WO2021008139A1 - 一种检测方法、信号发送方法及装置 - Google Patents

一种检测方法、信号发送方法及装置 Download PDF

Info

Publication number
WO2021008139A1
WO2021008139A1 PCT/CN2020/077304 CN2020077304W WO2021008139A1 WO 2021008139 A1 WO2021008139 A1 WO 2021008139A1 CN 2020077304 W CN2020077304 W CN 2020077304W WO 2021008139 A1 WO2021008139 A1 WO 2021008139A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
detection
signal
target
transmission
Prior art date
Application number
PCT/CN2020/077304
Other languages
English (en)
French (fr)
Inventor
高磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20840356.8A priority Critical patent/EP3992668A4/en
Publication of WO2021008139A1 publication Critical patent/WO2021008139A1/zh
Priority to US17/576,468 priority patent/US20220137179A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • G01S7/022Road traffic radar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0232Avoidance by frequency multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems

Definitions

  • This application relates to the field of radar technology, and in particular to a detection method, signal transmission method and device.
  • ADAS advanced driving assistance system
  • the system uses various sensors installed on the car to sense the surrounding environment and Collect data, identify, detect and track stationary and moving objects, and combine with navigator map data to perform system calculations and analysis, so that drivers can be aware of possible dangers in advance, and effectively increase the comfort of driving. And security.
  • the sensing layer includes vision sensors such as on-board cameras and radar sensors such as on-board radars.
  • Millimeter-wave radar is a type of vehicle-mounted radar. Due to its low cost and relatively mature technology, it is the first to become the main sensor of unmanned driving systems.
  • ADAS has developed more than ten functions, such as adaptive cruise control (ACC), automatic emergency braking (AEB), lane change assist (lance change assist, LCA), or blind spot monitoring (BSD), etc.
  • ACC adaptive cruise control
  • AEB automatic emergency braking
  • LCA lane change assist
  • BSD blind spot monitoring
  • Figure 1 is a schematic diagram of the principle of radar detection of target objects.
  • the radar transmits the detection signal (electromagnetic wave) and receives the signal reflected by the target object through the antenna, amplifies and down-converts the signal reflected by the target object, and obtains information such as the relative distance and relative speed between the vehicle and the target object. Achieve determining the location of the target object.
  • This application provides a detection method, a signal transmission method and a device, which are used to minimize or avoid interference between radars.
  • a detection method is provided.
  • the method can be applied to a first radar.
  • the first radar includes at least two transmitting antennas and at least one receiving antenna.
  • the method includes: receiving at least one antenna through the at least one receiving antenna. Signal, and then perform target detection based on the at least one signal, where the at least one signal corresponds to at least two detection information sets, the at least two detection information sets correspond to the at least two transmit antennas, and the at least two The detection information set is used for the target detection.
  • the method may be executed by a detection device, such as a radar detection device.
  • a detection device such as a radar detection device.
  • at least one signal received by at least one receiving antenna corresponds to at least two detection information sets used for target detection, and these at least two detection information sets correspond to at least two transmitting antennas.
  • At least one received signal obtains at least two detection information sets corresponding to at least two transmitting antennas.
  • the detection information generated by the radar signals emitted by other radar detection devices is also different, so even if other radar detection devices
  • the device causes interference to the radar detection device, that is, the radar signal emitted by other radar detection devices may be received by the radar detection device, and the radar detection device treats this radar signal as an echo signal, that is, the signal emitted by the radar detection device is
  • the present application can still exclude the detection information generated by the interference of other radar detection devices from at least two detection sets, that is, exclude the interference of other radar detection devices to the radar detection device. In this way, mutual interference between radar detection devices can be eliminated.
  • performing target detection according to the at least one signal includes:
  • Case 1 There may not be a valid target within the maximum detection range around the radar detection device, for example, the radar detection device is in an open area. Therefore, in this case, as long as it is determined that there is at least one empty set in the at least two detection information sets, it can be determined that the radar detection device has no valid target. If the radar detection device sequentially determines the detection information set according to the signal corresponding to each transmitting antenna, as long as it is determined that there is an empty set, subsequent processing is not continued, which can save the energy consumption of the radar detection device.
  • performing target detection according to the at least one signal includes:
  • the target information set is an empty set, it is determined that no valid target is detected; and/or,
  • the target information set is a non-empty set, it is determined that the target information set indicates at least one valid target, wherein the detection information of the at least one valid target is included in each of the at least two detection information sets.
  • Information collection If the target information set is a non-empty set, it is determined that the target information set indicates at least one valid target, wherein the detection information of the at least one valid target is included in each of the at least two detection information sets.
  • Case 2 There may be effective targets around the radar detection device, there may also be other radar detection devices that interfere with the radar detection device, or there may also be effective targets and other radar detection devices.
  • whether the target information set determined by the at least two detection information sets is an empty set can be used to determine whether there is a valid target. If the target information set is an empty set, then there is no valid target; if the target information set is not an empty set, then there is a valid target. In this way, interference between radar detection devices can be eliminated.
  • the at least one effective target includes a first effective target
  • the method further includes:
  • the detection information corresponding to the first characteristic parameter of the first valid target has the same value
  • the difference between the values of the detection information corresponding to the first characteristic parameter of the first effective target is smaller than a first preset threshold.
  • This application can screen the detection information that characterizes the target from at least two detection information sets, so as to perform target detection. Considering that the detection information of the same feature that characterizes the target has errors, for the detection information of the same feature parameter of the same target, this application may select detection information with the same or similar values from at least two detection information sets to avoid as much as possible Lost the target.
  • determining the first characteristic parameter of the first effective target includes:
  • the first characteristic parameter is determined according to the at least one signal and the at least two detection information sets.
  • the example of this application can determine the angle of the target relative to the radar detection device based on at least one signal and at least two detection information sets, so as to determine the effective target's angle more accurately. position.
  • the detection parameter of the first detection target further includes a second characteristic parameter
  • the method further includes:
  • a difference in detection information corresponding to the second characteristic parameter of the first effective target is smaller than a second preset threshold.
  • the present application determines detection information that characterizes the target from at least two detection information sets based on multiple detection parameters, and can try to exclude detection information of ineffective targets.
  • the at least one receiving antenna includes at least two receiving antennas, the at least one signal includes multiple signals, and the method further includes:
  • the multiple signals are converted into the range-Doppler-angle domain to determine the detection information.
  • a method suitable for a radar detection device including at least two receiving antennas to determine detection information is given. That is, if the radar detection device includes at least two receiving antennas, the detection information may also include angle information of the target relative to the radar detection device.
  • a signal sending method including:
  • the first radar includes multiple transmitting antennas, and the first transmitting parameter is used to indicate the time interval and/or the transmission start time of the multiple transmitting antennas transmitting signals, or the first transmitting parameter is used To indicate the frequency interval and/or the starting position of the frequency domain of the signals transmitted by the multiple transmitting antennas.
  • the method may be executed by a detection device.
  • the detection device is, for example, a first radar detection device.
  • the first radar detection device may be a first radar or a communication device communicatively connected to the first radar.
  • the first radar detection device when it sends a signal, it may first determine the first transmission parameter, where the first transmission parameter may be used to indicate the time interval and/or the transmission start time of multiple transmitting antennas.
  • the frequency interval and/or the starting position of the frequency domain can prevent the first radar detection device from having the same or similar first emission parameters as other radar detection devices. There are differences in the emission parameters, thereby inhibiting other radar detection devices from causing interference to the first radar detection device. In this way, interference between radar detection devices can be reduced or avoided.
  • determining the first emission parameters of the first radar includes:
  • the first transmission parameter of the first radar is updated from the first value to the second value.
  • the first radar detection device may update the value of the first transmission parameter.
  • the value is selected so that the updated value is different from the value of the first transmission parameter of other radar detection devices, thereby suppressing interference caused by other radar detection devices to the first radar detection device.
  • the method further includes:
  • the first information is used to indicate the first transmission parameter, and/or the first information is used to indicate the second transmission parameter of at least one second radar, and the first transmission parameter is based on the second transmission parameter.
  • the transmission parameters are determined.
  • the method further includes:
  • the first radar detection device can determine whether to update the value of the first transmission parameter according to the instruction of the first communication device. value.
  • the first communication device may send first information to the first radar detection device, and the first information, for example, indicates the second value, then the first radar detection device updates the value of the first transmission parameter from the first value to the second value. value. In this way, there is no need for the first radar detection device to decide the second value.
  • the first information may be used to indicate the transmission parameters of the second radar, and the first radar detection device determines the second value according to the first information, and then updates the first value to the second value. In this manner, the first radar detection device updates the value of the first transmission parameter according to the actual situation, so that there is no interference between the first radar and the multiple second radars.
  • the first radar detection device can report the first transmission parameter, so that the first communication device instructs other radars according to the first transmission parameter.
  • the second radar updates its own transmission parameters, so as to realize the communication between multiple radar detection devices. interference.
  • the first information is also used to indicate at least one of the following information:
  • the illumination angle of the at least one second radar is the illumination angle of the at least one second radar.
  • the first information may be any combination of position information, orientation information, and illumination angle of at least one second radar, so that the first radar detection device can determine whether the first transmission parameter needs to be updated according to the first information. Value, so that when no update is needed, no update is performed, and when an update is needed, the second value can be determined more accurately based on the first information.
  • updating the first transmission parameter of the first radar from the first value to the second value includes:
  • the first transmission parameter is updated from the first value to the second value according to a preset adjustment granularity, where the preset adjustment granularity includes: one pulse repetition period PRT, one detection frame, and multiple consecutive The detection frame, or the rotation period of the antenna.
  • the first radar detection device can update the value of the first transmission parameter according to the first information in multiple ways.
  • the first radar detection device can adjust the granularity according to multiple presets, and the update method is relatively more. flexible.
  • a signal transmission method which can be applied to a first radar.
  • the first radar includes at least three transmitting antennas, and the at least three transmitting antennas include a first transmitting antenna and a second transmitting antenna.
  • a third transmitting antenna the method includes:
  • the at least three transmitting antennas use time division multiplexing TDM to transmit signals
  • the first transmission parameter is used to indicate the start time of signal transmission of the at least three transmitting antennas
  • the first transmitting antenna is connected to the The start time of signal transmission by the second transmitting antenna is adjacent in the time domain, and the start time of signal transmission by the second transmitting antenna is adjacent in the time domain to the third transmitting antenna.
  • a time interval between the start time of signal transmission by the transmitting antenna and the second transmitting antenna is different from the time interval between the start time of signal transmission by the second transmitting antenna and the third transmitting antenna; or,
  • the at least three transmit antennas use FDM to transmit signals
  • the first transmit parameter is used to indicate the center frequency of the signal transmission of the at least three transmit antennas
  • the signals of the first transmit antenna and the second transmit antenna The center frequency of the transmission is adjacent in frequency
  • the center frequency of the signal transmission of the second transmitting antenna is adjacent in frequency to the third transmitting antenna
  • the signals of the first transmitting antenna and the second transmitting antenna The frequency interval between the center frequencies of transmission is different from the frequency interval between the center frequencies of signal transmission of the second transmitting antenna and the third transmitting antenna.
  • This application can reduce the probability that the radar signals sent by different radar detection devices have the same time interval or frequency interval, so that even if the radar signals sent by different radar detection devices fall within the effective receiving area of each other, they are treated as received signals by each other. , It can also distinguish which received signals should not be treated as received signals. For example, this application may determine that the time interval between two adjacent transmit antennas in the time domain to transmit signals is variable, that is, it is not fixed; or, this application may determine that two adjacent transmit antennas transmit signals in frequency. The frequency interval is variable, that is, it is not fixed. In this way, mutual interference between radar detection devices can be reduced or avoided.
  • a radar detection device in a fourth aspect, includes at least two transmitting antennas and at least one receiving antenna, and the radar detection device further includes:
  • a transceiver unit configured to receive at least one signal through the at least one receiving antenna
  • a processing unit configured to perform target detection according to the at least one signal
  • the at least one signal corresponds to at least two detection information sets
  • the at least two detection information sets correspond to the at least two transmitting antennas
  • the at least two detection information sets are used for the target detection.
  • the processing unit is specifically configured to:
  • the processing unit is specifically configured to:
  • the target information set is an empty set, it is determined that no valid target is detected; and/or,
  • the target information set is a non-empty set, it is determined that the target information set indicates at least one valid target, wherein the detection information of the at least one valid target is included in each of the at least two detection information sets.
  • Information collection If the target information set is a non-empty set, it is determined that the target information set indicates at least one valid target, wherein the detection information of the at least one valid target is included in each of the at least two detection information sets.
  • the at least one effective target includes a first effective target
  • the processing unit is further configured to:
  • the detection information corresponding to the first characteristic parameter of the first valid target has the same value
  • the difference between the values of the detection information corresponding to the first characteristic parameter of the first effective target is smaller than a first preset threshold.
  • the processing unit is specifically configured to:
  • the first characteristic parameter is determined according to the at least one signal and the at least two detection information sets.
  • the detection parameter of the first detection target further includes a second characteristic parameter
  • the processing unit is further configured to:
  • a difference in detection information corresponding to the second characteristic parameter of the first effective target is smaller than a second preset threshold.
  • the at least one receiving antenna includes at least two receiving antennas
  • the at least one signal includes multiple signals
  • the processing unit is further configured to:
  • the multiple signals are converted into the range-Doppler-angle domain to determine the detection information.
  • a radar detection device in a fifth aspect, includes:
  • a processing unit for determining the first transmission parameter of the first radar
  • a transceiver unit configured to transmit a signal according to the first transmission parameter
  • the first radar includes multiple transmitting antennas, and the first transmitting parameter is used to indicate the time interval and/or the transmission start time of the multiple transmitting antennas transmitting signals, or the first transmitting parameter is used To indicate the frequency interval and/or the starting position of the frequency domain of the signals transmitted by the multiple transmitting antennas.
  • the processing unit is specifically configured to:
  • the first transmission parameter of the first radar is updated from the first value to the second value.
  • the processing unit is also used to:
  • the first information is used to indicate the first transmission parameter, and/or the first information is used to indicate the second transmission parameter of at least one second radar, and the first transmission parameter is based on the second transmission parameter.
  • the transmission parameters are determined.
  • the transceiver unit is also used for:
  • the first information is also used to indicate at least one of the following information:
  • the illumination angle of the at least one second radar is the illumination angle of the at least one second radar.
  • the processing unit is specifically configured to:
  • the first transmission parameter is updated from the first value to the second value according to a preset adjustment granularity, where the preset adjustment granularity includes: one pulse repetition period PRT, one detection frame, and multiple consecutive The detection frame, or the rotation period of the antenna.
  • a radar detection device in a sixth aspect, includes at least three transmitting antennas.
  • the at least three transmitting antennas include a first transmitting antenna, a second transmitting antenna, and a third transmitting antenna.
  • the detection device includes:
  • a processing unit configured to determine the first transmission parameter of the first radar
  • a transceiver unit configured to send a signal according to the first transmission parameter through the at least three transmission antennas
  • the at least three transmit antennas use TDM to transmit signals
  • the first transmit parameter is used to indicate the start time of signal transmission of the at least three transmit antennas
  • the first transmit antenna and the second transmit The start time of the signal transmission of the antenna is adjacent in the time domain
  • the start time of the signal transmission of the second transmission antenna is adjacent to the third transmission antenna in the time domain
  • the first transmission antenna is adjacent to the The time interval between the start time of signal transmission by the second transmitting antenna is different from the time interval between the start time of signal transmission by the second transmitting antenna and the third transmitting antenna; or,
  • the at least three transmit antennas use FDM to transmit signals
  • the first transmit parameter is used to indicate the center frequency of the signal transmission of the at least three transmit antennas
  • the signals of the first transmit antenna and the second transmit antenna The center frequency of the transmission is adjacent in frequency
  • the center frequency of the signal transmission of the second transmitting antenna is adjacent in frequency to the third transmitting antenna
  • the signals of the first transmitting antenna and the second transmitting antenna The frequency interval between the center frequencies of transmission is different from the frequency interval between the center frequencies of signal transmission of the second transmitting antenna and the third transmitting antenna.
  • the radar detection device is, for example, the aforementioned radar detection device.
  • the radar detection device includes at least two transmitting antennas and at least one receiving antenna.
  • the detection device further includes a processor and a transmitter.
  • the receiver, the processor, the transmitter, and the receiver are coupled with each other to implement the methods described in the first aspect or various possible designs of the first aspect.
  • the radar detection device is a chip set in a detection device.
  • the radar detection device is a radar.
  • the transmitter and receiver are implemented by antennas, feeders, codecs, etc.
  • the transmitter and receiver are, for example, in the chip
  • the communication interface is connected with the radio frequency transceiving component in the detection device to realize the transmission and reception of information through the radio frequency transceiving component. among them,
  • the receiver is configured to receive at least one signal through the at least one receiving antenna
  • the processor is configured to perform target detection according to the at least one signal
  • the at least one signal corresponds to at least two detection information sets
  • the at least two detection information sets correspond to the at least two transmitting antennas
  • the at least two detection information sets are used for the target detection.
  • the processor is specifically used for:
  • the processor is specifically used for:
  • the target information set is an empty set, it is determined that no valid target is detected; and/or,
  • the target information set is a non-empty set, it is determined that the target information set indicates at least one valid target, wherein the detection information of the at least one valid target is included in each of the at least two detection information sets.
  • Information collection If the target information set is a non-empty set, it is determined that the target information set indicates at least one valid target, wherein the detection information of the at least one valid target is included in each of the at least two detection information sets.
  • the at least one effective target includes a first effective target
  • the processor is further configured to:
  • the detection information corresponding to the first characteristic parameter of the first valid target has the same value
  • the difference between the values of the detection information corresponding to the first characteristic parameter of the first effective target is smaller than a first preset threshold.
  • the processor is specifically used for:
  • the first characteristic parameter is determined according to the at least one signal and the at least two detection information sets.
  • the detection parameter of the first detection target further includes a second characteristic parameter
  • the processor is further configured to:
  • the difference between the detection information values corresponding to the second characteristic parameters of the first valid target is smaller than a second preset threshold.
  • the at least one receiving antenna includes at least two receiving antennas
  • the at least one signal includes multiple signals
  • the processor is further configured to:
  • the multiple signals are converted into the range-Doppler-angle domain to determine the detection information.
  • a radar detection device is provided.
  • the radar detection device is, for example, the aforementioned radar detection device.
  • the radar detection device includes a processor, a transmitter, and a receiver, and the processor, the transmitter, and the receiver are coupled with each other to implement the methods described in the second aspect or various possible designs of the second aspect.
  • the detection device is a chip provided in a detection device.
  • the detection device is a radar.
  • the transmitter and receiver are realized by antennas, feeders, codecs, etc. in the communication equipment, or, if the detection device is a chip set in the detection equipment, the transmitter and receiver are, for example, the chips in the chip.
  • a communication interface which is connected to the radio frequency transceiver component in the detection device, so as to realize the transmission and reception of information through the radio frequency transceiver component. among them,
  • the processor is configured to determine the first transmission parameter of the first radar
  • the transmitter is configured to transmit a signal according to the first transmission parameter
  • the first radar includes multiple transmitting antennas, and the first transmitting parameter is used to indicate the time interval and/or the transmission start time of the multiple transmitting antennas transmitting signals, or the first transmitting parameter is used To indicate the frequency interval and/or the starting position of the frequency domain of the signals transmitted by the multiple transmitting antennas.
  • the processor is specifically used for:
  • the first transmission parameter of the first radar is updated from the first value to the second value.
  • the processor is also used to:
  • the first information is used to indicate the first transmission parameter, and/or the first information is used to indicate the second transmission parameter of at least one second radar, and the first transmission parameter is based on the second transmission parameter.
  • the transmission parameters are determined.
  • the transmitter is also used for:
  • the first information is also used to indicate at least one of the following information:
  • the illumination angle of the at least one second radar is the illumination angle of the at least one second radar.
  • the processor is specifically used for:
  • the first transmission parameter is updated from the first value to the second value according to a preset adjustment granularity, where the preset adjustment granularity includes: one pulse repetition period PRT, one detection frame, and multiple consecutive The detection frame, or the rotation period of the antenna.
  • a radar detection device includes at least three transmitting antennas, and the at least three transmitting antennas include a first transmitting antenna, a second transmitting antenna, and a third transmitting antenna.
  • the radar detection device is, for example, the aforementioned radar detection device.
  • the radar detection device includes a processor, a transmitter and a receiver, and the processor, the transmitter and the receiver are coupled with each other to implement the methods described in the third aspect or various possible designs of the third aspect.
  • the detection device is a chip provided in a detection device.
  • the detection device is a radar.
  • the transmitter and receiver are realized by antennas, feeders, codecs, etc.
  • the transmitter and receiver are, for example, the chips in the chip.
  • a communication interface which is connected to the radio frequency transceiver component in the detection device, so as to realize the transmission and reception of information through the radio frequency transceiver component. among them,
  • the processor is configured to determine a first transmission parameter of the first radar
  • the transmitter is configured to send a signal according to the first transmission parameter through the at least three transmitting antennas;
  • the at least three transmit antennas use TDM to transmit signals
  • the first transmit parameter is used to indicate the start time of signal transmission of the at least three transmit antennas
  • the first transmit antenna and the second transmit The start time of the signal transmission of the antenna is adjacent in the time domain
  • the start time of the signal transmission of the second transmission antenna is adjacent to the third transmission antenna in the time domain
  • the first transmission antenna is adjacent to the The time interval between the start time of signal transmission by the second transmitting antenna is different from the time interval between the start time of signal transmission by the second transmitting antenna and the third transmitting antenna; or,
  • the at least three transmit antennas use FDM to transmit signals
  • the first transmit parameter is used to indicate the center frequency of the signal transmission of the at least three transmit antennas
  • the signals of the first transmit antenna and the second transmit antenna The center frequency of the transmission is adjacent in frequency
  • the center frequency of the signal transmission of the second transmitting antenna is adjacent in frequency to the third transmitting antenna
  • the signals of the first transmitting antenna and the second transmitting antenna The frequency interval between the center frequencies of transmission is different from the frequency interval between the center frequencies of signal transmission of the second transmitting antenna and the third transmitting antenna.
  • the radar detection device may be the radar detection device in the above method design.
  • the radar detection device is a chip set in a detection device.
  • the detection device is a radar.
  • the radar detection device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the radar detection device or the equipment installed with the radar detection device executes the first aspect or any one of the possible implementations of the first aspect.
  • the radar detection device may also include a communication interface
  • the communication interface may be a transceiver in the detection device, for example, implemented by the antenna, feeder, and codec in the radar detection device, or if the radar detection device To be a chip set in the detection device, the communication interface may be an input/output interface of the chip, such as input/output pins.
  • a communication system may, for example, include one or more of the radar detection devices described in the first, second or third aspect, or the communication system may also include other
  • the communication device such as a central node, may also include a target object.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the first aspect or any one of the possible designs of the first aspect. Or, make the computer execute the method described in the second aspect or any one of the possible designs of the second aspect; or, the computer execute the method described in the third aspect.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the first aspect or any one of the possible designs of the first aspect. Or, make the computer execute the method described in the second aspect or any one of the possible designs of the second aspect; or, the computer execute the method described in the third aspect.
  • the embodiment of the present application provides a solution for detecting a target by a radar detection device.
