13 弗劳恩霍夫应用研究促进协会 用于确定距对象的距离的设备以及相应的方法
CN107907878A (zh) * 2017-11-08 2018-04-13 零八电子集团有限公司 高精度获取fmcw雷达距离测量值的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113310942A (zh) * 2021-05-26 2021-08-27 东南大学 一种基于毫米波fmcw雷达的绝缘子内部缺陷识别方法
CN113310942B (zh) * 2021-05-26 2023-12-01 东南大学 一种基于毫米波fmcw雷达的绝缘子内部缺陷识别方法

Also Published As

Publication number Publication date
CN111638519B (zh) 2023-03-03
EP3923016A4 (en) 2022-04-06
EP3923016A1 (en) 2021-12-15
CN116660900A (zh) 2023-08-29
US20210396839A1 (en) 2021-12-23
CN111638519A (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
US11754668B2 (en) Detection method, detection apparatus, and system
WO2020156133A1 (zh) 一种目标物探测方法及对应的探测装置
WO2020177647A1 (zh) 一种利用无线电信号进行目标物探测的方法及相关装置
WO2020156084A1 (zh) 无线电信号发送方法和装置
US20230014866A1 (en) Signal processing method and apparatus, and storage medium
US20220171055A1 (en) Signal Transmission Method and Apparatus
CN112433214A (zh) 一种雷达信号发送方法及装置
WO2021008139A1 (zh) 一种检测方法、信号发送方法及装置
US20220082655A1 (en) Radar signal sending method and device
US20220204004A1 (en) Information Reporting Method, Information Receiving Method, and Apparatus
WO2020259636A1 (zh) 一种通信方法及装置
WO2023212935A1 (zh) 一种信号发送方法、接收方法及对应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020766242

Country of ref document: EP

Effective date: 20210910