  • the radar detection device can exclude detection information generated by other detection devices due to interference, that is, eliminate interference from other detection devices to the radar detection device. In this way, mutual interference between radar detection devices can be eliminated.
  • FIG. 1 is a schematic diagram of the principle of radar detection of a target object provided by an embodiment of this application;
  • Fig. 2 is a schematic structural diagram of a radar device provided by an embodiment of the application.
  • Figure 3 is a schematic diagram of a transmitted signal, an echo signal and an intermediate frequency signal
  • Figure 4 provides a schematic diagram of the principle of SIMO radar angle measurement
  • Figure 5 is a schematic diagram of the principle of a MIMO radar virtual receiving array
  • Figure 6 is a schematic diagram of the current FMCW MIMO radar using FDM mode to transmit signals
  • Figure 7 is a schematic diagram of the current FMCW MIMO radar using TDM mode to transmit signals
  • Figure 8 is a schematic diagram of mutual interference between vehicle-mounted radars
  • FIG. 9 is a flowchart of a radar signal sending method provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of FMCW MIMO radar transmitting signals in TDM mode according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of FMCW MIMO radar transmitting signals in FDM mode according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of a possible application scenario of an embodiment of this application.
  • FIG. 13 is a flowchart of a radar signal sending method provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of an application scenario to which an embodiment of this application is applicable.
  • FIG. 15 is a flowchart of a radar signal sending method provided by an embodiment of the application.
  • FIG. 16 is a flowchart of a method for sending radar signals according to an embodiment of the application.
  • FIG. 17 is a schematic diagram of FMCW MIMO radar transmitting signals in FDM mode according to an embodiment of the application.
  • FIG. 18 is a flowchart of a detection method provided by an embodiment of the application.
  • FIG. 19 is a schematic structural diagram of a first radar detection device provided by an embodiment of the present application.
  • 20 is a schematic diagram of another structure of the first radar detection device provided by an embodiment of the present application.
  • 21 is a schematic diagram of still another structure of the first radar detection device provided by an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • a radar detection device such as a radar, or other devices for detection (eg, ranging).
  • Radar or radar device
  • the signal emitted by the radar can be a radar signal, and correspondingly, the reflected signal received by the target object can also be a radar signal.
  • the emission period of the radar detection device refers to the period during which the radar detection device transmits a complete waveform of the radar signal. Radar detection devices generally send multiple sweep cycles of radar signals in a continuous period of time.
  • the initial frequency of the radar detection device At the beginning of a transmission cycle, the radar detection device will transmit a radar signal at a frequency, which is called the initial frequency of the radar detection device. And the transmission frequency of the radar detection device changes during the transmission period based on the initial frequency.
  • the illumination angle can be understood as the half power angle of the radar's transmitting beam, or the scanning range of the radar's transmitting beam. It should be noted here that the "illumination angle" is defined for the convenience of explanation, and is technically the emission.
  • the beam width of the transmitting beam of the antenna for example, if the transmitting beam is fixed, the irradiation angle is the beam width of the transmitting beam, and if the transmitting beam is variable, the irradiation angle is the scanning range of the transmitting beam.
  • FMCW Frequency modulated continuous wave
  • the linear change here generally refers to a linear change within a transmission period.
  • the waveform of the chirp continuous wave is generally a sawtooth wave or a triangle wave, or there may be other possible waveforms, such as a stepped frequency waveform.
  • the maximum ranging distance of the radar detection device is a parameter related to the configuration of the radar detection device (for example, related to the factory setting parameters of the radar detection device).
  • the radar detection device is a radar
  • the long-range adaptive cruise control (ACC) radar has a maximum ranging distance of, for example, 250m
  • the medium-range radar has a maximum ranging distance of, for example, 70-150m.
  • Intermediate frequency (IF) signal taking the radar detection device as an example, the local oscillator signal of the radar and the reflected signal received by the radar (the signal transmitted by the radar is reflected by the target object) are processed by the mixer The signal after that is the intermediate frequency signal. Specifically, part of the frequency modulated continuous wave signal generated by the oscillator is used as the local oscillator signal, and the other part is used as the transmitting signal to be transmitted through the transmitting antenna, and the reflected signal of the transmitting signal received by the receiving antenna will be mixed with the local oscillator signal to obtain The "intermediate frequency signal". Through the intermediate frequency signal, one or more of the distance information, speed information or angle information of the target object can be obtained.
  • the distance information can be the distance information of the target object relative to the current radar
  • the speed information can be the projection of the speed of the target object relative to the current radar in the direction of the line connecting the target object and the radar
  • the angle information can be the target object relative to the current radar.
  • the current radar angle information Further, the frequency of the intermediate frequency signal is called intermediate frequency.
  • At least one means one or more, and "plurality” means two or more.
  • And/or describes the association relationship of related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • At least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c or a-b-c, where a, b, and c can be single or multiple.
  • ordinal numbers such as "first" and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • the first information and the second information are only used to distinguish different information, but do not indicate the difference in content, priority, sending order, or importance of the two types of information.
  • Millimeter waves refer to electromagnetic waves with a wavelength between 1 and 10 mm, and the corresponding frequency range is 30 to 300 GHz. In this frequency band, the characteristics of millimeter waves make it very suitable for the automotive field. Large bandwidth: abundant frequency domain resources, low antenna sidelobe, which is conducive to imaging or quasi-imaging; short wavelength: the volume of radar equipment and antenna aperture can be reduced, and the weight is reduced; narrow beam: the beam requirement of millimeter wave under the same antenna size The beam is much narrower than the microwave, and the radar resolution is high; strong penetration: Compared with laser radar and optical systems, it has the ability to penetrate smoke, dust and fog, and can work around the clock.
  • Vehicle-mounted millimeter-wave radar systems generally include oscillators, transmitting antennas, receiving antennas, mixers, couplers, processors, and controllers.
  • Figure 2 shows the working principle diagram of millimeter wave radar.
  • the oscillator generates a radar signal whose frequency increases linearly with time.
  • the radar signal is generally a frequency modulated continuous wave. Part of the radar signal is output to the mixer through the directional coupler as the local oscillator signal, and part is transmitted through the transmitting antenna.
  • the receiving antenna receives the transmitted radar signal and the radar signal reflected back after encountering the object in front of the vehicle, the mixer Mix the received radar signal with the local oscillator signal to obtain an intermediate frequency signal.
  • the intermediate frequency signal contains the relative distance, speed, and angle of the target object and the radar system.
  • the intermediate frequency signal is sent to the processor after being amplified by a low-pass filter, and the processor processes the received signal, generally performing fast Fourier transform and spectrum analysis on the received signal to obtain the target object relative to
  • the distance, speed and other signals of the radar system can also obtain information such as the angle of the target object relative to the radar system.
  • the processor can output the obtained information to the controller to control the behavior of the vehicle.
  • FIG. 3 it is a schematic diagram of the FMCW radar transmitting signal.
  • the radar signal generated by the oscillator is a frequency-modulated continuous wave, that is, the radar system transmits a set of chirp signals with the same waveform and different time starting points through the transmitting antenna.
  • the chirp signal can also be called a chirp signal.
  • the interval at which the chirp signal is transmitted (indicated by T in FIG. 3) is called the pulse repetition interval (Pulse Repetition Time, PRT).
  • PRT Pulse Repetition Time
  • the radar transmits 1 chirp signal in 1 PRT, and the time length of the chirp signal is less than or equal to 1 PRT. Normally, the time length of the chirp signal is less than 1 PRT.
  • the transmitting antenna of the radar transmits signals
  • the echo signal received by the receiving antenna of the radar refers to the signal transmitted back after the radar signal transmitted by the transmitting antenna encounters an object.
  • the mixer mixes the received echo signal with the local oscillator signal to obtain an intermediate frequency signal. According to the intermediate frequency signal, the relative distance and speed of the target object and the radar system can be determined.
  • the intermediate frequency signal is used in each PRT for radar signal processing, that is, the sampled and quantized data sequence is composed of two Dimensional array, one dimension of this two-dimensional array corresponds to the sampling point number in the PRT, and the other dimension corresponds to the PRT number; then Fourier transform is performed on this two-dimensional array to obtain the radar reception expressed in the range-Doppler domain signal.
  • the echo component of each target object is expressed in the range-Doppler domain, it corresponds to a two-dimensional sinc function, that is, each target object corresponds to a local peak in the range-Doppler domain representation.
  • the radar received signal represented by the range-Doppler domain is actually a complex two-dimensional array.
  • the complex two-dimensional array is modulo point by point, and the obtained modulus corresponds to a local peak.
  • the local peak corresponds to the sequence numbers of two dimensions, and the frequency of the single-frequency sine wave corresponding to the target object and the phase difference of the intermediate frequency signal in different PRTs can be obtained, and the distance and speed information of the target object can be obtained.
  • a single input multiple output (SIMO) radar that is, a radar that includes one transmitting antenna and multiple receiving antennas
  • the target object can be determined according to the phase difference of the echo signals received by different receiving antennas The angle relative to the radar system.
  • Fig. 4 it is a schematic diagram of the principle of SIMO radar angle measurement.
  • Fig. 4 takes the SIMO radar including one transmitting antenna and two receiving antennas as an example.
  • the signal emitted by the transmitting antenna is reflected by the target object and then received by the two receiving antennas.
  • the phase difference between the two receiving antennas is ⁇ .
  • the distance difference between the two receiving antennas and the target object is calculated, that is, dsin( ⁇ ) in Figure 4, where d is the difference between the two receiving antennas.
  • is the angle between the target object and the normal of the receiving antenna, so that the value of ⁇ can be calculated, that is, the angle of the target object relative to the radar.
  • MIMO radars For Multiple Input Multiple Output (MIMO) radars, that is, radars that include multiple transmitting antennas and multiple receiving antennas, the signals transmitted by different transmitting antennas can have different characteristics, that is, different transmitting antennas are transmitting. Signals are transmitted using different transmission parameters, where the transmission parameters include, for example, center frequency, starting time, and chirp slope.
  • Figure 5 it is a schematic diagram of the principle of a MIMO radar virtual receiving array.
  • Figure 5 takes the MIMO radar including 2 transmitting antennas (Tx1 and Tx2) and 4 receiving antennas (Rx1, Rx2, Rx3, and Rx4) as an example.
  • the signal received by each receiving antenna is the superimposed signal after all the signals transmitted by the transmitting antenna are transmitted by the target object.
  • Each receiving antenna can extract signals from different transmitting antennas and reflected by the target object from the received signals according to the transmission parameters of the signals transmitted by the multiple transmitting antennas, as the received signal of the virtual receiving element.
  • the virtual receiving array element here refers to an array element composed of one transmitting antenna and multiple receiving antennas, that is, M transmitting antennas and N receiving antennas, corresponding to the received signals of M*N virtual receiving array elements. Therefore, by using M transmitting antennas and N receiving antennas, the angle of the SIMO radar with M*N receiving elements can be detected.
  • the MIMO radar can use Frequency Division Multiplexing (FDM) mode to transmit signals, that is, different transmitting antennas use different center frequencies to transmit signals.
  • FDM Frequency Division Multiplexing
  • the FDM mode is used for the MIMO radar.
  • the abscissa t of Fig. 6 represents the time domain, and the ordinate f represents the frequency domain.
  • Fig. 6 takes the MIMO radar including three transmitting antennas as an example.
  • the three transmitting antennas are the transmitting antenna Tx1, the transmitting antenna Tx2, and the transmitting antenna Tx3.
  • the center frequency of the transmitting antenna Tx1 is f1
  • the center frequency of the transmitting antenna Tx2 is f2
  • the center frequency of the transmitting antenna Tx3 is f3, that is, different transmitting antennas use different centers. Frequency transmit signal.
  • the MIMO radar can also use Time Division Multiplexing (TFM) mode to transmit signals, that is, different transmit antennas transmit signals at different starting moments.
  • TDM Time Division Multiplexing
  • FIG. 7 it is a MIMO radar. Schematic diagram of signal transmission in TDM mode. The abscissa t of Fig. 7 represents the time domain, and the ordinate f represents the frequency domain.
  • Fig. 7 takes the MIMO radar including three transmitting antennas as an example. The three transmitting antennas are the transmitting antenna Tx1, the transmitting antenna Tx2, and the transmitting antenna Tx3.
  • the starting time of the transmitting antenna Tx1 is t1
  • the starting time of the transmitting antenna Tx2 is t2
  • the center frequency of the transmitting antenna Tx3 is t3, that is, different transmitting antennas use different
  • the signal is transmitted at the start time.
  • Tx1 and Tx2 are two adjacent transmit signals in frequency
  • Tx2 and Tx3 are two adjacent transmit signals in frequency
  • the frequency interval between Tx1 and Tx2 is ⁇ f1
  • Tx1 and Tx2 The frequency interval between is ⁇ f2.
  • the starting moments of the transmission signals of the multiple transmitting antennas of the current MIMO radar are equally spaced, that is, the interval between the starting moments of any two adjacent transmission signals in the time domain is fixed.
  • Tx1 and Tx2 are two adjacent transmit signals in the time domain
  • Tx2 and Tx3 are two adjacent transmit signals in the time domain
  • the interval between the start moments between Tx1 and Tx2 The interval is ⁇ t1
  • the interval between the starting moments between Tx1 and Tx2 is ⁇ t2.
  • the interval between the start moments of two adjacent transmitted signals in the time domain is called time offset
  • the frequency interval of two adjacent transmitted signals in the frequency domain is called frequency domain. Bias.
  • the signals emitted by other radars may be received by this radar, that is, the signals received by this radar include not only echo signals, but also signals emitted by other radars. At this time, the radar will Signals emitted by other radars are used as echo signals, so that when the target is detected based on the received signal, the determined target may actually not exist. This situation can be understood as other radars causing interference to the radar.
  • FIG. 8 is a schematic diagram of mutual interference between vehicle-mounted radars.
  • the radar 1 sends out a transmission signal and receives the reflected signal from the transmission signal on the target object. While radar 1 receives the reflected signal, the receiving antenna of radar 1 also receives the transmitted signal or reflected signal of radar 2, then the transmitted signal of radar 2 received by radar 1 or the reflected signal of radar 2 is interference for radar 1. signal.
  • the mutual interference between on-board radars will greatly reduce the probability of radar detection or increase the probability of false alarms in radar detection, and will have a non-negligible impact on driving safety or comfort. Therefore, how to reduce or suppress the interference between on-board radars is Problems that must be solved.
  • this application can determine that different radars use different transmission parameters to transmit signals.
  • the transmission parameters of the radar include the center frequency, start time, chirp slope, time offset, and frequency offset of the transmitted signal.
  • the signals emitted by different radars have different characteristics, so that when a certain radar detects the target based on the received signal, interference from other radars can be excluded.
  • an embodiment of the present application provides a signal sending method.
  • FIG. 9 is a flowchart of the method.
  • the method provided by the embodiment shown in FIG. 9 may be executed by a radar detection device, which may be a radar chip, for example, the radar detection device is called the first radar, or the radar detection device may also communicate with the radar Connected communication device.
  • the signals sent by the radar detection device can all be radar signals, and naturally, the received echo signals can also be radar signals.
  • the first radar detection device determines a first transmission parameter of the first radar.
  • the first radar includes at least three transmitting antennas, and the first transmitting parameters may include the center frequency, starting time, chirp slope, initial phase of each transmitted pulse, time offset, frequency offset, etc. of the first radar transmitting signal. .
  • the first transmission parameter may be used to indicate the starting time of the at least three transmitting antennas to transmit signals. It can also be understood that the first transmission parameter may be used to indicate the time domain starting position of the signal transmission of the at least three transmission antennas, or the time domain resources occupied by the signal transmission of the at least three transmission antennas.
  • the first radar detection device may determine that the time offsets of the signals transmitted by the at least three transmitting antennas are not the same, that is, the starting moments (starting positions of the time domain) of the signals transmitted by the multiple transmitting antennas are not equal in the time domain Divided by intervals.
  • FIG. 10 is a schematic diagram of a possible solution.
  • the first radar includes a first transmitting antenna Tx1, a second transmitting antenna Tx2, and a third transmitting antenna Tx3.
  • the first transmitting antenna Tx1 and the second transmitting antenna Tx2 are adjacent to each other in the time domain at the beginning of signal transmission, and the second transmitting antenna Tx2’s signal transmission starting at the same time as the third transmitting antenna Tx3 in the time domain.
  • the time interval ⁇ t1 between the start time of signal transmission of the first transmitting antenna Tx1 and the second transmitting antenna Tx2 and the time interval between the start time of signal transmission of the second transmitting antenna Tx2 and the third transmitting antenna Tx3 ⁇ t2 is not the same.
  • the first transmit parameter may be used to indicate the center frequency of the transmit signals of the at least three transmit antennas. It can also be understood that the first transmission parameter may be used to indicate a frequency domain configuration of signal transmission of at least three transmission antennas, or frequency domain resources occupied by signals transmitted by at least three transmission antennas. Exemplarily, the first radar detection device may determine that the frequency domain offsets of the signals transmitted by the at least three transmitting antennas may be different, that is, the center frequencies of the signals transmitted by the multiple transmitting antennas are divided at unequal intervals in the frequency domain.
  • Figure 11 is a schematic diagram of a possible solution.
  • the first radar includes a first transmitting antenna Tx1, a second transmitting antenna Tx2, and a third transmitting antenna Tx3 as an example.
  • the center frequencies of the signal transmission of the first transmitting antenna Tx1 and the second transmitting antenna Tx2 are adjacent in the frequency domain
  • the center frequencies of the signal transmission of the second transmitting antenna Tx2 and the third transmitting antenna Tx3 are adjacent in the frequency domain
  • the frequency interval ⁇ f1 between the center frequencies of the signal transmission of the first transmitting antenna Tx1 and the second transmitting antenna Tx2 is different from the frequency interval ⁇ f2 between the center frequencies of the signal transmission of the second transmitting antenna Tx2 and the third transmitting antenna Tx3 .
  • the first radar Since the first radar has a variable time interval between two adjacent transmitting antennas in the time domain, or the frequency interval between two adjacent transmitting antennas in the frequency domain is variable, so, Transmitting antennas with different signals transmitted by the first radar occupy different time-frequency resources.
  • This application can eliminate mutual interference between different radars based on the different time-frequency resources occupied by different transmitting antennas of the first radar.
  • the two radars are Radar 1 and Radar 2 respectively.
  • the time interval between two adjacent transmitting antennas in the time domain is variable, or the frequency interval between two adjacent transmitting antennas in the frequency domain is Variable, then the probability that radar 1 and radar 2 use the same time domain parameters or frequency domain parameters to transmit signals will be reduced, thereby reducing the mutual interference between different radars.
  • radar 1 and radar 2 use different time domain parameters or frequency parameters to transmit signals, the characteristics of radar 1’s signal are not consistent with those of radar 2. As a result, even if radar 1 receives the signal of radar 2, due to its The characteristics of the signals are inconsistent, so that the radar 1 can eliminate the interference of the radar 2 when detecting the target from the received signal, that is, reduce or avoid the interference of the radar 2 to the radar 1.
  • the first transmission parameter is the time interval and frequency interval between two adjacent transmitting antennas as an example.
  • the first transmission parameter can also be the chirp slope, the transmission period, etc., as long as it makes the radar 1 and Radar 2 can transmit signals with different characteristics.
  • the first transmission parameter may be a parameter stored locally or a parameter stored remotely.
  • the first transmission parameter is stored in the storage unit of the first radar.
  • the first transmission parameter may be obtained from the storage unit.
  • the first transmission parameter is stored in the central node (server).
  • the first radar detection device may request the first transmission parameter from the central node.
  • the first radar detection device sends the first transmission parameter to the central node.
  • the embodiment of the present application does not limit how the first radar detection device determines the first transmission parameter.
  • the central node and step S903 are not indispensable, so the dashed line is used for illustration in FIG. 9.
  • the first radar detection device sends a signal according to the determined first transmission parameter through at least three transmitting antennas.
  • the first radar detection device may instruct the first radar to send a signal according to the first transmission parameter.
  • the first radar detection device is the first radar, so that the first radar detection device determines the first transmission parameter and sends a signal according to the first transmission parameter.
  • the above-mentioned first transmission parameter is used to indicate that the time interval between two adjacent transmitting antennas of the first radar in the time domain to transmit signals is variable, or the first transmission parameter is used to indicate that the time interval between two adjacent transmitting antennas in the frequency domain is variable.
  • the frequency interval of the signals transmitted by the two transmitting antennas is variable. Therefore, the transmitting antennas with different signals transmitted by the first radar occupy different time-frequency resources. Based on the different time-frequency resources occupied by the different transmitting antennas of the first radar, this Application can eliminate mutual interference between different radars.
  • the transmission parameters of the radar can be adjusted, for example, the value of the transmission parameter of the radar can be adjusted to be different from the value of the transmission parameter of other radars.
  • the first radar detection device determines the first transmission parameter, which can also be understood as the first radar detection device determines the value of the first transmission parameter. For example, the first radar detection device determines the signal transmitted by each transmitting antenna. The value of the center frequency.
  • the first radar detection device determines the value of the first transmission parameter in conjunction with FIG. 12 and FIG. 13.
  • FIG. 12 is a schematic diagram of a possible application scenario of an embodiment of this application.
  • the above application scenarios can be unmanned driving, autonomous driving, intelligent driving, networked driving, etc.
  • Radar detection devices can be installed in motor vehicles (such as unmanned vehicles, smart cars, electric vehicles, digital cars, etc.), drones, rail cars, bicycles, signal lights, speed measuring devices or network equipment (such as base stations in various systems, Terminal equipment) and so on.
  • the embodiments of the present application are not only applicable to radar detection devices between cars, but also radar detection devices between cars and drones and other devices, or radar detection devices between other devices.
  • the radar detection device can be installed on a mobile device, such as a vehicle as a vehicle-mounted radar detection device, or can also be installed on a fixed device, such as a roadside unit (RSU) and other equipment.
  • a mobile device such as a vehicle as a vehicle-mounted radar detection device
  • RSU roadside unit
  • the embodiment of the present application does not limit the installation position and function of the radar detection device.
  • the embodiment of this application may be executed by a detection device.
  • the detection device that executes the method provided in the embodiment of this application may be referred to as the first detection device.
  • the first detection device may be a radar detection device, such as a radar chip, or a communication device that communicates with the radar, such as a vehicle-mounted communication device.
  • the following embodiments of the present application mostly use the detection device as a radar detection device and the radar detection device as a radar, such as a millimeter wave radar, as an example to explain and describe the embodiments.
  • the embodiment of the present application does not limit the detection device to only a radar detection device, nor does it limit the radar detection device to only a millimeter wave radar or radar.
  • the signal sent by the detection device may be a radio signal. If the detection device is a radar detection device as an example, then the signal sent by the detection device can be considered as a radar signal. In the embodiment of the present application, the detection device is a radar detection device, and the signal sent by the detection device is a radar signal as an example.
  • FIG. 13 is a flowchart of a signal sending method provided in an embodiment of this application.
  • the application of this method to the scenario shown in FIG. 12 is taken as an example.
  • the method provided by the embodiment shown in FIG. 13 may be executed by the radar detection device in the scene shown in FIG. 12, for example, the radar detection device is called the first radar detection device and the first radar.
  • the first radar detection device determines a first transmission parameter of the first radar.
  • the first radar detection device transmits a signal according to the determined first transmission parameter.
  • step S1301 if there are other radars, such as a second radar, within the detection range of the first radar, that is, within the maximum ranging range of the first radar, and the second radar belongs to the same category as the first radar, then the second radar The radar may cause interference to the first radar.
  • the time when the first radar receives the echo signal is exactly the time when the first radar receives the signal transmitted from the second radar.
  • the two radars belonging to the same category here means that the transmission parameters of the two radars are the same.
  • Each radar can have multiple transmission parameters.
  • one type of transmission parameter is the origin of the signals transmitted by multiple transmitting antennas of the radar.
  • one transmission parameter is the chrip slope of the signal transmitted by the multiple transmitting antennas of the radar.
  • the start time of the signals transmitted by the multiple transmitting antennas of the first radar is different from the start time of the signals transmitted by the multiple transmitting antennas of the second radar, it means that the categories of the first radar and the second radar are different; or, the first radar The difference between the chrip slope of the signal transmitted by the multiple transmitting antennas of the second radar and the chrip slope of the signal transmitted by the multiple transmitting antennas of the second radar is greater than a certain value, indicating that the types of the first radar and the second radar are different; or, the first radar The start time of the signal transmitted by the multiple transmitting antennas of the radar is different from the start time of the signal transmitted by the multiple transmitting antennas of the second radar, and the chrip slope of the signal transmitted by the multiple transmitting antennas of the first radar is the same as that of the second radar.
  • the chrip slopes of the transmitting antennas are different, indicating that the types of the first radar detection device and the second radar detection device are different; or, the start time of the multiple transmitting antennas of the first radar and the multiple transmitting antennas of the second radar
  • the starting time of the transmitted signal is the same, and the chrip slope of the signal transmitted by the multiple transmitting antennas of the first radar is the same as the chrip slope of the signal transmitted by the multiple transmitting antennas of the second radar, which means that the first radar and the second radar are of the same type.
  • the first radar adjusts the value of the transmission parameter of the first radar during use, so that the first radar and the second radar belong to different types of radars.
  • the value of the first transmission parameter is the first value
  • the first radar transmits the signal according to the first transmission parameter.
  • the first radar may further determine the value of the first transmission parameter to be used.
  • the value, such as the second value, that is, afterwards, the first radar can update the value of the first transmission parameter from the first value to the second value, so that the first radar and other radars are in different categories, reducing the difference between the first radar and other radars.
  • Mutual interference is possible.
  • the first transmission parameter may be used to indicate the start time and/or time interval of the signals transmitted by multiple transmitting antennas.
  • indication methods There are several indication methods:
  • the first transmission parameter may include the start time of the signal transmitted by each of the multiple transmitting antennas, and implicitly indicate the time interval for the multiple transmitting antennas to transmit signals. In this way, the time intervals for multiple transmitting antennas to transmit signals may be the same or different.
  • the first transmission parameter may include the start time of the signal transmitted by the first transmitting antenna and a time interval.
  • the time interval between two adjacent transmitting antennas in the time domain can be fixed, that is, the two adjacent transmitting antennas in the time domain transmit.
  • the signal time interval is the same.
  • the first transmission parameter may include the start time of the signal transmitted by the first transmitting antenna and multiple time intervals, where the multiple time intervals are different. In this way, the time intervals for multiple transmitting antennas to transmit signals are different.
  • the first radar can update the starting time of each transmitting antenna to respectively transmit the signal from the first value to the second value. If the first transmission parameter corresponds to the second method, the first radar can update the starting time of the first transmitting antenna to transmit the signal from the first value to the second value, and/or change the time interval from the first value. The value is updated to the second value. If the first transmission parameter corresponds to the third method, the first radar can update the starting time of the first transmitting antenna to transmit the signal from the first value to the second value, and/or change multiple time intervals from the first value to the second value. The first value is updated to the second value.
  • the first transmission parameter may be used to indicate the frequency domain starting positions and/or frequency intervals of the signals transmitted by the multiple transmitting antennas.
  • the starting position of the frequency domain here may also be the center frequency position of the signal transmitted by the transmitting antenna.
  • the first transmission parameter may indicate the frequency domain starting position and/or frequency interval of the signals transmitted by the multiple transmitting antennas:
  • the first transmission parameter may include a frequency domain starting position of a signal transmitted by each of the multiple transmitting antennas, which implicitly indicates the frequency interval of the multiple transmitting antennas.
  • the frequency intervals of the signals transmitted by the multiple transmitting antennas may be the same or different.
  • the first transmission parameter may include a frequency domain starting position of the signal transmitted by the first transmission antenna and a frequency interval.
  • the frequency interval between the two adjacent transmitting antennas in the frequency domain can be fixed, that is, the two adjacent transmitting antennas in the frequency domain transmit.
  • the frequency intervals of the signals are the same.
  • the first transmission parameter may include the frequency domain start position of the signal transmitted by the first transmitting antenna and multiple frequency intervals, where the multiple frequency intervals are different. In this way, the frequency intervals of the signals transmitted by multiple transmit antennas are different.
  • the first radar can update the frequency domain starting position of each transmitting antenna respectively transmitting signal from the first value to the second value. If the first transmission parameter corresponds to the above second method, the first radar can update the frequency domain starting position of the signal transmitted by the first transmitting antenna from the first value to the second value, and/or change the frequency interval from The first value is updated to the second value. If the first transmission parameter corresponds to the third method, the first radar can update the frequency domain starting position of the signal transmitted by the first transmitting antenna from the first value to the second value, and/or separate multiple frequency intervals Update from the first value to the second value.
  • the first radar can adaptively update the value of the first transmission parameter. For ease of understanding, the following examples are described with reference to FIGS. 14, 15 and 16.
  • Fig. 14 illustrates an application scenario.
  • Fig. 14 includes multiple radars, taking a first radar, multiple second radars, and a central node as an example.
  • the first radar is a vehicle-mounted radar
  • the multiple second radars may be vehicle-mounted radars, or may be, for example, radars arranged on the RSU, and the multiple second radars exist within the maximum detection range of the first radar.
  • Figure 14 takes the case where the multiple second radars are vehicle-mounted radars.
  • the central node is not indispensable in the application scenario of Fig. 14, so it is indicated by a dotted line in Fig. 14.
  • FIG. 15 is a schematic flowchart of updating the first transmission parameter by the first radar, so as to be applied to the application scenario including the central node in FIG. 14.
  • the method provided by the embodiment shown in FIG. 15 may be executed by the radar detection device in the scenario shown in FIG. 14, for example, the radar detection device is called the first radar detection device, the first radar, or the first communication device.
  • the update of the first transmission parameters by the first radar specifically includes the following steps:
  • the first radar detection device reports the first transmission parameter of the first radar to the central node.
  • the multiple second radar detection devices report the respective second transmission parameters of the multiple second radars to the central node.
  • the first radar may send first information to the central node through a first communication device communicatively connected with the first radar, and the first information includes the first transmission parameter.
  • Each second radar of the plurality of second radars may send second information to the central node through a second communication device connected to the respective second radar, and the second information includes the second transmission parameter.
  • the first communication device and the second communication device may be radar chips, or vehicle-mounted communication devices. Wherein, the sequence of step S1501 and step S1502 is not limited.
  • the central node determines at least one second radar that causes interference to the first radar according to the first transmission parameter of the first radar and the second transmission parameters of the multiple second radars.
  • the central node can compare the first transmission parameter of the first radar with the second transmission parameters of multiple second radars. If the second transmission parameter of a certain second radar is the same or similar to the first transmission parameter, then multiple second transmission parameters can be determined.
  • the certain second radar in the second radar has the same category as the first radar. If the certain second radar is located within the maximum ranging range of the first radar, it is determined that the certain second radar will cause interference to the first radar.
  • the central node sends the third information to the first radar detection device, so that the first radar detection device receives the third information from the first communication device.
  • the first radar detection device updates the first transmission parameter from the first value to the second value according to the third information.
  • the central node determines that there is a second radar that causes interference to the first radar, then the central node can instruct the first radar to update the value of the first transmission parameter of the first radar to avoid the second radar from causing interference to the first radar.
  • the central node may send the third information to the first radar detection device to instruct to update the value of the first transmission parameter of the first radar.
  • the central node instructs the first radar to update the value of the first transmission parameter in the following situations:
  • the third information may be the second value obtained by the central node according to the value of the second transmission parameter of the at least one second radar and the first value of the first transmission parameter of the first radar.
  • the third information can carry the second value, and the first radar detection device can directly update the first transmission parameter of the first radar from the first value to the second value according to the third information, without the need to re-determine the second value.
  • the binary value reduces the calculation amount of the first radar detection device, thereby reducing the burden of the first radar detection device.
  • the third information may also be information notifying the first radar detection device to update the first value, without carrying the second value.
  • the first radar can re-determine the value of the first transmission parameter.
  • the first radar may send request information to the surrounding second communication devices of multiple second radars through the first communication device, and the request information is used to request the second transmission parameters of the second radar.
  • the first radar may The second transmission parameters sent by multiple second radars are received.
  • the first radar determines the second value of the first transmission parameter according to the received second transmission parameters of the multiple second radars, and updates the first transmission parameter from the first value to the second value.
  • the third information may include a second transmission parameter of at least one second radar.
  • the central node may send the third information to the communication device connected to the first radar, and the communication device then sends the third information to the first radar.
  • the first radar receives the third information, and can determine how to update the first transmission parameter according to the second transmission parameter of the at least one second radar, that is, determine the second value of the first transmission parameter, and then change the first transmission parameter from the first value Update to the second value.
  • the third information may include at least one second transmission parameter of the second radar and the first transmission parameter of the first radar.
  • the central node can send the third information to the first radar detection device, and the first radar detection device determines the second value of the first transmission parameter of the first radar according to the third information, and then sends the second value Give the first radar.
  • FIG. 14 As in the above process for the first radar to update the first transmission parameters, take FIG. 14 as an example including the central node. In the following, taking FIG. 14 excluding the central node as an example, the process of updating the first transmission parameter by the first radar is introduced.
  • Figure 16 is a schematic diagram of the process of updating the first transmission parameters of another first radar, which specifically includes the following steps:
  • the at least one second radar detection device sends first information to the first radar detection device, so that the first radar detection device receives the first information from the at least one second radar detection device.
  • the first information includes at least one second transmission parameter of the second radar.
  • the second radar is from the perspective of the first radar to prevent the second radar from causing interference to the first radar. From the perspective of the second radar, the second radar also needs to prevent the first radar from interfering with it.
  • the at least one second radar may actively inform the first radar of the second transmission parameter of the at least one second radar.
  • at least one second radar may broadcast the first information through at least one second radar detection device (a communication device communicatively connected with the second radar).
  • the first information broadcast by each second radar detection device carries the corresponding second transmission parameters of the second radar to inform other radars around each second radar that they can adjust their own transmissions according to the received second transmission parameters. Parameters to minimize or avoid mutual interference between radars.
  • the first radar may actively acquire the second transmission parameter of the at least one second radar.
  • the first radar may broadcast a request message through the first radar detection device (a communication device connected in communication with the first radar), and the request message requests the surrounding second radar to report the second transmission parameter.
  • the surrounding second radar receives the request message and sends the second transmission parameter to the first radar, so that the first radar receives the second transmission parameter from the at least one second radar.
  • the first radar may receive, through the first radar detection device, the first information broadcast by the second radar detection device from multiple second radars, so as to update the value of the first transmission parameter of the first radar according to the first information.
  • the first radar detection device updates the first transmission parameter from the first value to the second value according to the first information.
  • the value of the first transmission parameter of the first radar is the first value. If some or all of the second transmission parameters of the second radar in the at least one second radar received by the first radar also have the first value, So in order to reduce the interference caused by part or all of the second radar to the first radar, the first radar can update the first transmission parameter from the first value to the second value, and the updated second value corresponds to part or all of the second radar.
  • the values of the second transmission parameters are all different.
  • the first radar may not update the value of the first transmission parameter. value.
  • the first radar detection device sends second information to at least one second radar detection device.
  • the first radar can also broadcast second information to the second radar detection device of at least one second radar around the first radar detection device.
  • the second information includes the first emission parameter to inform at least one The second radar, the transmission parameters used by the first radar.
  • each second radar can update the value of the second transmission parameter according to whether the first transmission parameter of the first radar is indeed updated, so as to reduce or avoid interference caused by the first radar to the second radar.
  • step S1603 has nothing to do with the execution of step S1601 and step S1602, that is, the execution of step S1603 does not depend on step S1601 or step S1602. Step S1603 may be performed before step S1601, or may be performed after step S1601. In FIG. 16, step S1603 is indicated by a dotted line.
  • the foregoing first information may also be used to characterize other parameter information of at least one second radar.
  • the first information may also be used to indicate position information of at least one second radar, and the position information may be considered to indicate the coordinate position of the radar.
  • the coordinate position of the vehicle-mounted radar may be changed.
  • at least one second radar is fixed, such as a radar set on the RSU, then the corresponding coordinate position may be different. changing.
  • the first information may also be used to indicate the orientation information of at least one second radar, and the orientation information may be regarded as information used to indicate the observation direction of the radar.
  • the first information may also be used to indicate the illumination angle of at least one second radar.
  • the first information may also be used to indicate any combination of the above position information, orientation information, and illumination angle.
  • the embodiment of the present application does not limit the radar parameter information included in the first information.
  • the first radar can determine whether to update the transmission according to other parameters of the second radar.
  • the value of the parameter For example, if the position information of at least one second radar indicates that at least one second radar is far away from the first radar and is not enough to cause interference to the first radar, then the first radar determines not to update the value of the transmission parameter, and try to reduce the first radar. The energy consumption of a radar.
  • the first radar pair may have different updating methods for updating the first transmission parameter from the first value to the second value.
  • the first radar may randomly determine the second value, and then update the first transmission parameter from the first value to the second value.
  • the first radar may update the first transmission parameter from the first value to the second value according to a preset adjustment granularity.
  • the first radar updates the first transmission parameter from the first value to the second value according to the preset adjustment granularity as an example.
  • the preset adjustment granularity may include at least one of one PRT, one detection frame, multiple consecutive detection frames, and an antenna rotation period.
  • the detection frame refers to the continuous multiple PRT used by the radar for one measurement.
  • the rotation period of the antenna refers to the time length unit of the radar transmitting signal.
  • a rotation period refers to the length of resources occupied by the radar's multiple transmitting antennas to continuously transmit signals. When the radar transmits a signal, after one rotation period ends, it immediately enters the next rotation period.
  • the radar uses the FDM mode to transmit signals, and the transmitting antennas are numbered according to the spatial order of the transmitting antennas.
  • the multiple transmitting antennas are transmitting antenna Tx1, transmitting antenna Tx2, and transmitting antenna Tx3.
  • the transmitting antenna Tx1, transmitting antenna Tx2, and transmitting antenna Tx3 use different center frequencies to simultaneously transmit signals.
  • transmitting antenna Tx1, transmitting antenna Tx2, and transmitting antenna Tx 3 use different Transmit signals at the same time at the center frequency of, and so on.
  • the transmitting antenna Tx1, transmitting antenna Tx2, and transmitting antenna Tx3 use different center frequencies to transmit signals at the same time. Among them, one transmitting antenna transmits signals at different times.
  • the center frequency used is the same.
  • one rotation period is, for example, the interval between the start time of the transmitting antenna Tx1 or the transmitting antenna Tx2 or the transmitting antenna Tx3 for two adjacent signal transmissions, such as T as shown in FIG. 6.
  • the radar uses TDM mode to transmit signals, and the transmit antennas are numbered according to the spatial order of the transmit antennas.
  • transmit antenna Tx1, transmit antenna Tx2, transmit antenna Tx3 and transmit signals cyclically, namely For example, in the first cycle, starting from the first time t1, the transmitting antenna Tx1, the transmitting antenna Tx2, and the transmitting antenna Tx3 transmit signals in chronological order. After that, the second cycle starts at the second time t2.
  • the antenna Tx2 and the transmitting antenna Tx3 transmit signals in sequence again in the same time sequence, then the time difference between the starting moments of the two adjacent cycles is T1 as shown in Figure 17 (a), that is, the period of one antenna rotation period length.
  • the transmitting antenna Tx 1, the transmitting antenna Tx3, the transmitting antenna Tx2, and the transmitting antenna Tx3 cyclically transmit signals, that is, for the first cycle, starting from the first starting time t1, the transmitting antenna Tx 1, transmit antenna Tx3, transmit antenna Tx2, transmit antenna Tx3 transmit signals in chronological order, and then, the second cycle, starting from the second starting time t2, transmit antenna Tx1, transmit antenna Tx3, transmit antenna Tx2, transmit The antenna Tx 3 transmits signals in the same time sequence again, so a rotation period is still the time difference between the start moments of two adjacent cycles, as shown in Figure 17 (b), T2, which is an antenna rotation period length.
  • the length of each detection frame may be the same, or the lengths of some detection frames in the multiple detection frames are the same, and the lengths of some detection frames are different.
  • the length of the detection frame is not limited.
  • the first transmission parameter includes the time interval or frequency interval of the multiple transmission antennas included in the first radar to transmit signals.
  • the first radar may select a detection frame as the adjustment granularity, and adjust the first transmission parameter from the first value to the second value.
  • the first radar may also select consecutive multiple detection frames as the adjustment granularity, and adjust the first emission parameter from the first value to the second value.
  • the first radar can select a PRT to adjust the first transmission parameter from the first value. Is the second value.
  • the first radar may select the antenna rotation period as the adjustment granularity, and set the first transmission The parameter is updated from the first value to the second value.
  • the above-mentioned first transmission parameter including the time interval or frequency interval of signals transmitted by multiple transmission antennas is only an example.
  • the first transmission parameter may also be the initial phase and chrip slope of each transmission pulse.
  • updating the value of the first transmission parameter during the use of the first radar can reduce the possibility that the characteristics of the signal transmitted by the first radar are consistent with the characteristics of the signals transmitted by other radars, thereby reducing Or avoid mutual interference between the first radar and other radars.
  • the above embodiment describes how to reduce or avoid mutual interference between multiple radars. However, in a possible situation, there may still be mutual interference between multiple radars. As shown in Figure 8, this makes a certain When radar detects targets, the detected targets include false targets, that is, targets that do not actually exist.
  • the embodiments of the present application also provide a target detection method, which can be executed by a radar detection device.
  • the radar detection device can be a radar chip or a communication device that communicates with the radar, such as a vehicle-mounted communication device. Device.
  • the following embodiments of the present application mostly use the detection device as a radar detection device and the radar detection device as a radar, such as a millimeter wave radar, as an example to explain and describe the embodiments.
  • the embodiment of the present application does not limit the detection device to only a radar detection device, nor does it limit the radar detection device to only a millimeter wave radar or radar.
  • the signal sent by the detection device may be a radio signal.
  • the detection device is a radar detection device as an example, then the signal sent by the detection device can be considered as a radar signal.
  • the detection device is a radar detection device, and the signal sent by the detection device is a radar signal as an example.
  • FIG. 18 is a flowchart of a detection method provided in an embodiment of this application.
  • the method is applied to the first radar detection device.
  • the first radar includes at least two transmitting antennas and at least one receiving antenna.
  • the specific process of this method is as follows:
  • the first radar transmits radar signals through at least two transmitting antennas, so as to receive at least one signal through at least one receiving antenna.
  • the first radar can transmit radar signals through the included transmitting antenna. If there are multiple target objects around the first radar, and these multiple target objects are within the maximum range of the first radar, then the radar signal emitted by the first radar will be reflected by the multiple target objects and reflected to the first radar , So that the first radar receives at least one signal from the target object.
  • the multiple target objects include a second radar, and the volume of the second radar is small, which is not enough to reflect the radar signal transmitted by the first radar, but the second radar may transmit
  • the antenna transmits radar signals, then at least one signal may include a radar signal from a second radar. Or, the at least one signal may include the radar signal transmitted by the second radar in addition to the signal reflected by the multiple target objects on the received radar signal.
  • the second radar may transmit a radar signal through the transmitting antenna, then at least one signal also includes The radar signal from the second radar.
  • the at least one signal may also include signals scattered or reflected by other signals, such as the ground.
  • the first radar performs target detection according to at least one signal, where at least one signal corresponds to at least two detection information sets, at least two detection information sets correspond to at least two transmitting antennas, and at least two detection information sets are used for target detection.
  • the first radar receives at least one signal, and can process the at least one signal, thereby realizing detection of targets around the first radar.
  • the first radar includes at least two transmitting antennas, and radar signals transmitted by different transmitting antennas have different characteristics. For example, the center frequencies of the radar signals transmitted by different transmitting antennas are different, or the starting time of the radar signals transmitted by different transmitting antennas is different, or the chirp slopes of the radar signals transmitted by different transmitting antennas are different. Therefore, the first radar can extract signals corresponding to different transmitting antennas from at least one signal received according to the difference in radar signals transmitted by different transmitting antennas. Among them, the first radar extracts signals corresponding to different transmitting antennas from at least one signal received. It can also be understood that the MIMO radar is regarded as multiple SIMO radars in the embodiment of this application, and each transmitting antenna corresponds to all receiving antennas. A set of signals.
  • the first radar includes two transmitting antennas as an example.
  • the two transmitting antennas are the first transmitting antenna and the second transmitting antenna respectively.
  • the first radar extracts from at least one signal.
  • the signal corresponding to the first transmitting antenna is the first signal
  • the signal corresponding to the second transmitting antenna extracted from the at least one signal by the first radar is the second signal.
  • the first radar After the first radar extracts the first signal and the second signal, the first signal and the second signal are processed separately to obtain two detection information sets for detecting the target, for example, the first detection information set and the second detection information set.
  • the first signal corresponds to the first detection information set
  • the second signal corresponds to the second detection information set.
  • the first radar includes at least three transmitting antennas
  • the first radar can determine at least three detection information sets according to at least one signal, where the transmitting antennas correspond to the detection information sets one to one.
  • the first radar includes a transmitting antenna 1, a transmitting antenna 2, and a transmitting antenna 3.
  • the determined detection information set includes a detection information set corresponding to the transmitting antenna 1, a detection information set corresponding to the transmitting antenna 2, and a transmitting antenna 3.
  • the detection information included in the detection information set can be understood as the information used to determine the target feature.
  • the detection information can be information that characterizes the distance and speed of the target relative to the first radar, or Radar-Cross Section (RCS), etc.
  • the detection information can be the distance, speed, RCS, etc. of the target relative to the first radar; or, the detection information can also be the grid points or sampling point serial numbers in the two-dimensional data formed by sampling and quantizing the signal. Or the sampling point number can represent the distance of the target relative to the first radar.
  • the detection information set may also include information that characterizes the angle of the target relative to the first radar.
  • the first radar processes the first signal or the second signal to obtain the corresponding detection information set.
  • the method for obtaining the corresponding detection information set can refer to the above-mentioned radar to determine the relative distance between the target object and the radar system based on the intermediate frequency signal.
  • the method of sum speed is to mix the first signal with the local oscillator signal to obtain an intermediate frequency signal and transform it into the range-Doppler domain, and then obtain multiple detection information to form a detection information set. If the first radar includes at least two receiving antennas, then the first radar can change the intermediate frequency signal into the range-Doppler-angle domain to obtain detection information that characterizes the angle of the target relative to the first radar. Repeat it again.
  • the first radar after the first radar obtains the range-Doppler domain representation of the signal corresponding to each transmitting antenna, it then separately expresses the distance-Doppler domain representation of the first signal and the second signal
  • the amplitude is modulated point by point, or the power represented by the distance-Doppler domain of the first signal and the second signal is modulated point by point and then squared, and then the result of superposition of all receiving antennas is calculated to obtain detection information. That is, take the union of the calculation results of all receiving antennas, which can reduce the probability of target loss.
  • the first radar detects the target object according to at least one signal, and may detect the target object according to at least two detection information sets corresponding to the at least one signal, so as to determine the effective target.
  • the effective target refers to a target object detected by the first radar and actually existing within the maximum ranging range of the first radar, such as a fixed roadblock, a moving vehicle, and the like.
  • the signal transmitted by the second radar (for example, the second radar is installed or carried on a certain vehicle) will be received by the first radar, so that the transmitted signal of the second radar will cause the first radar.
  • the first radar regards the radar signal emitted by the second radar as a reflection signal of the radar signal emitted by the first radar by other target objects.
  • the first radar performs target detection based on the transmitted radar signal and the received radar signal transmitted by the second radar.
  • One target or multiple targets may be detected. In fact, this target or multiple targets do not exist.
  • a target that does not actually exist is called a pseudo target.
  • Effective targets are targets other than pseudo targets.
  • the effective target is determined based on at least two detection information sets, and there may be the following situations.
  • At least two detection information sets have at least one empty set, that is, at least one detection information set does not include any detection information, it can be considered that there is no valid target within the maximum range of the first radar. .
  • the first radar is located in an open area, and there is no detection target in the open area.
  • at least one detection information set does not include detection information, that is, an empty set.
  • the detection information set for each transmit antenna can be determined simultaneously, or the detection information set corresponding to each transmit antenna can be determined in turn. If the embodiment of the present application sequentially determines the detection information sets corresponding to each transmitting antenna, when the detection information set is determined to be an empty set for the first time, it is considered that there is no valid target, and no other detection information sets are determined to save energy as much as possible.
  • the propagation paths of the signals transmitted by the SIMO radars are almost the same, so the signals received by the SIMO radars also have the same amplitude, time delay, Doppler, and angle of arrival characteristics, that is, for the same target.
  • the detection information used to characterize the feature is the same or similar in different detection information sets, that is, the detection information of the valid target is included in each detection information set of at least two detection information sets.
  • the embodiment of the present application may determine the target information set according to at least two detection information sets, and then determine the effective target.
  • the embodiment of the present application may take an intersection of at least two detection information sets to form a target information set, so as to determine an effective target based on the target information set, and eliminate false targets.
  • the intersection of at least two detection information sets may have the following results.
  • the first result is that the intersection of at least two detection information sets is an empty set, that is, the detection information used to characterize the same feature is not the same in at least two detection information sets, then it can be determined that there is no valid target.
  • the first radar is located in a certain area, there is a second radar in the area, and the transmission parameters of the second radar’s transmission signal are different from the transmission parameters of the first radar’s transmission signal, except for the second radar.
  • the second radar causes interference to the first radar, that is, the first radar mistakenly recognizes the radar signal emitted by the second radar as the transmission signal of the detection target.
  • the detection information used to characterize the same feature of the second radar is not the same in the at least two detection information sets, that is, it is determined that the second radar is a pseudo target.
  • the second result is that the intersection of at least two detection information sets is not an empty set, that is, the detection information used to characterize the same feature is consistent in at least two detection information sets, forming a target information set.
  • the target information set may indicate at least one valid target.
  • the first radar is located in an area where there are detection targets such as roadblocks, or there may be a second radar, and the transmission parameters of the second radar’s transmission signal are the same as those of the first radar’s transmission signal.
  • the transmission parameters are different.
  • the detection information used to characterize the same feature of the second radar is different in the at least two detection information sets, but the detection information of the same feature that characterizes the roadblock is in at least two sets of detection information.
  • the detection information sets are consistent and belong to the target information.
  • the detection information used to characterize the same feature is consistent in at least two detection information sets, which means that the value of the detection information that characterizes the same feature is the same in at least two detection information sets, or the same The value of the detection information of the feature is similar in at least two detection information sets.
  • this embodiment of the present application may aim at a certain characteristic parameter used to characterize the detection target in a certain detection information set in at least two detection information sets, for example, the detection information corresponding to the first characteristic parameter.
  • the detection information corresponding to the first characteristic parameter in other detection information sets other than the above one detection information set is compared to determine the target information set.
  • the embodiment of the present application can determine that the detection information is target information.
  • the first characteristic parameter may be, for example, the relative speed between the detection target and the radar, the relative distance between the detection target and the radar, etc., or the relative angle between the detection target and the radar.
  • characteristic parameters may be determined based on detection information, such as the relative speed of the detection target and the radar; and characteristic parameters, such as the relative angle of the detection target and the radar, may also be determined based on at least one signal and two sets of detection information received.
  • different transmitting antennas transmit radar signals at a certain transmission timing. Due to possible differences in actual communication scenarios, environments, or hardware devices, different transmitting antennas transmit signals. error. In another possible situation, in the manufacturing process, different radars may cause slight errors in signal transmission due to manufacturing differences. In other cases, there may be errors caused by other reasons.
  • the embodiments of the application consider these errors, which may cause errors in the detection information used to characterize the same feature. Then, for a certain detection information set, if a certain target is determined based on the detection information, whether the target determined by traversing other detection information sets contains at least one detection information within the error range, so as to determine whether the target is a valid target or a false target. aims.
  • the embodiment of the present application it is assumed that a certain valid target, such as the first valid target, if it is determined that in at least two detection information sets, the value of the detection information corresponding to the first characteristic parameter of the first valid target is If the difference is less than the first preset threshold, that is, if the values of the detection information corresponding to the first characteristic parameter are similar, then the embodiment of the present application can determine that the detection information is target information.
  • the first preset threshold may be a possible value set in advance.
  • the difference between the values of the detection information corresponding to the first feature parameter is less than the first preset threshold, which can be considered as the detection information set for the first detection information set.
  • the difference between the value of the detection information corresponding to a feature parameter and the value of the detection information corresponding to the first feature parameter in other detection information sets is less than the first preset threshold; it can also be considered that there is at least In the case of three detection information sets, in any two detection information sets, the difference between the values of the detection information corresponding to the first characteristic parameter is smaller than the first preset threshold.
  • the detection target has multiple characteristic parameters, for example, the relative speed between the detection target and the radar, the relative distance between the detection target and the radar, etc.
  • the target information may be detection information corresponding to each characteristic parameter that meets certain conditions.
  • the detection parameter of the first effective target may also include the second characteristic parameter. Then, if the detection information corresponding to the second characteristic parameter has the same value in the at least two detection information sets, the embodiment of the present application may determine the first The detection information corresponding to the second characteristic parameter is target information. Or, if in at least two detection information sets, the difference between the values of the detection information corresponding to the second characteristic parameter is less than the second preset threshold, then the embodiment of the present application can determine the detection corresponding to the second characteristic parameter Information is target information.
  • the first preset threshold and the second preset threshold may be the same value or different values.
  • the detection information corresponding to multiple characteristic parameters in at least two detection information sets may be determined as target information, or the target may be determined according to the detection information corresponding to the multiple characteristic parameters.
  • the first characteristic parameter is the relative speed of the effective target and the radar.
  • the value of the detection information corresponding to the first feature parameter in the first detection information set is 3.5 kilometers per second (3.5km/s), and the detection information corresponding to the first feature parameter is taken in the second detection information set.
  • the value is 3.6 km/s, and the embodiment of the application can determine that the target information is 3.55 km/s.
  • the detection information corresponding to a certain characteristic parameter may be the signal strength of the reflected signal of the radar signal emitted by the first radar by the detection target.
  • the variance of the signal of a target in different target information sets can be further determined. If the variance of the signal is less than or equal to the third preset threshold, the target can be considered to be Effective goals. On the contrary, if the variance of the signal is greater than the third preset threshold, it can be regarded as a false target.
  • the MIMO radar can be regarded as At least two SIMO radars, so that at least one signal received is divided into signals corresponding to each SIMO radar, and the signal corresponding to each SIMO radar is processed to eliminate interference, that is, eliminate interference to a radar detection device Other radar detection devices.
  • each device such as the first radar detection device, includes a hardware structure and/or software module corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the embodiments of the present application.
  • the embodiment of the present application may divide the functional modules of the first radar detection device.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 19 shows a possible schematic diagram of the structure of the first radar detection device involved in the foregoing embodiment of the present application.
  • the first radar detection device 19 may include a processing unit 1901, a transceiver unit 1902, and a storage unit 1903.
  • the processing unit 1901 can be used to perform all operations performed by the first radar detection device in the embodiment shown in FIG. 9 except for receiving and sending operations, such as S901, and/or for supporting Other processes of the technique described in this article.
  • the transceiver unit 1902 may be used to perform all the transceiver operations performed by the first radar detection device in the embodiment shown in FIG. 9, such as S902, and/or other processes used to support the technology described herein.
  • the first radar detection device includes at least three transmitting antennas, and the at least three transmitting antennas include a first transmitting antenna, a second transmitting antenna, and a third transmitting antenna, wherein,
  • the processing unit 1901 is configured to determine the first transmission parameter of the first radar
  • the transceiver unit 1902 is configured to send a signal according to the first transmission parameter through at least three transmitting antennas;
  • At least three transmit antennas use TDM to transmit signals
  • the first transmit parameter is used to indicate the start time of signal transmission by at least three transmit antennas
  • the start time of signal transmission by the first transmit antenna and the second transmit antenna is at time Adjacent in the domain
  • the start time of the signal transmission of the second transmitting antenna is adjacent to the third transmitting antenna in the time domain
  • the time interval between the start time of the signal transmission of the first transmitting antenna and the second transmitting antenna is different The time interval between the start time of signal transmission by the second transmitting antenna and the third transmitting antenna; or,
  • At least three transmitting antennas use FDM to transmit signals
  • the first transmitting parameter is used to indicate the center frequency of signal transmission of the at least three transmitting antennas
  • the center frequencies of signal transmission of the first transmitting antenna and the second transmitting antenna are adjacent in frequency
  • the center frequency of the signal transmission of the second transmitting antenna and the third transmitting antenna are adjacent in frequency
  • the frequency interval between the center frequency of the signal transmission of the first transmitting antenna and the second transmitting antenna is different from that of the second transmitting antenna and the third transmitting antenna.
  • the frequency interval between the center frequencies of the signal transmitted by the transmitting antenna is used to indicate the center frequency of signal transmission of the at least three transmitting antennas, and the center frequencies of signal transmission of the first transmitting antenna and the second transmitting antenna are adjacent in frequency, The center frequency of the signal transmission of the second transmitting antenna and the third transmitting antenna are adjacent in frequency, and the frequency interval between the center frequency of the signal transmission of the first transmitting antenna and the second transmitting antenna is different from that of the second transmitting antenna and the third transmit
  • the processing unit 1901 can be used to perform all operations except for the transceiver operations performed by the first radar detection device in the embodiment shown in FIG. 13 and FIG. 15 or FIG. 16, such as S1301, S1505, S1602, and/or other processes used to support the technology described herein.
  • the transceiving unit 1902 can be used to perform all the transceiving operations performed by the first radar detection device in the embodiment shown in FIG. 13 or FIG. 15 or FIG. 16, such as S1302, S1501, S1603, and/or for supporting the description herein Other processes of the technology. among them,
  • the processing unit 1901 is configured to determine the first transmission parameter of the first radar
  • the transceiver unit 1902 is configured to transmit a signal according to the first transmission parameter
  • the first radar includes multiple transmitting antennas, and the first transmission parameter is used to indicate the time interval and/or the transmission start time of the multiple transmitting antennas to transmit signals, or the first transmission parameter is used to indicate the multiple transmitting antennas to transmit signals.
  • processing unit 1901 is specifically used for:
  • the first transmission parameter of the first radar is updated from the first value to the second value.
  • processing unit 1901 is also used to:
  • the first information is used to indicate a first transmission parameter, and/or the first information is used to indicate a second transmission parameter of at least one second radar, and the first transmission parameter is determined according to the second transmission parameter.
  • the transceiver unit 1902 is also used to:
  • the second information is sent to the first communication device, where the second information includes the first transmission parameter.
  • the first information is also used to indicate at least one of the following information:
  • Heading information of at least one second radar
  • the illumination angle of at least one second radar is the illumination angle of at least one second radar.
  • processing unit 1901 is specifically used for:
  • the preset adjustment granularity includes: one pulse repetition period PRT, one detection frame, multiple consecutive detection frames, or antenna rotation cycle.
  • the optional design can be implemented independently or integrated with any of the above optional designs.
  • the processing unit 1901 can be used to perform all the operations performed by the first radar detection device in the embodiment shown in FIG. 18 except for the transceiver operations, such as S1802, and/or to support Other processes of the technique described in this article.
  • the transceiver unit 1902 may be used to perform all the transceiver operations performed by the first radar detection device in the embodiment shown in FIG. 18, such as S1801, and/or other processes used to support the technology described herein.
  • the radar detection device includes at least two transmitting antennas and at least one receiving antenna, wherein,
  • the transceiver unit 1902 is configured to receive at least one signal through at least one receiving antenna;
  • the processing unit 1901 is configured to perform target detection according to at least one signal
  • At least one signal corresponds to at least two detection information sets
  • at least two detection information sets correspond to at least two transmitting antennas
  • at least two detection information sets are used for target detection.
  • processing unit 1901 is specifically used for:
  • processing unit 1901 is specifically used for:
  • the target information set is an empty set, it is determined that no valid target is detected; and/or,
  • the target information set is a non-empty set, it is determined that the target information set indicates at least one valid target, wherein the detection information of the at least one valid target is included in each of the at least two detection information sets.
  • the at least one effective target includes the first effective target
  • the processing unit 1901 is further configured to:
  • the detection information corresponding to the first feature parameter of the first valid target has the same value
  • the difference between the values of the detection information corresponding to the first characteristic parameter of the first effective target is smaller than the first preset threshold.
  • processing unit 1901 is specifically used for:
  • the first characteristic parameter is determined according to at least one signal and at least two sets of detection information.
  • the detection parameter of the first detection target further includes a second characteristic parameter
  • the processing unit 1901 is further configured to:
  • the difference between the detection information values corresponding to the second characteristic parameters of the first valid target is smaller than the second preset threshold.
  • At least one receiving antenna includes at least two receiving antennas, at least one signal includes multiple signals, and the processing unit 1901 is further configured to:
  • the optional design can be implemented independently or integrated with any of the above optional designs.
  • FIG. 20 is a schematic diagram of another possible structure of the first radar detection device according to an embodiment of the application.
  • the first radar detection device 20 may include a processor 2001, a transmitter 2002, and a receiver 2003. Its functions can correspond to the specific functions of the processing unit 1901 and the transceiver unit 1902 shown in FIG. 19 respectively, and will not be repeated here.
  • the first radar detection device 20 may further include a memory 2004 for storing program instructions and/or data for the processor 2001 to read.
  • Figure 2 provides a schematic structural diagram of a radar device.
  • Figure 21 provides a schematic diagram of another possible structure of the first radar detection device.
  • the first radar detection device provided in FIGS. 19-21 may be part or all of the radar device in the actual communication scenario, or may be a functional module integrated in the radar device or located outside the radar device, for example, may be a chip system.
  • the realization of the corresponding function shall prevail, and the structure and composition of the first radar detection device are not specifically limited.
  • the first radar detection device 21 includes a transmitting antenna 2101, a receiving antenna 2102, and a processor 2103. Further, the first radar detection device further includes a mixer 2104 and/or an oscillator 2105. Further, the first radar detection device 21 may also include a low-pass filter and/or a coupler, etc. Among them, the transmitting antenna 2101 and the receiving antenna 2102 are used to support the detection device for radio communication, the transmitting antenna 2101 supports the transmission of radar signals, and the receiving antenna 2102 supports the reception of radar signals and/or the reception of reflected signals, so as to finally realize the detection function .
  • the processor 2103 performs some possible determination and/or processing functions.
  • the processor 2103 also controls the operation of the transmitting antenna 2101 and/or the receiving antenna 2102. Specifically, the signal to be transmitted is transmitted by the processor 2103 controlling the transmitting antenna 2101, and the signal received through the receiving antenna 2102 can be transmitted to the processor 2103 for corresponding processing.
  • the various components included in the first radar detection device 21 can be used to cooperate to implement the method provided by the embodiment shown in FIG. 9 or FIG. 13 or FIG. 15 or FIG. 16 or FIG. 18.
  • the first radar detection device may further include a memory for storing program instructions and/or data.
  • the transmitting antenna 2101 and the receiving antenna 2102 may be set independently, or may be integrated as a transmitting and receiving antenna to perform corresponding transmitting and receiving functions.
  • FIG. 22 is a schematic structural diagram of a device 22 provided by an embodiment of this application.
  • the device 22 shown in FIG. 22 may be the first radar detection device itself, or may be a chip or circuit capable of completing the function of the first radar detection device.
  • the chip or circuit may be provided in the first radar detection device.
  • the device 22 shown in FIG. 22 may include a processor 2201 (for example, the processing unit 1901 may be implemented by the processor 2001, and the processor 2001 and the processor 2201 may be the same component, for example) and an interface circuit 2202 (for example, the transceiver unit 1902 may be implemented by the interface circuit 2202 implementation, the transmitter 2002 and the receiver 2003 and the interface circuit 2202 are, for example, the same component).
  • a processor 2201 for example, the processing unit 1901 may be implemented by the processor 2001, and the processor 2001 and the processor 2201 may be the same component, for example
  • an interface circuit 2202 for example, the transceiver unit 1902 may be implemented by the interface circuit 2202 implementation, the transmitter 2002 and the receiver
  • the processor 2201 can enable the device 22 to implement the steps performed by the first radar detection device in the method provided in the embodiment shown in FIG. 9 or FIG. 13 or FIG. 15 or FIG. 16 or FIG. 18.
  • the device 22 may further include a memory 2203, and the memory 2203 may be used to store instructions.
  • the processor 2201 executes the instructions stored in the memory 2203 to enable the device 22 to implement the steps performed by the first radar detection device in the method provided in the embodiment shown in FIG. 9 or FIG. 13 or FIG. 15 or FIG. 16 or FIG. 18.
  • the processor 2201, the interface circuit 2202, and the memory 2203 can communicate with each other through internal connection paths, and transfer control and/or data signals.
  • the memory 2203 is used to store a computer program.
  • the processor 2201 can call and run the computer program from the memory 2203 to control the interface circuit 2202 to receive signals or send signals to complete the steps shown in Figure 9 or Figure 13 or Figure 15 or Figure 16 or Figure 18.
  • the memory 2203 may be integrated in the processor 2201, or may be provided separately from the processor 2201.
  • the interface circuit 2202 may include a receiver and a transmitter.
  • the receiver and the transmitter may be the same component or different components.
  • the component can be called a transceiver.
  • the interface circuit 2202 may include an input interface and an output interface, and the input interface and the output interface may be the same interface, or may be different interfaces.
  • the device 22 may not include the memory 2203, and the processor 2201 may read instructions (programs or codes) in the memory external to the chip or circuit to implement FIG. 9 or FIG. 13 or The steps performed by the first radar detection device in the method provided by the embodiment shown in FIG. 15 or FIG. 16 or FIG. 18.
  • the device 22 may include a resistor, a capacitor, or other corresponding functional components, and the processor 2201 or the interface circuit 2202 may be implemented by corresponding functional components.
  • the function of the interface circuit 2202 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 2201 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a general-purpose computer may be considered to implement the first radar detection device provided in the embodiment of the present application. That is, the program codes that realize the functions of the processor 2201 and the interface circuit 2202 are stored in the memory 2203, and the processor 2201 implements the functions of the processor 2201 and the interface circuit 2202 by executing the program codes stored in the memory 2203.
  • each module or unit in the device 22 listed above are only exemplary descriptions, and each functional unit in the device 22 can be used to execute the embodiment shown in FIG. 9 or FIG. 13 or FIG. 15 or FIG. 16 or FIG. 18.
  • the first radar detection device when implemented by software, it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the processor included in the detection device used to execute the detection method or signal transmission method may be a central processing unit (CPU), a general-purpose processor, or digital signal processing.
  • Digital signal processor (DSP) digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM) memory, erasable programmable read-only Memory (erasable programmable read-only memory, EPROM), electrically erasable programmable read-only memory (EEPROM), registers, hard disks, mobile hard drives, compact discs (read-only memory) , CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the detection device.
  • the processor and the storage medium may also exist as separate components in the detection device.
  • FIGS. 19-22 only show the simplified design of the first radar detection device.
  • the first radar detection device may include any number of transmitters, receivers, processors, controllers, memories, and other possible components.
  • An embodiment of the present application also provides a communication system, which includes communication devices such as at least one radar detection device and/or at least one central node that execute the above-mentioned embodiments of the present application.
  • the central node is used to control the driving of the vehicle and/or the processing of other radar detection devices according to the transmission parameters of the at least one radar detection device.
  • the central node may be located in the vehicle or other possible locations, subject to the realization of the control.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, which are stored in a storage medium It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Abstract

属于传感器技术领域,尤其涉及多入多出MIMO雷达领域。提供包括至少两个发射天线和至少一个接收天线的雷达,通过至少一个接收天线接收至少一个信号(S1801),根据至少一个信号进行目标检测;其中,至少一个信号对应至少两个检测信息集合,至少两个检测信息集合对应至少两个发射天线,至少两个检测信息集合用于目标检测(S1802)。可应用于自动驾驶、辅助驾驶、智能驾驶、智能网联车、智能汽车、电动车/电动汽车等相关领域,例如用于辅助驾驶和自动驾驶中的目标探测和跟踪,能够降低雷达之间的干扰。进一步可应用于车联网,例如车辆外联V2X、车间通信长期演进技术LTE-V、车辆-车辆V2V等。

Description

一种检测方法、信号发送方法及装置
相关申请的交叉引用
本申请要求在2019年07月15日提交中国专利局、申请号为201910637405.9、申请名称为“一种检测方法、信号发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及雷达技术领域,尤其涉及一种检测方法、信号发送方法及装置。
背景技术
随着科技的发展,智能汽车逐步进入了日常生活。其中,高级驾驶辅助系统(advanced driving assistant system,ADAS)在智能汽车中发挥着十分重要的作用,该系统利用安装在车上的各式各样的传感器,在汽车行驶过程中感应周围的环境、收集数据,进行静止、移动物体的辨识、侦测与追踪,并结合导航仪地图数据,进行系统的运算与分析,从而预先让驾驶者察觉到可能发生的危险,有效增加了汽车驾驶的舒适性和安全性。
在无人驾驶架构中,传感层包括车载摄像头等视觉系传感器和车载雷达等雷达系传感器。毫米波雷达为车载雷达的一种,由于成本较低、技术比较成熟,率先成为无人驾驶系统主力传感器。目前ADAS已开发出十多项功能,例如基于车载毫米波雷达实现的自适应巡航控制(adaptive cruise control,ACC)、自动紧急制动(autonomous emergency braking,AEB)、变道辅助(lance change assist,LCA)、或盲点监测(blind spot monitoring,BSD)等。
请参见图1,为雷达对目标物体进行检测的原理示意图。雷达通过天线向外发射检测信号(电磁波)以及接收目标物体反射的信号,对目标物体反射的信号进行放大以及下变频等处理,得到车辆与目标物体之间的相对距离、相对速度等信息,从而实现确定目标物体所在的位置。
随着车载雷达的广泛使用,车载雷达之间的互干扰越来越严重。由于互干扰会降低车载雷达检测概率或提升其虚警概率,对车辆行驶安全或舒适性造成不可忽视的影响。在这种前提下,如何减小车载雷达之间的干扰是亟需解决的一个技术问题。
发明内容
本申请提供一种检测方法、信号发送方法及装置,用于尽量减小或避免雷达之间的干扰。
第一方面,提供一种检测方法,该方法可以应用于第一雷达,所述第一雷达包括至少两个发射天线和至少一个接收天线,该方法包括:通过所述至少一个接收天线接收至少一个信号,再根据所述至少一个信号进行目标检测,其中,所述至少一个信号对应至少两个检测信息集合,所述至少两个检测信息集合对应所述至少两个发射天线,所述至少两个检测信息集合用于所述目标检测。
在本申请实施例中,该方法可由探测装置执行,探测装置例如为雷达探测装置。在该方案中,至少一个接收天线接收的至少一个信号对应用于目标检测的至少两个检测信息集合,而这至少两个检测信息集合对应至少两个发射天线,可以认为,本申请根据接收的至少一个接收信号获得与至少两个发射天线对应的至少两个检测信息集合。如果其他雷达探测装置与该雷达探测装置发射信号的发射参数不同,那么在至少两个检测集合中,由其他雷达探测装置发射的雷达信号所产生的检测信息也是不同的,所以,即使其他雷达探测装置对雷达探测装置造成干扰,即其他雷达探测装置发射的雷达信号可能被该雷达探测装置收到,该雷达探测装置将这个雷达信号当作是回波信号,即该雷达探测装置发射的信号被目标反射后得到的信号,本申请还是可以将由于其他雷达探测装置的干扰产生的检测信息从至少两个检测集合中排除,即排除其他雷达探测装置对该雷达探测装置的干扰。通过这种方式,可以排除雷达探测装置之间的互干扰。
在一种可能的设计中,根据所述至少一个信号进行目标检测,包括:
若所述至少两个检测信息集合存在至少一个空集,确定未检测到有效目标。
情况一,雷达探测装置周围最大探测距离范围内可能不存在有效目标,例如,雷达探测装置处于空旷的区域。所以,针对这种情况,只要确定至少两个检测信息集合中存在至少一个空集,那么可以确定雷达探测装置没有有效目标。如果雷达探测装置根据每个发射天线对应的信号依次确定检测信息集合,只要确定存在一个空集,则后续不再继续处理,可以节约雷达探测装置的能耗。
在一种可能的设计中,根据所述至少一个信号进行目标检测,包括:
根据所述至少两个检测信息集合确定目标信息集合;
若所述目标信息集合为空集,确定未检测到有效目标;和/或,
若所述目标信息集合为非空集合,则确定所述目标信息集合指示至少一个有效目标,其中,所述至少一个有效目标的检测信息包含于所述至少两个检测信息集合中的每个检测信息集合中。
情况二,雷达探测装置周围可能存在有效目标,也可能存在对雷达探测装置造成干扰的其他雷达探测装置,或者,也可能存在有效目标以及其他雷达探测装置。针对这种情况,可以根据至少两个检测信息集合确定的目标信息集合是否为空集,进而确定出是否存在有效目标。如果目标信息集合为空集,那么不存在有效目标,如果目标信息集合为非空集,那么存在有效目标。通过这种方式,可以排除雷达探测装置之间的干扰。
在一种可能的设计中,所述至少一个有效目标包括第一有效目标,所述方法还包括:
确定所述第一有效目标的第一特征参数;
其中,在所述至少两个检测信息集合中,所述第一有效目标的所述第一特征参数所对应的检测信息的取值相同;或者,
在所述至少两个检测信息集合中,所述第一有效目标的所述第一特征参数所对应的检测信息的取值的差值小于第一预设阈值。
本申请可以从至少两个检测信息集合中筛选表征目标的检测信息,从而进行目标检测。考虑到表征目标的同一特征的检测信息存在误差的情况,针对同一目标的同一特征参数的检测信息,本申请从至少两个检测信息集合中可以选取取值相同或相近的检测信息,以尽量避免丢失目标。
在一种可能的设计中,确定所述第一有效目标的第一特征参数,包括:
根据所述至少一个信号以及所述至少两个检测信息集合确定所述第一特征参数。
例如,如果第一特征参数包括目标相对雷达探测装置的角度,那么本申请实例可以基于至少一个信号和至少两个检测信息集合确定目标相对雷达探测装置的角度,以后续较为准确地确定有效目标的位置。
在另一种可能的设计中,所述第一检测目标的检测参数还包括第二特征参数,所述方法还包括:
确定所述第一检测目标的第二特征参数,其中,在所述至少两个检测信息集合中,所述第一有效目标的所述第二特征参数所对应的检测信息的取值相同;或者,
在所述至少两个检测信息集合中,所述第一有效目标的所述第二特征参数所对应的检测信息的取值的差值小于第二预设阈值。
通常,一个检测目标的检测参数有多个,在该方案中,本申请综合根据多个检测参数从至少两个检测信息集合确定表征目标的检测信息,可以尽量排除非有效目标的检测信息。
在一种可能的设计中,所述至少一个接收天线包括至少两个接收天线,所述至少一个信号包括多个信号,所述方法还包括:
将所述多个信号转换到距离-多普勒-角度域,以确定检测信息。
在该方案中,给出了例如适用于包括至少两个接收天线的雷达探测装置确定检测信息的方式。即如果雷达探测装置包括至少两个接收天线,检测信息还可以包括目标相对于雷达探测装置的角度信息。
第二方面,提供了一种信号发送方法,该方法包括:
确定第一雷达的第一发射参数;
根据所述第一发射参数发射信号;
其中,所述第一雷达包括多个发射天线,所述第一发射参数用于指示所述多个发射天线发射信号的时间间隔和/或发送起始时刻,或者,所述第一发射参数用于指示所述多个发射天线发送信号的频率间隔和/或频域起始位置。
在本申请实施例中,该方法可由探测装置执行,探测装置例如为第一雷达探测装置,该第一雷达探测装置可以是第一雷达,也可以是与第一雷达通信连接的通信装置。在该方案中,第一雷达探测装置在发送信号时,可以先确定第一发射参数,其中,第一发射参数可以用于指示多个发射天线发射信号的时间间隔和/或发送起始时刻,或者,频率间隔和/或频域起始位置,这样可以避免第一雷达探测装置与其他雷达探测装置的第一发射参数相同或相近,即使得第一雷达探测装置与其他雷达探测装置的第一发射参数存在差异,从而抑制其他雷达探测装置对第一雷达探测装置造成干扰。通过这种方式,可以降低或避免雷达探测装置之间的干扰。
在一种可能的设计中,确定第一雷达的第一发射参数,包括:
将所述第一雷达的第一发射参数从第一值更新为第二值。
在一些实施例中,如果第一雷达探测装置确定第一发射参数的取值与其他雷达探测装置的第一发射参数的取值相同或相近,那么第一雷达探测装置可以更新第一发射参数的取值,使得更新后的取值与其他雷达探测装置的第一发射参数的取值不相同,从而抑制其他雷达探测装置对第一雷达探测装置造成干扰。
在一种可能的设计中,所述方法还包括:
获取来自第一通信装置的第一信息;
所述第一信息用于指示所述第一发射参数,和/或,所述第一信息用于指示至少一个第二雷达的第二发射参数,所述第一发射参数是根据所述第二发射参数确定的。
在另一种可能的设计中,所述方法还包括:
向所述第一通信装置发送第二信息,其中,所述第二信息包括所述第一发射参数。
上述两种方案描述了第一雷达探测装置更新第一发射参数的取值的两种实现方式,方式一,第一雷达探测装置可以根据第一通信装置的指示确定是否更新第一发射参数的取值。例如,第一通信装置可以向第一雷达探测装置发送第一信息,该第一信息例如指示第二值,那么第一雷达探测装置将第一发射参数的取值从第一值更新为第二值。这种方式下,不需要第一雷达探测装置决策第二值。又例如,第一信息可以用于指示第二雷达的发射参数,第一雷达探测装置根据第一信息确定第二值,再将第一值更新为第二值。这种方式中,第一雷达探测装置根据实际情况更新第一发射参数的取值,使得第一雷达与多个第二雷达之间均实现无干扰。
方式二,第一雷达探测装置可以上报第一发射参数,以使得第一通信装置根据第一发射参数指示其他雷达,例如第二雷达更新自身的发射参数,从而实现多个雷达探测装置之间无干扰。
在一种可能的设计中,所述第一信息还用于指示如下的至少一种信息:
所述至少一个第二雷达的位置信息;
所述至少一个第二雷达的朝向信息;
所述至少一个第二雷达的照射角度。
在一些实施例中,第一信息可以是至少一个第二雷达的位置信息、朝向信息和照射角度中的任意组合,这样第一雷达探测装置可以根据第一信息确定是否需要更新第一发射参数的取值,从而在不需要更新时,不进行更新,且在需要更新时,根据第一信息可以更为准确地确定第二值。
在一种可能的设计中,将所述第一雷达的第一发射参数从第一值更新为第二值,包括:
按照预设调整粒度将所述第一发射参数从所述第一值更新为所述第二值,其中,所述预设调整粒度包括:一个脉冲重复周期PRT,一个探测帧,连续的多个探测帧,或者,天线的轮换周期。
在本申请实施例中,第一雷达探测装置根据第一信息更新第一发射参数的取值可以有多种方式,例如,第一雷达探测装置可以按照预设的多种调整粒度,更新方式较为灵活。
第三方面,提供了一种信号发送方法,该方法可以应用于第一雷达,所述第一雷达包括至少三个发射天线,所述至少三个发射天线包括第一发射天线、第二发射天线以及第三发射天线,所述方法包括:
确定所述第一雷达的第一发射参数;
通过所述至少三个发射天线,根据所述第一发射参数发送信号;
其中,所述至少三个发射天线采用时分多路复用TDM发送信号,所述第一发射参数用于指示所述至少三个发射天线的信号发射的起始时刻,所述第一发射天线与所述第二发射天线的信号发射的起始时刻在时域上相邻,所述第二发射天线的信号发射的起始时刻与所述第三发射天线在时域上相邻,所述第一发射天线和所述第二发射天线的信号发射的起始时刻之间的时间间隔不同于所述第二发射天线和所述第三发射天线的信号发射的起始时刻之间的时间间隔;或者,
所述至少三个发射天线采用FDM发送信号,所述第一发射参数用于指示所述至少三个发射天线的信号发射的中心频率,所述第一发射天线与所述第二发射天线的信号发射的中心频率在频率上相邻,所述第二发射天线的信号发射的中心频率与所述第三发射天线在频率上相邻,所述第一发射天线和所述第二发射天线的信号发射的中心频率之间的频率间隔不同于所述第二发射天线和所述第三发射天线的信号发射的中心频率之间的频率间隔。
本申请可以降低不同的雷达探测装置发送的雷达信号具有相同的时间间隔或频率间隔的概率,这样即使不同的雷达探测装置发送的雷达信号落到彼此的有效接收区域内,被彼此当做接收信号处理,也能够区别出哪些接收信号不应该当作接收信号处理。例如,本申请可以确定在时域上相邻的两个发射天线发射信号的时间间隔是可变的,即不是固定的;或者,本申请可以确定在频率上相邻的两个发射天线发射信号的频率间隔是可变的,即不是固定的。通过这种方式,可以降低或避免雷达探测装置之间的互干扰。
第四方面,提供一种雷达探测装置,所述雷达探测装置包括至少两个发射天线和至少一个接收天线,所述雷达探测装置还包括:
收发单元,用于通过所述至少一个接收天线接收至少一个信号;
处理单元,用于根据所述至少一个信号进行目标检测;
其中,所述至少一个信号对应至少两个检测信息集合,所述至少两个检测信息集合对应所述至少两个发射天线,所述至少两个检测信息集合用于所述目标检测。
在一种可能的设计中,所述处理单元具体用于:
若所述至少两个检测信息集合存在至少一个空集,确定未检测到有效目标。
在一种可能的设计中,所述处理单元具体用于:
根据所述至少两个检测信息集合确定目标信息集合;
若所述目标信息集合为空集,确定未检测到有效目标;和/或,
若所述目标信息集合为非空集合,则确定所述目标信息集合指示至少一个有效目标,其中,所述至少一个有效目标的检测信息包含于所述至少两个检测信息集合中的每个检测信息集合中。
在一种可能的设计中,所述至少一个有效目标包括第一有效目标,所述处理单元还用于:
确定所述第一有效目标的第一特征参数;
其中,在所述至少两个检测信息集合中,所述第一有效目标的所述第一特征参数所对应的检测信息的取值相同;或者,
在所述至少两个检测信息集合中,所述第一有效目标的所述第一特征参数所对应的检测信息的取值的差值小于第一预设阈值。
在一种可能的设计中,所述处理单元具体用于:
根据所述至少一个信号以及所述至少两个检测信息集合确定所述第一特征参数。
在一种可能的设计中,所述第一检测目标的检测参数还包括第二特征参数,所述处理单元还用于:
确定所述第一检测目标的第二特征参数,其中,在所述至少两个检测信息集合中,所述第一有效目标的所述第二特征参数所对应的检测信息的取值相同;或者,
在所述至少两个检测信息集合中,所述第一有效目标的所述第二特征参数所对应的检测信息的取值的差值小于第二预设阈值。
在一种可能的设计中,所述至少一个接收天线包括至少两个接收天线,所述至少一个信号包括多个信号,所述处理单元还用于:
将所述多个信号转换到距离-多普勒-角度域,以确定检测信息。
关于第四方面或第四方面的各种可能的实施方式的技术效果,可以参考对于第一方面或第一方面的相应的实施方式的技术效果的介绍。
第五方面,提供了一种雷达探测装置,该雷达探测装置包括:
处理单元,用于确定第一雷达的第一发射参数;
收发单元,用于根据所述第一发射参数发射信号;
其中,所述第一雷达包括多个发射天线,所述第一发射参数用于指示所述多个发射天线发射信号的时间间隔和/或发送起始时刻,或者,所述第一发射参数用于指示所述多个发射天线发送信号的频率间隔和/或频域起始位置。
在一种可能的设计中,所述处理单元具体用于:
将所述第一雷达的第一发射参数从第一值更新为第二值。
在一种可能的设计中,所述处理单元还用于:
获取来自第一通信装置的第一信息;
所述第一信息用于指示所述第一发射参数,和/或,所述第一信息用于指示至少一个第二雷达的第二发射参数,所述第一发射参数是根据所述第二发射参数确定的。
在一种可能的设计中,所述收发单元还用于:
向所述第一通信装置发送第二信息,其中,所述第二信息包括所述第一发射参数。
在一种可能的设计中,所述第一信息还用于指示如下的至少一种信息:
所述至少一个第二雷达的位置信息;
所述至少一个第二雷达的朝向信息;
所述至少一个第二雷达的照射角度。
在一种可能的设计中,所述处理单元具体用于:
按照预设调整粒度将所述第一发射参数从所述第一值更新为所述第二值,其中,所述预设调整粒度包括:一个脉冲重复周期PRT,一个探测帧,连续的多个探测帧,或者,天线的轮换周期。
关于第五方面或第五方面的各种可能的实施方式的技术效果,可以参考对于第二方面或第二方面的相应的实施方式的技术效果的介绍。
第六方面,提供了一种雷达探测装置,所述雷达探测装置包括至少三个发射天线,所述至少三个发射天线包括第一发射天线、第二发射天线以及第三发射天线,所述雷达探测装置包括:
处理单元,用于确定所述第一雷达的第一发射参数;
收发单元,用于通过所述至少三个发射天线,根据所述第一发射参数发送信号;
其中,所述至少三个发射天线采用TDM发送信号,所述第一发射参数用于指示所述至少三个发射天线的信号发射的起始时刻,所述第一发射天线与所述第二发射天线的信号发射的起始时刻在时域上相邻,所述第二发射天线的信号发射的起始时刻与所述第三发射天线在时域上相邻,所述第一发射天线和所述第二发射天线的信号发射的起始时刻之间的时间间隔不同于所述第二发射天线和所述第三发射天线的信号发射的起始时刻之间的时间间隔;或者,
所述至少三个发射天线采用FDM发送信号,所述第一发射参数用于指示所述至少三个发射天线的信号发射的中心频率,所述第一发射天线与所述第二发射天线的信号发射的中心频率在频率上相邻,所述第二发射天线的信号发射的中心频率与所述第三发射天线在频率上相邻,所述第一发射天线和所述第二发射天线的信号发射的中心频率之间的频率间隔不同于所述第二发射天线和所述第三发射天线的信号发射的中心频率之间的频率间隔。
关于第六方面或第六方面的各种可能的实施方式的技术效果,可以参考对于第三方面或第三方面的相应的实施方式的技术效果的介绍。
第七方面,提供另一种雷达探测装置,该雷达探测装置例如为前述的雷达探测装置,该雷达探测装置包括至少两个发射天线和至少一个接收天线,该探测装置还包括处理器、发射器和接收器,处理器、发射器和接收器相互耦合,用于实现上述第一方面或第一方面的各种可能的设计所描述的方法。示例性的,所述雷达探测装置为设置在探测设备中的芯片。示例性的,所述雷达探测设备为雷达。其中,发射器和接收器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述雷达探测装置为设置在探测设备中的芯片,那么发射器和接收器例如为芯片中的通信接口,该通信接口与探测设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述接收器,用于通过所述至少一个接收天线接收至少一个信号;
所述处理器,用于根据所述至少一个信号进行目标检测;
其中,所述至少一个信号对应至少两个检测信息集合,所述至少两个检测信息集合对应所述至少两个发射天线,所述至少两个检测信息集合用于所述目标检测。
在一种可能的设计中,所述处理器具体用于:
若所述至少两个检测信息集合存在至少一个空集,确定未检测到有效目标。
在一种可能的设计中,所述处理器具体用于:
根据所述至少两个检测信息集合确定目标信息集合;
若所述目标信息集合为空集,确定未检测到有效目标;和/或,
若所述目标信息集合为非空集合,则确定所述目标信息集合指示至少一个有效目标,其中,所述至少一个有效目标的检测信息包含于所述至少两个检测信息集合中的每个检测信息集合中。
在一种可能的设计中,所述至少一个有效目标包括第一有效目标,所述处理器还用于:
确定所述第一有效目标的第一特征参数;
其中,在所述至少两个检测信息集合中,所述第一有效目标的所述第一特征参数所对应的检测信息的取值相同;或者,
在所述至少两个检测信息集合中,所述第一有效目标的所述第一特征参数所对应的检测信息的取值的差值小于第一预设阈值。
在一种可能的设计中,所述处理器具体用于:
根据所述至少一个信号以及所述至少两个检测信息集合确定所述第一特征参数。
在一种可能的设计中,所述第一检测目标的检测参数还包括第二特征参数,所述处理器还用于:
确定所述第一检测目标的第二特征参数,其中,在所述至少两个检测信息集合中,所述第一有效目标的所述第二特征参数所对应的检测信息的取值相同;或者,
在所述至少两个检测信息集合中,所述第一有效目标的所述第二特征参数所对应的检 测信息的取值的差值小于第二预设阈值。
在一种可能的设计中,所述至少一个接收天线包括至少两个接收天线,所述至少一个信号包括多个信号,所述处理器还用于:
将所述多个信号转换到距离-多普勒-角度域,以确定检测信息。
关于第七方面或第七方面的各种可能的实施方式的技术效果,可以参考对于第一方面或第一方面的相应的实施方式的技术效果的介绍。
第八方面,提供了一种雷达探测装置,该雷达探测装置例如为如前所述的雷达探测装置。该雷达探测装置包括处理器、发射器和接收器,处理器、发射器和接收器相互耦合,用于实现上述第二方面或第二方面的各种可能的设计所描述的方法。示例性地,所述探测装置为设置在探测设备中的芯片。示例性的,所述探测设备为雷达。其中,发射器和接收器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述探测装置为设置在探测设备中的芯片,那么发射器和接收器例如为芯片中的通信接口,该通信接口与探测设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述处理器,用于确定第一雷达的第一发射参数;
所述发射器,用于根据所述第一发射参数发射信号;
其中,所述第一雷达包括多个发射天线,所述第一发射参数用于指示所述多个发射天线发射信号的时间间隔和/或发送起始时刻,或者,所述第一发射参数用于指示所述多个发射天线发送信号的频率间隔和/或频域起始位置。
在一种可能的设计中,所述处理器具体用于:
将所述第一雷达的第一发射参数从第一值更新为第二值。
在一种可能的设计中,所述处理器还用于:
获取来自第一通信装置的第一信息;
所述第一信息用于指示所述第一发射参数,和/或,所述第一信息用于指示至少一个第二雷达的第二发射参数,所述第一发射参数是根据所述第二发射参数确定的。
在一种可能的设计中,所述发射器还用于:
向所述第一通信装置发送第二信息,其中,所述第二信息包括所述第一发射参数。
在一种可能的设计中,所述第一信息还用于指示如下的至少一种信息:
所述至少一个第二雷达的位置信息;
所述至少一个第二雷达的朝向信息;
所述至少一个第二雷达的照射角度。
在一种可能的设计中,所述处理器具体用于:
按照预设调整粒度将所述第一发射参数从所述第一值更新为所述第二值,其中,所述预设调整粒度包括:一个脉冲重复周期PRT,一个探测帧,连续的多个探测帧,或者,天线的轮换周期。
关于第八方面或第八方面的各种可能的实施方式的技术效果,可以参考对于第二方面或第二方面的相应的实施方式的技术效果的介绍。
第九方面,提供了一种雷达探测装置,所述雷达探测装置包括至少三个发射天线,所述至少三个发射天线包括第一发射天线、第二发射天线以及第三发射天线。该雷达探测装置例如为如前所述的雷达探测装置。该雷达探测装置包括处理器、发射器和接收器,处理器、发射器和接收器相互耦合,用于实现上述第三方面或第三方面的各种可能的设计所描 述的方法。示例性地,所述探测装置为设置在探测设备中的芯片。示例性的,所述探测设备为雷达。其中,发射器和接收器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述探测装置为设置在探测设备中的芯片,那么发射器和接收器例如为芯片中的通信接口,该通信接口与探测设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述处理器,用于确定所述第一雷达的第一发射参数;
所述发射器,用于通过所述至少三个发射天线,根据所述第一发射参数发送信号;
其中,所述至少三个发射天线采用TDM发送信号,所述第一发射参数用于指示所述至少三个发射天线的信号发射的起始时刻,所述第一发射天线与所述第二发射天线的信号发射的起始时刻在时域上相邻,所述第二发射天线的信号发射的起始时刻与所述第三发射天线在时域上相邻,所述第一发射天线和所述第二发射天线的信号发射的起始时刻之间的时间间隔不同于所述第二发射天线和所述第三发射天线的信号发射的起始时刻之间的时间间隔;或者,
所述至少三个发射天线采用FDM发送信号,所述第一发射参数用于指示所述至少三个发射天线的信号发射的中心频率,所述第一发射天线与所述第二发射天线的信号发射的中心频率在频率上相邻,所述第二发射天线的信号发射的中心频率与所述第三发射天线在频率上相邻,所述第一发射天线和所述第二发射天线的信号发射的中心频率之间的频率间隔不同于所述第二发射天线和所述第三发射天线的信号发射的中心频率之间的频率间隔。
关于第九方面或第九方面的各种可能的实施方式的技术效果,可以参考对于第三方面或第三方面的相应的实施方式的技术效果的介绍。
第十方面,提供再一种雷达探测装置。该雷达探测装置可以为上述方法设计中的雷达探测装置。示例性地,所述雷达探测装置为设置在探测设备中的芯片。示例性地,所述探测设备为雷达。该雷达探测装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使雷达探测装置或者安装有雷达探测装置的设备执行上述第一方面或第一方面的任意一种可能的实施方式中的方法,或者,使雷达探测装置或者安装有雷达探测装置的设备执行上述第二方面或第二方面的任意一种可能的实施方式中的方法,或者,使雷达探测装置或者安装有雷达探测装置的设备执行上述第三方面的方法。
其中,该雷达探测装置还可以包括通信接口,该通信接口可以是探测设备中的收发器,例如通过所述雷达探测装置中的天线、馈线和编解码器等实现,或者,如果该雷达探测装置为设置在探测设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第十一方面,提供一种通信系统,该通信系统可以例如包括第一方面、第二方面或第三方面所述的雷达探测装置中的一个或多个,或者,该通信系统还可以包括其他通信装置,例如中央节点,或者还可以包括目标物体。
第十二方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法;或者,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法;或者,计算机执行上述第三方面所述的方法。
第七方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令, 当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法;或者,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法;或者,计算机执行上述第三方面所述的方法。
本申请实施例提供了雷达探测装置检测目标的方案,在该方案中,雷达探测装置可以排除其他探测装置由于干扰所产生的检测信息,即排除其他探测装置对该雷达探测装置的干扰。通过这种方式,可以排除雷达探测装置之间的互干扰。
附图说明
图1为本申请实施例提供的雷达检测目标物体的原理示意图;
图2为本申请实施例提供的雷达装置的结构示意图;
图3为一种发射信号、回波信号与中频信号的示意图;
图4提供了SIMO雷达测角原理示意图;
图5为MIMO雷达虚拟接收阵列原理示意图;
图6为目前的FMCW MIMO雷达采用FDM模式发射信号的示意图;
图7为目前的FMCW MIMO雷达采用TDM模式发射信号的示意图;
图8为车载雷达之间相互干扰的一种示意图;
图9为本申请实施例提供的一种雷达信号发送方法的流程图;
图10为本申请实施例的FMCW MIMO雷达采用TDM模式发射信号的示意图;
图11为本申请实施例的FMCW MIMO雷达采用FDM模式发射信号的示意图;
图12为本申请实施例的一种可能的应用场景示意图;
图13为本申请实施例提供的一种雷达信号发送方法的流程图;
图14为本申请实施例适用的一种应用场景示意图;
图15为本申请实施例提供的一种雷达信号发送方法的流程图;
图16为本申请实施例提供的一种雷达信号发送方法的流程图;
图17为本申请实施例的FMCW MIMO雷达采用FDM模式发射信号的示意图;
图18为本申请实施例提供的检测方法的流程图;
图19是本申请实施例提供的第一雷达探测装置的一种结构示意图;
图20是本申请实施例提供的第一雷达探测装置的又一种结构示意图;
图21是本申请实施例提供的第一雷达探测装置的再一种结构示意图;
图22是本申请实施例提供的一种装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合说明书附图以及具体的实施方式对本申请实施例中的技术方案进行详细的说明。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)雷达探测装置,例如为雷达(radar),或者也可以是其他的用于进行探测(例如,测距)的装置。
2)雷达,或称为雷达装置,也可以称为探测器、雷达探测装置或者雷达信号发送装置等。其工作原理是通过发射信号(或者称为探测信号),并接收经过目标物体反射的反 射信号,来探测相应的目标物体。雷达所发射的信号可以是雷达信号,相应的,所接收的经过目标物体反射的反射信号也可以是雷达信号。
3)雷达探测装置的发射周期(或者,称为雷达探测装置的扫频周期、扫频时间或扫频时长等),是指雷达探测装置进行一个完整波形的雷达信号发射的周期。雷达探测装置一般会在一段连续的时长内进行多个扫频周期的雷达信号发送。
4)雷达探测装置的初始频率。在一个发射周期的开始,雷达探测装置的会以一个频率发射雷达信号,该频率称为雷达探测装置的初始频率。并且雷达探测装置的发射频率以该初始频率为基础在发射周期内变化。
5)照射角度,可以理解为是雷达的发射波束的半功率角,或者是雷达的发射波束的扫描范围,这里需要说明的是,“照射角度”是为了阐述方便而定义的,技术上为发射天线的发射波束的波束宽度,例如,如果发射波束是固定的,那么照射角度是发射波束的波束宽度,如果发射波束是可变的,那么照射角度是发射波束的扫描范围。
6)调频连续波(frequency modulated continuous wave,FMCW),频率随时间变化的电磁波。在下文的介绍中,以FMCW雷达为例,需要说明的是,本申请也可以应用于其他雷达的雷达,本申请对雷达的类型不作限制。
7)线性调频连续波,频率随时间线性变化的电磁波。这里的线性变化一般是指在一个发射周期内线性变化。具体的,线性调频连续波的波形一般是锯齿波或者三角波,或者也可能存在其它可能的波形,例如步进频波形等。
8)雷达探测装置的最大测距距离,或称雷达探测装置的最大探测距离,是与雷达探测装置的配置有关的参数(例如,与雷达探测装置的出厂设置参数相关)。例如雷达探测装置为雷达,长距自适应巡航控制(adaptive cruise control,ACC)雷达的最大测距距离例如为250m,中距雷达的最大测距距离例如为70~150m。
9)中频(intermediate frequency,IF)信号,以雷达探测装置是雷达为例,雷达的本振信号与雷达接收的反射信号(是雷达的发射信号经过目标物体反射后的信号)经过混频器处理后的信号,即为中频信号。具体来说,通过振荡器产生的调频连续波信号,一部分作为本振信号,一部分作为发射信号通过发射天线发射出去,而接收天线接收的发射信号的反射信号,会与本振信号混频,得到所述的“中频信号”。通过中频信号,可以得到目标物体的距离信息、速度信息或角度信息中的一个或多个。其中,距离信息可以是目标物体相对于当前的雷达的距离信息,速度信息可以是目标物体相对于当前的雷达的速度在目标物体和雷达连线方向上的投影,角度信息可以是目标物体相对于当前的雷达的角度信息。进一步的,中频信号的频率称为中频频率。
10)“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联物体的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联物体是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个物体进行区分,不用于限定多个物体的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的信息,而并不是表示这两种信息的内容、优先级、发 送顺序或者重要程度等的不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
毫米波是指波长介于1~10mm之间的电磁波,所对应的频率范围为30~300GHz。在这个频段,毫米波相关的特性使其非常适合应用于车载领域。带宽大:频域资源丰富,天线副瓣低,有利于实现成像或准成像;波长短:雷达设备体积和天线口径得以减小,重量减轻;波束窄:在相同天线尺寸下毫米波的波束要比微波的波束窄得多,雷达分辨率高;穿透强:相比于激光雷达和光学系统,更加具有穿透烟、灰尘和雾的能力,可全天候工作。
车载毫米波雷达系统,一般包括振荡器、发射天线、接收天线、混频器、耦合器、处理器和控制器等装置。如图2所示,为毫米波雷达的工作原理图。振荡器会产生一个频率随时间线性增加的雷达信号,该雷达信号一般是调频连续波。该雷达信号的一部分经过定向耦合器输出至混频器作为本振信号,一部分通过发射天线发射出去,接收天线接收发射出去的雷达信号遇到车辆前方的物体后反射回来的雷达信号,混频器将接收的雷达信号与本振信号进行混频,得到中频信号。中频信号包含了目标物体与该雷达系统的相对距离、速度、以及角度等信息。中频信号经过低通滤波器并经过放大处理后输送到处理器,处理器对接收的信号进行处理,一般是对接收的信号进行快速傅里叶变换,以及频谱分析等,以得到目标物体相对于该雷达系统的距离、速度等信号,还可以得到目标物体相对于该雷达系统的角度等信息。最后,处理器可以将得到的信息输出给控制器,以控制车辆的行为。
示例性的,如图3所示,为FMCW雷达发射信号的示意图。振荡器所产生的雷达信号为调频连续波,即雷达系统通过发射天线发射1组波形相同,时间起点不同的线性调频信号,该线性调频信号也可以称为啁啾(chirp)信号。发射chirp信号的间隔(图3中用T表示)称为脉冲重复间隔(Pulse Repetition Time,PRT)。雷达在1个PRT发射1个chirp信号,chirp信号时间长度小于或等于1个PRT,通常情况下,chirp信号时间长度小于1个PRT。如图3所示,雷达的发射天线发射信号,雷达的接收天线接收的回波信号指的是发射天线发射的雷达信号遇到物体后发射回来的信号。混频器将接收的回波信号与本振信号进行混频,得到中频信号。根据该中频信号可以确定目标物体与该雷达系统的相对距离、速度等信息。
示例性的,根据中频信号确定目标物体与雷达系统的相对距离和速度时,可以是:将中频信号在每个PRT中用于雷达信号处理的部分,即经过采样和量化后的数据序列组成二维数组,这个二维数组中的一维对应PRT内的采样点序号,另一维对应于PRT编号;之后对这个二维数组进行傅里叶变换,得到距离-多普勒域表示的雷达接收信号。每个目标物体的回波分量采用距离-多普勒域表示时,对应一个二维sinc函数,即每个目标物体在距离多-普勒域表示中,对应一个局部峰值。距离-多普勒域表示的雷达接收信号实际上是复数二维数组,对该复数二维数组逐点取模,获得的模值对应局部峰值。该局部峰值对应两个维度的序号,可以获得该目标物体对应的单频正弦波的频率和不同PRT中该中频信号的相位差,进而可以获得该目标物体的距离和速度信息。
对于单发多收(Single Input Multiple Output,SIMO)雷达,即包括1个发射天线和多个接收天线的雷达而言,根据不同接收天线接收到的回波信号的相位差,还可以确定目标物体相对雷达系统的角度。如图4所示,为SIMO雷达测角原理示意图,其中,图4以SIMO雷达包括一个发射天线和两个接收天线为例。在图4中,发射天线发射的信号经由目标物体反射后被两个接收天线接收。这两个接收天线的相位差为ω,根据该相位差以及波长计 算得到两个接收天线分别距离目标物体的距离差,即图4中的dsin(θ),其中,d为两个接收天线之间的距离,θ为目标物体与接收天线的法线之间的夹角,从而可以计算得到θ的值,即目标物体相对雷达的角度。
对于多发多收(Multiple Input Multiple Output,MIMO)雷达,即包括多个发射天线和多个接收天线的雷达而言,不同的发射天线发射的信号可以具有不同的特征,也就是不同的发射天线发射采用不同的发射参数发射信号,这里的发射参数例如包括中心频率、起始时间、chirp斜率等。如图5所示,为MIMO雷达虚拟接收阵列原理示意图。图5以MIMO雷达包括2个发射天线(Tx1和Tx2)和4个接收天线(Rx1、Rx2、Rx3和Rx4)为例。其中,每个接收天线接收的信号是所有发射天线发射的信号被目标物体发射后叠加的信号。每个接收天线根据多个发射天线发射信号的发射参数,可以从接收的信号中提取分别来自不同发射天线,且经过目标物体反射后的信号,作为虚拟接收阵元的接收信号。这里的虚拟接收阵元指的是一个发射天线和多个接收天线组成的阵元,即M个发射天线和N个接收天线,对应M*N个虚拟接收阵元的接收信号。所以利用M个发射天线和N个接收天线,可以检测M*N个接收阵元的SIMO雷达的角度。
在一些实施例中,MIMO雷达可以采用频分复用(Frequency Division Multiplexing,FDM)模式发射信号,即不同的发射天线采用不同的中心频率发射信号,如图6所示,为MIMO雷达采用FDM模式发射信号的示意图。图6横坐标t表示时域,纵坐标f表示频域,图6以MIMO雷达包括3个发射天线为例,这3个发射天线分别为发射天线Tx1、发射天线Tx2和发射天线Tx3。从图6中可以看出,发射天线Tx1发射信号的中心频率为f1,发射天线Tx2发射信号的中心频率为f2,发射天线Tx3发射信号的中心频率为f3,即不同的发射天线采用不同的中心频率发射信号。
或者,在另一些实施例中,MIMO雷达也可以采用时分复用(Time Division Multiplexing,TFM)模式发射信号,即不同的发射天线发射信号的起始时刻不同,如图7所示,为MIMO雷达采用TDM模式发射信号的示意图。图7横坐标t表示时域,纵坐标f表示频域,图7以MIMO雷达包括3个发射天线为例,这3个发射天线分别为发射天线Tx1、发射天线Tx2和发射天线Tx3。从图7中可以看出,发射天线Tx1发射信号的起始时刻为t1,发射天线Tx2发射信号的起始时刻为t2,发射天线Tx3发射信号的中心频率为t3,即不同的发射天线采用不同的起始时刻发射信号。
目前的MIMO雷达的多个发射天线的发射信号的频率是等间隔的,即,在频域上任意相邻的两个发射信号的频率间隔是固定不变的。例如,如图6所示的Tx1和Tx2为频率上相邻的两个发射信号,Tx2和Tx3为频率上相邻的两个发射信号,Tx1和Tx2之间的频率间隔为Δf1,Tx1和Tx2之间的频率间隔为Δf2。
或者,目前的MIMO雷达的多个发射天线的发射信号的起始时刻是等间隔的,即,在时域上任意相邻的两个发射信号的起始时刻之间的间隔是固定不变的。例如,如图7所示的Tx1和Tx2为时域上相邻的两个发射信号,Tx2和Tx3为时域上相邻的两个发射信号,Tx1和Tx2之间的起始时刻之间的间隔为Δt1,Tx1和Tx2之间的起始时刻之间的间隔为Δt2。
为了便于描述,下文中,将时域上相邻的两个发射信号的起始时刻之间的间隔称为时间偏置,将频域上相邻的两个发射信号的频率间隔称为频域偏置。
如果某个雷达周围存在其他雷达,那么其他雷达发射的信号可能被该雷达接收,即该雷达接收的信号除了包括回波信号之外,还包括其他雷达发射的信号,此时,该雷达会将 其他雷达发射的信号作为回波信号,从而根据接收的信号对目标进行检测时,所确定的目标实际上可能是不存在,这种情况可以理解为,其他雷达对该雷达造成干扰。
为了便于理解,以该雷达探测装置是车载雷达为例,可参考图8,为车载雷达之间相互干扰的示意图。雷达1发出发射信号,并接收该发射信号在目标物体上反射回来的反射信号。在雷达1接收反射信号的同时,雷达1的接收天线也接收到了雷达2的发射信号或者反射信号,那么雷达1所接收的雷达2的发射信号或雷达2的反射信号对于雷达1来说就是干扰信号。车载雷达之间的互干扰,将会极大降低雷达探测概率或提升雷达探测的虚警概率,对驾驶安全或舒适性造成不可忽视的影响,因此,如何降低或抑制车载雷达之间的干扰是必须要解决的问题。
为了解决上述问题,本申请可以确定不同的雷达采用不同的发射参数发射信号,雷达的发射参数包括发射信号的中心频率、起始时间、chirp斜率、时间偏置、频率偏置等。这样不同的雷达发射的信号具有不同的特征,从而某个雷达在根据接收的信号对目标进行检测时,可以排除来自其他雷达的干扰。
在一种可能的解决方案中,本申请实施例提供一种信号发送方法,请参见图9,为该方法的流程图。图9所示的实施例提供的方法可以由雷达探测装置来执行,该雷达探测装置可以是雷达芯片,例如将该雷达探测装置称为第一雷达,或者,该雷达探测装置也可以与雷达通信连接的通信装置。另外在下文的介绍过程中,雷达探测装置所发送的信号,均可以是雷达信号,自然的,所接收的回波信号也可以是雷达信号。
S901、第一雷达探测装置确定第一雷达的第一发射参数。
其中,第一雷达包括至少三个发射天线,第一发射参数可以包括第一雷达发射信号的中心频率、起始时间、chirp斜率、每个发射脉冲的初始相位、时间偏置、频率偏置等。
在一些实施例中,如果至少三个发射天线采用TDM发送信号,那么第一发射参数可以用于指示至少三个发射天线发射信号的起始时刻。也可以理解为,第一发射参数可以用于指示至少三个发射天线的信号发射的时域起始位置,或者至少三个发射天线发射信号所占用的时域资源。示例性的,第一雷达探测装置可以确定至少三个发射天线发射信号的时间偏置不相同,即多个发射天线发射信号的起始时刻(时域起始位置)在时域上是不等间隔划分的。
例如,图10为一种可能的方案示意图。图10以第一雷达包括第一发射天线Tx1、第二发射天线Tx2以及第三发射天线Tx3为例。其中,第一发射天线Tx1与第二发射天线Tx2的信号发射的起始时刻在时域上相邻,第二发射天线Tx2的信号发射的起始时刻与第三发射天线Tx3在时域上相邻,第一发射天线Tx1和第二发射天线Tx2的信号发射的起始时刻之间的时间间隔Δt1与第二发射天线Tx2和第三发射天线Tx3的信号发射的起始时刻之间的时间间隔Δt2不相同。
在另一些实施例中,如果至少三个发射天线采用FDM发送信号,那么第一发射参数可以用于指示至少三个发射天线的发射信号的中心频率。也可以理解为,第一发射参数可以用于指示至少三个发射天线的信号发射的频域配置,或者至少三个发射天线发射信号所占用的频域资源。示例性的,第一雷达探测装置可以确定至少三个发射天线发射信号的频域偏置可以不相同,即多个发射天线发射信号的中心频率在频域上是不等间隔划分的。
例如,图11为一种可能的方案示意图。如图11所示,以第一雷达包括第一发射天线Tx1、第二发射天线Tx2以及第三发射天线Tx3为例。其中,第一发射天线Tx1与第二发 射天线Tx2的信号发射的中心频率在频域上相邻,第二发射天线Tx2与第三发射天线Tx3的信号发射的中心频率在频域上相邻,第一发射天线Tx1和第二发射天线Tx2的信号发射的中心频率之间的频率间隔Δf1与第二发射天线Tx2和第三发射天线Tx3的信号发射的中心频率之间的频率间隔和Δf2不相同。
由于第一雷达在时域上相邻的两个发射天线发射信号的时间间隔是可变的,或者,在频域上相邻的两个发射天线发射信号的频率间隔是可变的,所以,第一雷达发射信号不同的发射天线占用不完全相同的时频资源。本申请可以基于第一雷达的不同发射天线占用的时频资源不同,消除不同的雷达之间的互干扰。
例如,以存在两个雷达,这两个雷达分别是雷达1和雷达2为例。由于雷达1和雷达2发射信号时,在时域上相邻的两个发射天线发射信号的时间间隔是可变的,或者,在频域上相邻的两个发射天线发射信号的频率间隔是可变的,那么雷达1和雷达2采用相同的时域参数或者频域参数发射信号的概率会降低,从而降低不同的雷达之间的互干扰。
由于雷达1和雷达2采用不同的时域参数或者频率参数发射信号,那么雷达1的信号的特征与雷达2的信号的特征不一致,如此一来,即使雷达1接收到了雷达2的信号,由于其信号的特征不一致,从而雷达1可以从接收的信号对目标进行检测时,排除雷达2的干扰,即降低或避免雷达2对雷达1的干扰。
如上以第一发射参数是相邻两个发射天线发射信号的时间间隔和频率间隔为例,在可能的设计中,第一发射参数也可以是chirp斜率,发射周期等,只要是使得雷达1和雷达2发射信号的特征不一样的参数即可。
在一些实施例中,第一发射参数可以是保存在本地的参数,也可以是保存在远端的参数。例如,第一发射参数保存在第一雷达的存储单元,此时,第一雷达探测装置确定第一雷达的第一发射参数时,可以从存储单元获取第一发射参数。又例如,第一发射参数保存在中央节点(服务器),此时,第一雷达探测装置可以向中央节点请求第一发射参数,例如,在步骤S903中,第一雷达探测装置向中央节点发送第一请求信息,用于请求第一发射参数。本申请实施例对第一雷达探测装置如何确定第一发射参数不作限制。其中,中央节点以及步骤S903不是必不可少的,所以图9中用虚线进行示意。
S902、第一雷达探测装置通过至少三个发射天线根据所确定的第一发射参数发送信号。
第一雷达探测装置确定第一发射参数之后,可以指示第一雷达根据第一发射参数发送信号。或者,第一雷达探测装置就是第一雷达,从而第一雷达探测装置确定了第一发射参数,根据第一发射参数发送信号。
例如,上述第一发射参数用于指示第一雷达在时域上相邻的两个发射天线发射信号的时间间隔是可变的,或者,第一发射参数用于指示在频域上相邻的两个发射天线发射信号的频率间隔是可变的,所以,第一雷达发射信号不同的发射天线占用不完全相同的时频资源,基于第一雷达的不同发射天线占用的时频资源不同,本申请可以消除不同的雷达之间的互干扰。
或者还有一种可能的解决方案,可以降低或避免雷达之间的干扰。在某一雷达使用过程中,可以调整该雷达的发射参数,例如,将该雷达的发射参数的取值调整成不同于其他雷达的发射参数的取值。
这种情况下,第一雷达探测装置确定第一发射参数,也可以理解为第一雷达探测装置确定第一发射参数的取值,例如,第一雷达探测装置确定每个发射天线的信号发射的中心 频率的取值。
为了便于理解,下面结合图12以及图13对第一雷达探测装置如何确定第一发射参数的取值进行介绍。
请参考图12,为本申请实施例的一种可能的应用场景示意图。上述应用场景可以为无人驾驶、自动驾驶、智能驾驶、网联驾驶等。雷达探测装置可以安装在机动车辆(例如无人车、智能车、电动车、数字汽车等)、无人机、轨道车、自行车、信号灯、测速装置或网络设备(如各种系统中的基站、终端设备)等等。本申请实施例既适用于车与车之间的雷达探测装置,也适用于车与无人机等其他装置的雷达探测装置,或其他装置之间的雷达探测装置。另外,雷达探测装置可以安装在移动设备上,例如安装在车辆上作为车载雷达探测装置,或者也可以安装在固定的设备上,例如安装在路侧单元(road side unit,RSU)等设备上。本申请实施例对雷达探测装置安装的位置和功能等不做限定。
本申请实施例可以由探测装置来执行,例如执行本申请实施例提供的方法的探测装置可以称为第一探测装置。第一探测装置可以是雷达探测装置,例如雷达芯片,也可以是与雷达进行通信的通信装置,例如为车载通信装置。为阐述方便,本申请实施例下文中多以探测装置为雷达探测装置、雷达探测装置为雷达,例如毫米波雷达,为例,进行实施例的解释和说明。但是本申请实施例不限定探测装置仅为雷达探测装置,也不限制雷达探测装置仅为毫米波雷达或者雷达。另外,探测装置所发送的信号可以是无线电信号,如果以探测装置是雷达探测装置为例,那么可以认为探测装置所发送的信号是雷达信号。本申请实施例就以探测装置是雷达探测装置、探测装置所发送的信号是雷达信号为例。
请参见图13,为本申请实施例提供一种信号发送方法的流程图。在下文的介绍过程中,以该方法应用于图12所示的场景为例。图13所示的实施例提供的方法,可以由图12所示的场景中的雷达探测装置来执行,例如将该雷达探测装置称为第一雷达探测装置、第一雷达。
S1301、第一雷达探测装置确定第一雷达的第一发射参数。
S1302、第一雷达探测装置根据所确定的第一发射参数发射信号。
在步骤S1301中,如果在第一雷达的探测范围内,即位于第一雷达的最大测距范围内存在其他雷达,例如第二雷达,且第二雷达与第一雷达属于同一类别,那么第二雷达可能会对第一雷达造成干扰。例如,第一雷达接收回波信号的时间恰好是第一雷达接收来自第二雷达发射信号的时间。
需要说明的是,这里两个雷达属于同一类别指的是两个雷达的发射参数一致,每个雷达可以有多种发射参数,例如,一种发射参数为雷达的多个发射天线发射信号的起始时刻,一种发射参数为雷达的多个发射天线发射信号的chrip斜率,那么对于两个雷达来说,只要这两种发射参数中的至少一种参数的取值不同,或者,这两种发射参数中的至少一种参数的取值之间的差值大于某个值,就表示这两个雷达的类别不同。例如,第一雷达的多个发射天线发射信号的起始时刻和第二雷达的多个发射天线发射信号的起始时刻不同,表示第一雷达和第二雷达的类别不同;或者,第一雷达的多个发射天线发射信号的chrip斜率和第二雷达的多个发射天线发射信号的chrip斜率之间的差值大于某个值,表示第一雷达和第二雷达的类别不同;或者,第一雷达的多个发射天线发射信号的起始时刻和第二雷达的多个发射天线发射信号的起始时刻不同,且第一雷达的多个发射天线发射信号的chrip斜率和第二雷达的多个发射天线发射信号的chrip斜率不同,表示第一雷达探测装置和第 二雷达探测装置的类别不同;或者,第一雷达的多个发射天线发射信号的起始时刻和第二雷达的多个发射天线发射信号的起始时刻相同,且第一雷达的多个发射天线发射信号的chrip斜率和第二雷达的多个发射天线发射信号的chrip斜率相同,表示第一雷达和第二雷达的类别相同。
为了降低或避免雷达彼此之间的干扰,第一雷达在使用过程中,调整第一雷达的发射参数的取值,使得第一雷达与第二雷达属于不同类别的雷达。例如,第一发射参数的取值为第一值,第一雷达根据第一发射参数发射信号,之后,在第一雷达使用过程中,第一雷达还可以进一步确定要使用的第一发射参数的取值,例如第二值,即之后,第一雷达可以将第一发射参数的取值从第一值更新为第二值,使得第一雷达与其他雷达的类别不同,降低与其他雷达之间的互干扰。
示例性的,如果第一雷达采用TDM模式发射信号,那么第一发射参数可以用于指示多个发射天线发射信号的起始时刻和/或时间间隔,指示方式可以有几下几种:
第一种方式中,第一发射参数可以包括多个发射天线发射信号中每个发射天线分别发射信号的起始时刻,隐含指示了这多个发射天线发射信号的时间间隔。这种方式下,多个发射天线发射信号的时间间隔可能相同,也可能不同。
第二种方式中,第一发射参数可以包括第一个发射天线发射信号的起始时刻和一个时间间隔。这种方式下,隐含指示了这多个发射天线中,在时域上相邻的两个发射天线发射信号的时间间隔可以是固定的,即在时域上相邻的两个发射天线发射信号的时间间隔相同。
第三种方式中,第一发射参数可以包括第一个发射天线发射信号的起始时刻和多个时间间隔,其中,这多个时间间隔不同。这种方式下,多个发射天线发射信号的时间间隔不相同。
如果第一发射参数对应上述第一种方式,那么第一雷达可以将每个发射天线分别发射信号的起始时刻从第一值更新为第二值。如果第一发射参数对应上述第二种方式,那么第一雷达可以将第一个发射天线发射信号的起始时刻从第一值更新为第二值,和/或将其中的时间间隔从第一值更新为第二值。如果第一发射参数对应上述第三种方式,那么第一雷达可以将第一个发射天线发射信号的起始时刻从第一值更新为第二值,和/或将多个时间间隔分别从第一值更新为第二值。
又一示例性的,如果第一雷达采用FDM模式发射信号,那么第一发射参数可以用于指示多个发射天线发射信号的频域起始位置和/或频率间隔。这里的频域起始位置也可以是发射天线发射信号的中心频率位置。其中,第一发射参数指示多个发射天线发射信号的频域起始位置和/或频率间隔的方式可以有几下几种:
在一种方式中,第一发射参数可以包括多个发射天线发射信号中每个发射天线分别发射信号的频域起始位置,隐含指示了这多个发射天线发射信号的频率间隔。这种方式下,多个发射天线发射信号的频率间隔可能相同,也可能不同。
第二种方式中,第一发射参数可以包括第一个发射天线发射信号的频域起始位置和一个频率间隔。这种方式下,隐含指示了这多个发射天线中,在频域上相邻的两个发射天线发射信号的频率间隔可以是固定的,即在频域上相邻的两个发射天线发射信号的频率间隔相同。
第三种方式中,第一发射参数可以包括第一个发射天线发射信号的频域起始位置和多个频率间隔,其中,这多个频率间隔不同。这种方式下,多个发射天线发射信号的频率间 隔不相同。
如果第一发射参数对应上述第一种方式,那么第一雷达可以将每个发射天线分别发射信号的频域起始位置从第一值更新为第二值。如果第一发射参数对应上述第二种方式,那么第一雷达可以将第一个发射天线发射信号的频域起始位置从第一值更新为第二值,和/或将其中的频率间隔从第一值更新为第二值。如果第一发射参数对应上述第三种方式,那么第一雷达可以将第一个发射天线发射信号的频域起始位置从第一值更新为第二值,和/或将多个频率间隔分别从第一值更新为第二值。
通常来说,当其他雷达,例如第二雷达处于第一雷达的最大探测距离范围内才会对第一雷达造成干扰。所以第一雷达在使用过程中,第一雷达可以适应性地更新第一发射参数的取值。为了便于理解,下面结合图14、图15和图16进行举例说明。
图14示意了一种应用场景,图14包括多个雷达,以包括第一雷达和多个第二雷达,以及中央节点为例。其中,第一雷达为车载雷达,这多个第二雷达可以是车载雷达,也可以是例如设置在RSU上的雷达,这多个第二雷达存在于第一雷达的最大探测距离范围内。图14以这多个第二雷达是车载雷达为例。中央节点在图14的应用场景中不是必不可少的,所以在图14中用虚线进行示意。
请参见图15,为一种第一雷达更新第一发射参数的流程示意图,以应用在如图14包括中央节点的应用场景。图15所示的实施例提供的方法,可以由图14所示的场景中的雷达探测装置来执行,例如将该雷达探测装置称为第一雷达探测装置、第一雷达或者第一通信装置。第一雷达更新第一发射参数具体包括以下步骤:
S1501、第一雷达探测装置向中央节点上报第一雷达的第一发射参数。
S1502、多个第二雷达探测装置向中央节点上报多个第二雷达各自对应的第二发射参数。
例如,第一雷达可以通过与第一雷达通信连接的第一通信装置向中央节点发送第一信息,该第一信息包括第一发射参数。多个第二雷达中的每个第二雷达可以通过与各自通信连接的第二通信装置向中央节点发送第二信息,该第二信息包括第二发射参数。这里的,第一通信装置和第二通信装置可以是雷达芯片,也可以是车载通信装置等。其中,步骤S1501和步骤S1502的前后顺序不作限制。
S1503、中央节点根据第一雷达的第一发射参数以及多个第二雷达的第二发射参数,确定对第一雷达造成干扰的至少一个第二雷达。
中央节点可以比较第一雷达的第一发射参数与多个第二雷达的第二发射参数,如果某一第二雷达的第二发射参数与第一发射参数相同或者相近,那么可以确定多个第二雷达中的该某一第二雷达与第一雷达的类别相同。如果该某一第二雷达位于第一雷达的最大测距范围内,则确定该某一第二雷达会对第一雷达造成干扰。
S1504、中央节点向第一雷达探测装置发送第三信息,从而第一雷达探测装置接收来自第一通信装置的第三信息。
S1505、第一雷达探测装置根据第三信息,将第一发射参数从第一值更新为第二值。
中央节点确定了存在对第一雷达造成干扰的第二雷达,那么中央节点可以指示第一雷达更新第一雷达的第一发射参数的取值,以避免第二雷达对第一雷达造成干扰。在可能的实施例中,中央节点可以向第一雷达探测装置发送第三信息,以指示对第一雷达的第一发射参数的取值进行更新。示例性的,中央节点指示第一雷达更新第一发射参数的取值有以 下几种情况:
第一种情况,该第三信息可以是中央节点根据至少一个第二雷达的第二发射参数的取值,以及第一雷达的第一发射参数的第一值得到的第二值。这种情况下,第三信息可以携带第二值,第一雷达探测装置根据第三信息可以直接将第一雷达的第一发射参数从第一值更新为第二值,而不需要重新确定第二值,减少第一雷达探测装置的计算量,从而减轻了第一雷达探测装置的负担。
第二种情况,第三信息也可以是通知第一雷达探测装置更新第一值的信息,而不携带第二值。这种情况下,第一雷达可以重新确定第一发射参数的取值。
例如,第一雷达可以通过第一通信装置向周围的多个第二雷达的第二通信装置发送请求信息,该请求信息用于请求第二雷达的第二发射参数,对应地,第一雷达可以接收到多个第二雷达发送的第二发射参数。第一雷达再根据接收的多个第二雷达的第二发射参数确定第一发射参数的第二值,并将第一发射参数从第一值更新为第二值。
又例如,第三信息可以包括至少一个第二雷达的第二发射参数。这种情况下,中央节点可以将第三信息发送给与第一雷达连接的通信装置,通信装置再将第三信息发送给第一雷达。第一雷达接收到第三信息,可以根据至少一个第二雷达的第二发射参数确定如何更新第一发射参数,即确定第一发射参数的第二值,进而将第一发射参数从第一值更新为第二值。
再例如,第三信息可以包括至少一个第二雷达的第二发射参数以及第一雷达的第一发射参数。这种情况下,中央节点可以将第三信息发送给第一雷达探测装置,第一雷达探测装置根据第三信息确定第一雷达的第一发射参数的第二值,从而再将第二值发送给第一雷达。
如上第一雷达更新第一发射参数的流程中,以图14包括中央节点为例。下面以图14不包括中央节点为例,介绍第一雷达更新第一发射参数的流程。
请参见图16,为另一种第一雷达更新第一发射参数的流程示意图,具体包括以下步骤:
S1601、至少一个第二雷达探测装置向第一雷达探测装置发送第一信息,从而第一雷达探测装置接收来自至少一个第二雷达探测装置的第一信息。
其中,该第一信息包括至少一个第二雷达的第二发射参数。
在上文的介绍中,是站在第一雷达的角度,防止第二雷达对第一雷达造成干扰。站在第二雷达的角度,同样,第二雷达也需要防止第一雷达对其造成干扰。
在一些实施例中,至少一个第二雷达可以主动告知第一雷达,至少一个第二雷达的第二发射参数。例如,至少一个第二雷达可以通过至少一个第二雷达探测装置(与第二雷达通信连接的通信装置)广播第一信息。每一个第二雷达探测装置广播的第一信息携带对应的第二雷达的第二发射参数,以告知每个第二雷达周围的其他雷达可以根据接收的第二发射参数,调整其他雷达自身的发射参数,以尽量降低或避免雷达之间的互干扰。
在又一些实施例中,第一雷达可以主动获取至少一个第二雷达的第二发射参数。例如,第一雷达可以通过第一雷达探测装置(与第一雷达通信连接的通信装置)广播请求消息,该请求消息请求周围的第二雷达上报第二发射参数。周围的第二雷达接收该请求消息,向第一雷达发送第二发射参数,从而第一雷达接收来自至少一个第二雷达的第二发射参数。
第一雷达可以通过第一雷达探测装置接收来自多个第二雷达通过第二雷达探测装置广播的第一信息,从而根据第一信息更新第一雷达的第一发射参数的取值。
S1602、第一雷达探测装置根据第一信息将第一发射参数从第一值更新为第二值。
当前,第一雷达的第一发射参数的取值为第一值,如果第一雷达接收的至少一个第二雷达中的部分或全部第二雷达的第二发射参数的取值也是第一值,那么为了降低部分或全部第二雷达对第一雷达造成的干扰,第一雷达可以将第一发射参数从第一值更新为第二值,更新的第二值与部分或全部第二雷达各自对应的第二发射参数的取值均不相同。
如果第一雷达接收的至少一个第二雷达的第二发射参数的取值不等于第一值,那么不会对第一雷达造成干扰,此时,第一雷达可以不更新第一发射参数的取值。
S1603、第一雷达探测装置向至少一个第二雷达探测装置发送第二信息。
与第二雷达相同,第一雷达也可以通过第一雷达探测装置向周围的至少一个第二雷达的第二雷达探测装置广播第二信息,该第二信息包括第一发射参数,以告知至少一个第二雷达,第一雷达所采用的发射参数。这样,各个第二雷达就可以根据第一雷达的第一发射参数确实是否更新第二发射参数的取值,以降低或避免第一雷达对第二雷达造成干扰。
需要说明的是,步骤S1603与步骤S1601以及步骤S1602的执行没有关系,即步骤S1603的执行并不取决于步骤S1601或步骤S1602步骤。步骤S1603可以在步骤S1601之前执行,也可以在步骤S1601之后执行,在图16中,步骤S1603用虚线进行示意。
另外,在另一些实施例中,上述第一信息还可以用于表征至少一个第二雷达的其他参数信息。
例如,第一信息还可以用于指示至少一个第二雷达的位置信息,该位置信息可以认为是用于指示雷达的坐标位置。例如,至少一个第二雷达是车载雷达,那么该车载雷达的坐标位置可能是变化的,例如,还是至少一个第二雷达是固定的,例如设置在RSU上的雷达,那么对应的坐标位置是不变的。
又例如,第一信息也可以用于指示至少一个第二雷达的朝向信息,该朝向信息可以认为是用于指示雷达的观测方向的信息。
再例如,第一信息也可以用于指示至少一个第二雷达的照射角度。
或者,第一信息也可以用于指示如上的位置信息、朝向信息和照射角度的任意组合,本申请实施例对第一信息包括的雷达的参数信息不作限制。
如果第一雷达接收的第一信息除了包括第二发射参数,还包括其他参数信息,例如至少一个第二雷达的位置信息等,那么第一雷达可以根据第二雷达的其他参数确定是否要更新发射参数的取值。例如,如果至少一个第二雷达的位置信息指示至少一个第二雷达距离第一雷达较远,不足以对第一雷达造成干扰,此时第一雷达确定不更新发射参数的取值,尽量降低第一雷达的能耗。
在本申请实施例中,第一雷达对将第一发射参数从第一值更新为第二值可以有不同的更新方法。在一种可能的更新方式中,第一雷达可以随机确定第二值,再将第一发射参数从第一值更新为第二值。在另一种可能的更新方式中,第一雷达可以按照预设的调整粒度将第一发射参数从第一值更新为第二值。
在下面的介绍过程中,以第一雷达按照预设的调整粒度将第一发射参数从第一值更新为第二值为例。其中,预设的调整粒度可以包括一个PRT、一个探测帧、连续的多个探测帧和天线的轮换周期中的至少一种。其中,探测帧指的是雷达作一次测量所用的连续多个PRT。
其中,天线的轮换周期指的是雷达发射信号的时间长度单位。其中,一个轮换周期指 的是雷达的多个发射天线连续发射信号所占用的资源长度。雷达发射信号时,一个轮换周期结束后,立即进入下一个轮换周期。
示例性的,雷达采用FDM模式发射信号,按发射天线的空间顺序为发射天线进行编号,例如,请参考图6,多个发射天线为发射天线Tx1、发射天线Tx2、发射天线Tx3,从第一时刻t为0开始,发射天线Tx1、发射天线Tx2、发射天线Tx3使用不同的中心频率同时发射信号,之后,从第二时刻t1开始,发射天线Tx1、发射天线Tx2、发射天线Tx 3再次使用不同的中心频率同时发射信号,以此类推,从第三时刻t2开始,发射天线Tx1、发射天线Tx2、发射天线Tx3再次使用不同的中心频率同时发射信号,其中,一个发射天线在不同时刻发射信号所采用的中心频率是相同的。对应的,一个轮换周期为例如发射天线Tx 1或发射天线Tx2或发射天线Tx3相邻两次发射信号的起始时刻之间的间隔,如图6所示的T。
同理,雷达采用TDM模式发射信号,按发射天线的空间顺序为发射天线进行编号,例如,请参考图17中的(a),发射天线Tx1、发射天线Tx2、发射天线Tx3循环发射信号,即例如第一次循环,从第一时刻t1开始,发射天线Tx1、发射天线Tx2、发射天线Tx3按照时间顺序依次发射信号,之后,第二次循环,在第二时刻t2开始,发射天线Tx1、发射天线Tx2、发射天线Tx3再次按照同样的时间顺序依次发射信号,那么相邻两个循环的起始时刻之间的时间差,如图17中的(a)所示的T1,即一个天线轮换周期的长度。
又例如,请参考图17中的(b),发射天线Tx 1、发射天线Tx3、发射天线Tx2、发射天线Tx3循环发射信号,即例如第一次循环,从第一起始时刻t1开始,发射天线Tx 1、发射天线Tx3、发射天线Tx2、发射天线Tx3按照时间顺序依次发射信号,之后,第二次循环,从第二起始时刻t2开始,发射天线Tx1、发射天线Tx3、发射天线Tx2、发射天线Tx 3再次按照同样的时间顺序依次发射信号,那么一个轮换周期还是相邻两个循环的起始时刻之间的时间差,如图17中的(b)所示的T2,即一个天线轮换周期的长度。
其中,连续的多个探测帧中,每个探测帧的长度可以是相同的,或者,多个探测帧中的部分探测帧的长度相同,部分探测帧的长度不同,本申请实施例对多个探测帧的长度不作限制。第一雷达更新第一发射参数的取值时,可以选择采用何种调整粒度。
例如,第一发射参数包括第一雷达包括的多个发射天线发射信号的时间间隔或频率间隔,第一雷达可以选择一个探测帧为调整粒度,将第一发射参数从第一值调整为第二值;或者,第一雷达也可以选择连续的多个探测帧为调整粒度,将第一发射参数从第一值调整为第二值。又例如,如果第一雷达采用TDM模式发射信号,第一发射参数包括第一雷达包括的多个发射天线发射信号的时间间隔,第一雷达可以选择一个PRT将第一发射参数从第一值调整为第二值。再例如,如果第一雷达采用FDM模式发射信号,第一发射参数包括第一雷达包括的多个发射天线发射信号的频率间隔,第一雷达可以选择天线的轮换周期为调整粒度,将第一发射参数从第一值更新为第二值。
上述第一发射参数包括多个发射天线发射信号的时间间隔或频率间隔仅是举例,第一发射参数还可以是每个发射脉冲的初始相位、chrip斜率。
在本申请实施例中,第一雷达在使用过程中,更新第一发射参数的取值,可以减小第一雷达发射的信号的特征与其他雷达发射的信号的特征一致的可能性,从而降低或避免第一雷达与其他雷达之间形成互干扰。
如上的实施例介绍了如何降低或避免多个雷达之间的互干扰,但是,在一种可能的情 况下,多个雷达之间可能还是存在互干扰,如图8所示,这使得某一雷达在检测目标时,所检测到的目标中包括伪目标,即实际上不存在的目标。
鉴于此,本申请实施例还提供了一种目标检测方法,该方法可以由雷达探测装置来执行,该雷达探测装置可以是雷达芯片,也可以是与雷达进行通信的通信装置,例如为车载通信装置。为阐述方便,本申请实施例下文中多以探测装置为雷达探测装置、雷达探测装置为雷达,例如毫米波雷达,为例,进行实施例的解释和说明。但是本申请实施例不限定探测装置仅为雷达探测装置,也不限制雷达探测装置仅为毫米波雷达或者雷达。另外,探测装置所发送的信号可以是无线电信号,如果以探测装置是雷达探测装置为例,那么可以认为探测装置所发送的信号是雷达信号。本申请实施例就以探测装置是雷达探测装置、探测装置所发送的信号是雷达信号为例。
请参见图18,为本申请实施例提供的检测方法的流程图。在下文的介绍过程中,以该方法应用于第一雷达探测装置,以第一雷达探测装置是第一雷达为例,其中,第一雷达包括至少两个发射天线和至少一个接收天线。该方法的具体流程如下:
S1801、第一雷达通过至少两个发射天线发射雷达信号,从而通过至少一个接收天线接收至少一个信号。
当需要对周围的目标物体进行检测时,第一雷达可以通过所包括的发射天线发射雷达信号。如果第一雷达周围存在多个目标物体,且这多个目标物体在第一雷达的最大测距范围内,那么第一雷达发射的雷达信号会被这多个目标物体反射,反射给第一雷达,从而第一雷达接收来自目标物体的至少一个信号。
需要说明的是,如果这多个目标物体的体积小,不足以能够对雷达信号进行反射,那么至少一个信号不包括这多个目标物体对接收的雷达信号反射后的信号。或者,在一种可能的情况下,这多个目标物体中包括第二雷达,且第二雷达的体积较小,不足以对第一雷达发射的雷达信号进行反射,但是第二雷达可能通过发射天线发射雷达信号,那么至少一个信号可以包括来自第二雷达的雷达信号。又或者,至少一个信号除了包括这多个目标物体对接收的雷达信号反射后的信号,还可能包括第二雷达发射的雷达信号。例如,在一种可能的情况下,这多个目标物体中存在第二雷达,而在第一雷达接收反射信号的时间内,第二雷达可能通过发射天线发射雷达信号,那么至少一个信号还包括了来自第二雷达的雷达信号。又或者,至少一个信号还可以包括例如地面等对其他信号的散射或反射的信号。对于上述至少一个信号,本申请实施例所提供的检测方法在具体实现时都可以考虑,并不影响本申请实施例的实现及有益效果。
S1802、第一雷达根据至少一个信号进行目标检测,其中,至少一个信号对应至少两个检测信息集合,至少两个检测信息集合对应至少两个发射天线,至少两个检测信息集合用于目标检测。
第一雷达接收到至少一个信号,可以对至少一个信号进行处理,从而实现对第一雷达周围的目标进行检测。
在本申请实施例中,第一雷达包括至少两个发射天线,不同的发射天线发射的雷达信号具有不同的特征。例如,不同的发射天线发射的雷达信号的中心频率不同,或者,不同的发射天线发射的雷达信号的起始时间不同,或者,不同的发射天线发射的雷达信号的chirp斜率不同等。从而,第一雷达可以根据不同发射天线发射的雷达信号的不同,从接收的至少一个信号中提取出对应不同发射天线的信号。其中,第一雷达从接收的至少一个信 号中提取出对应不同发射天线的信号,也可以理解为,本申请实施例将MIMO雷达看作多个SIMO雷达,每个发射天线和所有的接收天线对应一组信号。
为了便于阐述,在下文的介绍中,以第一雷达包括两个发射天线为例,这两个发射天线分别为第一发射天线和第二发射天线,其中,第一雷达从至少一个信号提取的与第一发射天线对应的信号为第一信号,第一雷达从至少一个信号提取的与第二发射天线对应的信号为第二信号。
第一雷达提取出第一信号和第二信号之后,对第一信号和第二信号分别进行处理,获得用于检测目标的两个检测信息集合,例如,第一检测信息集合和第二检测信息集合。其中,第一信号对应第一检测信息集合,第二信号对应第二检测信息集合。需要说明的是,如果第一雷达包括至少三个发射天线,那么第一雷达根据至少一个信号可以确定至少三个检测信息集合,其中,发射天线与检测信息集合一一对应。例如,第一雷达包括发射天线1、发射天线2、发射天线3,确定的检测信息集合包括与发射天线1对应的检测信息集合1、与发射天线2对应的检测信息集合2、与发射天线3对应的检测信息集合3。
检测信息集合包括的检测信息可以理解为用于确定目标特征的信息,例如,检测信息可以是表征目标相对第一雷达的距离、速度,或者雷达散射截面积(Radar-Cross Section,RCS)等信息,例如,检测信息可以是目标相对第一雷达的距离、速度和RCS等;或者,检测信息也可以是对信号采样和量化后形成的二维数据中的格点或者采样点序号,该格点或者采样点序号可以表征目标相对第一雷达的距离。检测信息的表现形式有多种,这里就不一一举例了。当然,如果第一雷达包括至少两个接收天线,那么检测信息集合还可以包括表征目标相对第一雷达的角度的信息。
具体的,在一种可能的方案中,第一雷达对第一信号或第二信号进行处理,获得对应的检测信息集合的方法可以参照如上述雷达根据中频信号确定目标物体与雷达系统的相对距离和速度的方法,即将第一信号与本振信号进行混频,获得中频信号,并转化到距离-多普勒域,进而获得多个检测信息,形成检测信息集合。而如果第一雷达包括至少两个接收天线,那么第一雷达可以将中频信号变化到距离-多普勒-角度域,以得到用于表征目标相对第一雷达的角度的检测信息,这里就不再赘述。
或者在另一种可能的方案中,第一雷达获得每个发射天线对应的信号的距离-多普勒域表示后,再分别对第一信号和第二信号的距离-多普勒域表示的幅值进行逐点取模,或者,对第一信号和第二信号的距离-多普勒域表示的功率进行逐点取模后取平方,再计算所有接收天线叠加的结果,获得检测信息。即对所有接收天线的计算结果取并集,从而可以降低目标的丢失概率。
第一雷达根据至少一个信号对目标物体进行检测,可以是根据与至少一个信号对应的至少两个检测信息集合对目标物体进行检测,从而确定有效目标。需要说明的是,有效目标指的是在第一雷达的最大测距范围内,被所述第一雷达探测到并且实际存在的目标物体,例如固定的路障、移动的车辆等。在一些实际场景中,第二雷达(例如:某一车辆上安装或携带有所述第二雷达)发射的信号会被第一雷达接收到,这样第二雷达的发射信号会对第一雷达造成干扰,例如,第一雷达将第二雷达发射的雷达信号认为是其他目标物体对第一雷达发射的雷达信号的反射信号。这样的话,第一雷达根据发射的雷达信号以及接收的第二雷达发射的雷达信号作目标检测,可能检测到一个目标或多个目标,实际上,这一个目标或者多个目标是不存在的。在下文中,将实际上不存在的目标称为伪目标。有效目标 是除伪目标之外的目标。
示例性的,根据至少两个检测信息集合确定有效目标,可以有以下几种情况。
第一种情况,如果至少两个检测信息集合存在至少一个空集,也就是,至少存在一个检测信息集合不包括任何检测信息,可以认为在第一雷达的最大测距范围内,不存在有效目标。
例如,在一种可能的场景中,第一雷达位于空旷的区域,在该空旷的区域内不存在检测目标。这种情况下,至少存在一个检测信息集合不包括检测信息,即为空集。
在一些实施例中,本申请实施例从至少一个信号提取出对应各个发射天线的信号之后,针对各个发射天线,可以同时确定检测信息集合,也可以依次确定各个发射天线分别对应的检测信息集合。如果本申请实施例依次确定各个发射天线分别对应的检测信息集合,当首次确定检测信息集合为空集时,则认为不存在有效目标,不再确定其他检测信息集合,以尽量节约能耗。
第二种情况,针对同一个有效目标,各SIMO雷达发射信号的传播路径几乎相同,那么SIMO雷达接收的信号也具有相同的幅度、时延、多普勒、到达角等特征,即针对同一个有效目标的同一特征,用于表征该特征的检测信息在不同的检测信息集合是相同或相近的,即有效目标的检测信息包含于至少两个检测信息集合中的每个检测信息集合。本申请实施例可以根据至少两个检测信息集合确定目标信息集合,进而确定有效目标。
示例性的,本申请实施例可以对至少两个检测信息集合取交集,形成目标信息集合,以根据该目标信息集合确定有效目标,排除伪目标。其中,对至少两个检测信息集合取交集,可能有以下几种结果。
第一种结果,至少两个检测信息集合的交集为空集,也就是用于表征同一特征的检测信息在至少两个检测信息集合中不相同,那么可以确定没有有效目标。
例如,在一种可能的场景中,第一雷达位于某一区域,该区域内存在第二雷达,且第二雷达发射信号的发射参数与第一雷达发射信号的发射参数不同,除了第二雷达之前不存在有效目标。这种情况下,第二雷达对第一雷达造成干扰,即第一雷达会将第二雷达发射的雷达信号误识别为是检测目标的发射信号。此时,在至少两个检测信息集合中,用于表征第二雷达的同一特征的检测信息在至少两个检测信息集合中不相同,即确定第二雷达为伪目标。
第二种结果,至少两个检测信息集合的交集不是空集,也就是用于表征同一特征的检测信息在至少两个检测信息集合中一致,形成目标信息集合。该目标信息集合可以指示至少一个有效目标。
例如,在一种可能的场景中,第一雷达位于某一区域,该区域内存在路障等检测目标,或者还可能存在第二雷达,且第二雷达发射信号的发射参数与第一雷达发射信号的发射参数不同。这种情况下,在至少两个检测信息集合中,用于表征第二雷达的同一特征的检测信息在至少两个检测信息集合中不相同,但是,表征路障的同一特征的检测信息在至少两个检测信息集合中是一致的,属于目标信息。
需要说明的是,这里用于表征同一特征的检测信息在至少两个检测信息集合中一致,指的是,表征同一特征的检测信息的取值在至少两个检测信息集合相同,或者,表征同一特征的检测信息的取值在至少两个检测信息集合相近。
在确定目标信息集合时,本申请实施例可以针对至少两个检测信息集合中的某一个检 测信息集合中,用于表征检测目标的某一特征参数,例如第一特征参数所对应的检测信息,比较除上述某一个检测信息集合之外的其他检测信息集合中的第一特征参数所对应的检测信息,从而确定目标信息集合。
一些实施例中,如果确定在至少两个检测信息集合中,第一特征参数所对应的检测信息的取值相同,那么本申请实施例可以确定该检测信息是目标信息。第一特征参数可以是例如检测目标与雷达的相对速度、检测目标与雷达的相对距离等,也可以是检测目标与雷达的相对角度等。本申请实施例可以根据检测信息确定特征参数,例如检测目标与雷达的相对速度;也可以根据接收的至少一个信号以及两个检测信息集合确定特征参数,例如检测目标与雷达的相对角度等。
或者,另一些实施例中,考虑到雷达的精度,不同的发射天线以一定的发射定时进行雷达信号的发射,由于实际通信场景、环境或硬件设备存在的可能的差异,不同发射天线发射信号存在误差。又一种可能的情况下,在生产制造过程中,不同的雷达由于生产制造的差异可能导致在信号发射时出现些许误差。在其他情况下,还可能存在其它原因导致的误差。本申请实施例考虑这些误差,可能使得用于表征同一特征的检测信息也存在误差。那么,针对某一检测信息集合,如果根据检测信息确定出某一目标,遍历其他检测信息集合所确定出的目标是否包含至少一个检测信息在误差范围内,从而确定该目标是有效目标,还是伪目标。
所以,在本申请实施例中,假设某一有效目标,例如第一有效目标,如果确定在至少两个检测信息集合中,第一有效目标的第一特征参数所对应的检测信息的取值的差值小于第一预设阈值,即,第一特征参数所对应的检测信息的取值相近,那么本申请实施例可以确定该检测信息是目标信息。第一预设阈值可以是事先设置的一个可能的取值。
需要说明的是,这里在至少两个检测信息集合中,第一特征参数所对应的检测信息的取值的差值小于第一预设阈值,可以认为是,针对某一检测信息集合中的第一特征参数所对应的检测信息的取值,与其他检测信息集合中的第一特征参数所对应的检测信息的取值之间的差值小于第一预设阈值;也可以认为是,存在至少三个检测信息集合时,任意两个检测信息集合中,第一特征参数所对应的检测信息的取值的差值小于第一预设阈值。
另外,检测目标具有多个特征参数,例如,检测目标与雷达的相对速度、检测目标与雷达的相对距离等,目标信息可以是满足一定条件的各个特征参数所对应的检测信息。例如,第一有效目标的检测参数还可以包括第二特征参数,那么,如果在至少两个检测信息集合中,第二特征参数所对应的检测信息的取值相同,本申请实施例可以确定第二特征参数所对应的检测信息是目标信息。或者,如果在至少两个检测信息集合中,第二特征参数所对应的检测信息的取值的差值小于第二预设阈值,那么,本申请实施例可以确定第二特征参数所对应的检测信息是目标信息。其中,第一预设阈值与第二预设阈值可以是相同的值,也可以是不同的值。
需要说明的是,本申请实施例可以将在至少两个检测信息集合中,多个特征参数分别所对应的检测信息确定为目标信息,也可以根据多个特征参数分别所对应的检测信息确定目标信息。例如,以存在第一检测信息集合和第二检测信息集合为例,第一特征参数为有效目标与雷达的相对速度。第一特征参数所对应的检测信息在第一检测信息集合中的取值为每秒3.5千米(3.5km/s),第一特征参数所对应的检测信息在第二检测信息集合中的取值为3.6km/s,本申请实施例可以确定目标信息为3.55km/s。
进一步地,某一特征参数所对应的检测信息可以是检测目标对第一雷达发射的雷达信号进行的反射信号的信号强度。本申请实施例确定了目标信息集合之后,可以进一步的确定某一目标在不同的目标信息集合中的信号的方差,如果该信号的方差小于或等于第三预设阈值,则可以认为该目标是有效目标。相反,如果该信号的方差大于第三预设阈值,则可以认为伪目标。
所以,如果存在多个雷达探测装置,且这多个雷达探测装置发射雷达信号的发射参数有所不同的情况下,对于某一雷达探测装置来说,本申请实施例可以将MIMO雷达看作是至少两个SIMO雷达,从而将接收的至少一个信号分成与每个SIMO雷达对应的信号,在对与每个SIMO雷达对应的信号进行处理,来排除干扰,即排除对某一雷达探测装置造成干扰的其他雷达探测装置。
上述主要从第一雷达探测装置的角度,或者说是从第一雷达探测装置与第二雷达探测装置之间交互的角度对本申请实施例提供的方案进行了介绍。下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
可以理解的是,各个装置,例如第一雷达探测装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以对第一雷达探测装置进行功能模块的划分,例如,可对应各个功能划分各个功能模块,也可将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
例如,以采用集成的方式划分雷达探测装置各个功能模块的情况下,图19示出了本申请上述实施例中所涉及的第一雷达探测装置的一种可能的结构示意图。该第一雷达探测装置19可以包括处理单元1901、收发单元1902和存储单元1903。
其中,第一种设计中,处理单元1901可以用于执行图9所示的实施例中由第一雷达探测装置所执行的除了收发操作之外的全部操作,例如S901,和/或用于支持本文所描述的技术的其它过程。收发单元1902可以用于执行图9所示的实施例中由第一雷达探测装置所执行的全部收发操作,例如S902,和/或用于支持本文所描述的技术的其它过程。该第一雷达探测装置包括至少三个发射天线,至少三个发射天线包括第一发射天线、第二发射天线以及第三发射天线,其中,
处理单元1901用于确定第一雷达的第一发射参数;
收发单元1902用于通过至少三个发射天线,根据第一发射参数发送信号;
其中,至少三个发射天线采用TDM发送信号,第一发射参数用于指示至少三个发射天线的信号发射的起始时刻,第一发射天线与第二发射天线的信号发射的起始时刻在时域上相邻,第二发射天线的信号发射的起始时刻与第三发射天线在时域上相邻,第一发射天线和第二发射天线的信号发射的起始时刻之间的时间间隔不同于第二发射天线和第三发 射天线的信号发射的起始时刻之间的时间间隔;或者,
至少三个发射天线采用FDM发送信号,第一发射参数用于指示至少三个发射天线的信号发射的中心频率,第一发射天线与第二发射天线的信号发射的中心频率在频率上相邻,第二发射天线的信号发射的中心频率与第三发射天线在频率上相邻,第一发射天线和第二发射天线的信号发射的中心频率之间的频率间隔不同于第二发射天线和第三发射天线的信号发射的中心频率之间的频率间隔。
或者作为另一种设计中,处理单元1901可以用于执行图13和图15或图16所示的实施例中由第一雷达探测装置所执行的除了收发操作之外的全部操作,例如S1301,S1505,S1602,和/或用于支持本文所描述的技术的其它过程。收发单元1902可以用于执行图13或图15或图16所示的实施例中由第一雷达探测装置所执行的全部收发操作,例如S1302,S1501,S1603,和/或用于支持本文所描述的技术的其它过程。其中,
处理单元1901,用于确定第一雷达的第一发射参数;
收发单元1902,用于根据第一发射参数发射信号;
其中,第一雷达包括多个发射天线,第一发射参数用于指示多个发射天线发射信号的时间间隔和/或发送起始时刻,或者,第一发射参数用于指示多个发射天线发送信号的频率间隔和/或频域起始位置。
作为一种可选的设计,处理单元1901具体用于:
将第一雷达的第一发射参数从第一值更新为第二值。
作为一种可选的设计,处理单元1901还用于:
获取来自第一通信装置的第一信息;
第一信息用于指示第一发射参数,和/或,第一信息用于指示至少一个第二雷达的第二发射参数,第一发射参数是根据第二发射参数确定的。
作为一种可选的设计,收发单元1902还用于:
向第一通信装置发送第二信息,其中,第二信息包括第一发射参数。
作为一种可选的设计,第一信息还用于指示如下的至少一种信息:
至少一个第二雷达的位置信息;
至少一个第二雷达的朝向信息;
至少一个第二雷达的照射角度。
作为一种可选的设计,处理单元1901具体用于:
按照预设调整粒度将第一发射参数从第一值更新为第二值,其中,预设调整粒度包括:一个脉冲重复周期PRT,一个探测帧,连续的多个探测帧,或者,天线的轮换周期。
在另一种设计下,可选的设计可以独立实现,也可以与上述任一可选的设计集成实现。
又或者作为再一种设计,处理单元1901可以用于执行图18所示的实施例中由第一雷达探测装置所执行的除了收发操作之外的全部操作,例如S1802,和/或用于支持本文所描述的技术的其它过程。收发单元1902可以用于执行图18所示的实施例中由第一雷达探测装置所执行的全部收发操作,例如S1801,和/或用于支持本文所描述的技术的其它过程。该雷达探测装置包括至少两个发射天线和至少一个接收天线,其中,
收发单元1902用于通过至少一个接收天线接收至少一个信号;
处理单元1901用于根据至少一个信号进行目标检测;
其中,至少一个信号对应至少两个检测信息集合,至少两个检测信息集合对应至少两 个发射天线,至少两个检测信息集合用于目标检测。
作为一种可选的设计,处理单元1901具体用于:
若至少两个检测信息集合存在至少一个空集,确定未检测到有效目标。
作为一种可选的设计,处理单元1901具体用于:
根据至少两个检测信息集合确定目标信息集合;
若目标信息集合为空集,确定未检测到有效目标;和/或,
若目标信息集合为非空集合,则确定目标信息集合指示至少一个有效目标,其中,至少一个有效目标的检测信息包含于至少两个检测信息集合中的每个检测信息集合中。
作为一种可选的设计,至少一个有效目标包括第一有效目标,处理单元1901还用于:
确定第一有效目标的第一特征参数;
其中,在至少两个检测信息集合中,第一有效目标的第一特征参数所对应的检测信息的取值相同;或者,
在至少两个检测信息集合中,第一有效目标的第一特征参数所对应的检测信息的取值的差值小于第一预设阈值。
作为一种可选的设计,处理单元1901具体用于:
根据至少一个信号以及至少两个检测信息集合确定第一特征参数。
作为一种可选的设计,第一检测目标的检测参数还包括第二特征参数,处理单元1901还用于:
确定第一检测目标的第二特征参数,其中,在至少两个检测信息集合中,第一有效目标的第二特征参数所对应的检测信息的取值相同;或者,
在至少两个检测信息集合中,第一有效目标的第二特征参数所对应的检测信息的取值的差值小于第二预设阈值。
作为一种可选的设计,至少一个接收天线包括至少两个接收天线,至少一个信号包括多个信号,处理单元1901还用于:
将多个信号转换到距离-多普勒-角度域,以确定检测信息。
在再一种设计下,可选的设计可以独立实现,也可以与上述任一可选的设计集成实现。
图20为本申请实施例提供的第一雷达探测装置的另一种可能的结构示意图。该第一雷达探测装置20可以包处理器2001、发射器2002以及接收器2003。其功能可分别与图19所展示的处理单元1901和收发单元1902的具体功能相对应,此处不再赘述。可选的,第一雷达探测装置20还可以包含存储器2004,用于存储程序指令和/或数据,以供处理器2001读取。
前述图2提供了一种雷达装置的结构示意图。参考上述内容,提出又一可选的方式。图21提供了第一雷达探测装置再一种可能的结构示意图。图19~图21所提供的第一雷达探测装置可以为实际通信场景中雷达装置的部分或者全部,或者可以是集成在雷达装置中或者位于雷达装置外部的功能模块,例如可以是芯片系统,具体以实现相应的功能为准,不对第一雷达探测装置结构和组成进行具体限定。
该可选的方式中,第一雷达探测装置21包括发射天线2101、接收天线2102以及处理器2103。进一步,所述第一雷达探测装置还包括混频器2104和/或振荡器2105。进一步,第一雷达探测装置21还可以包括低通滤波器和/或耦合器等。其中,发射天线2101和接收天线2102用于支持所述探测装置进行无线电通信,发射天线2101支持雷达信号的发射, 接收天线2102支持雷达信号的接收和/或反射信号的接收,以最终实现探测功能。处理器2103执行一些可能的确定和/或处理功能。进一步,处理器2103还控制发射天线2101和/或接收天线2102的操作。具体的,需要发射的信号通过处理器2103控制发射天线2101进行发射,通过接收天线2102接收到的信号可以传输给处理器2103进行相应的处理。第一雷达探测装置21所包含的各个部件可用于配合执行图9或图13或图15或图16或图18所示的实施例所提供的方法。可选的,第一雷达探测装置还可以包含存储器,用于存储程序指令和/或数据。其中,发射天线2101和接收天线2102可以是独立设置的,也可以集成设置为收发天线,执行相应的收发功能。
图22为本申请实施例提供的一种装置22的结构示意图。图22所示的装置22可以是第一雷达探测装置本身,或者可以是能够完成第一雷达探测装置的功能的芯片或电路,例如该芯片或电路可以设置在第一雷达探测装置中。图22所示的装置22可以包括处理器2201(例如处理单元1901可以通过处理器2001实现,处理器2001和处理器2201例如可以是同一部件)和接口电路2202(例如收发单元1902可以通过接口电路2202实现,发射器2002和接收器2003与接口电路2202例如为同一部件)。该处理器2201可以使得装置22实现图9或图13或图15或图16或图18所示的实施例所提供的方法中第一雷达探测装置所执行的步骤。可选的,装置22还可以包括存储器2203,存储器2203可用于存储指令。处理器2201通过执行存储器2203所存储的指令,使得装置22实现图9或图13或图15或图16或图18所示的实施例所提供的方法中第一雷达探测装置所执行的步骤。
进一步的,处理器2201、接口电路2202和存储器2203之间可以通过内部连接通路互相通信,传递控制和/或数据信号。存储器2203用于存储计算机程序,处理器2201可以从存储器2203中调用并运行计算机程序,以控制接口电路2202接收信号或发送信号,完成图9或图13或图15或图16或图18所示的实施例所提供的方法中第一雷达探测装置执行的步骤。存储器2203可以集成在处理器2201中,也可以与处理器2201分开设置。
可选地,若装置22为设备,接口电路2202可以包括接收器和发送器。其中,接收器和发送器可以为相同的部件,或者为不同的部件。接收器和发送器为相同的部件时,可以将该部件称为收发器。
可选地,若装置22为芯片或电路,则接口电路2202可以包括输入接口和输出接口,输入接口和输出接口可以是相同的接口,或者可以分别是不同的接口。
可选地,若装置22为芯片或电路,装置22也可以不包括存储器2203,处理器2201可以读取该芯片或电路外部的存储器中的指令(程序或代码)以实现图9或图13或图15或图16或图18所示的实施例所提供的方法中第一雷达探测装置执行的步骤。
可选地,若装置22为芯片或电路,则装置22可以包括电阻、电容或其他相应的功能部件,处理器2201或接口电路2202可以通过相应的功能部件实现。
作为一种实现方式,接口电路2202的功能可以考虑通过收发电路或收发的专用芯片实现。处理器2201可以考虑通过专用处理芯片、处理电路、处理器或通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的第一雷达探测装置。即,将实现处理器2201、接口电路2202的功能的程序代码存储在存储器2203中,处理器2201通过执行存储器2203存储的程序代码来实现处理器2201、接口电路2202的功能。
其中,以上列举的装置22中各模块或单元的功能和动作仅为示例性说明,装置22中 各功能单元可用于执行图9或图13或图15或图16或图18所示的实施例中第一雷达探测装置所执行的各动作或处理过程。这里为了避免赘述,省略其详细说明。
再一种可选的方式,当使用软件实现第一雷达探测装置时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地实现本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
需要说明的是,用于执行本申请实施例提供的检测方法或信号发送方法的上述探测装置中所包含的处理器可以是中央处理器(central processing unit,CPU),通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请实施例所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)存储器、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、电可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(compact disc read-only memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于探测装置中。当然,处理器和存储介质也可以作为分立组件存在于探测装置中。
可以理解的是,图19~图22仅仅示出了第一雷达探测装置的简化设计。在实际应用中,第一雷达探测装置可以包含任意数量的发射器,接收器,处理器,控制器,存储器以及其他可能存在的元件。
本申请实施例还提供一种通信系统,其包含执行本申请上述实施例所提到的至少一个雷达探测装置和/或至少一个中央节点等通信装置。所述中央节点用于根据所述至少一个雷达探测装置的发射参数,控制车辆的行驶和/或其他雷达探测装置的处理。所述中央节点可以位于车辆中,或者其他可能的位置,以实现所述控制为准。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述 功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种检测方法,其特征在于,应用于第一雷达,所述第一雷达包括至少两个发射天线和至少一个接收天线,所述方法包括:
    通过所述至少一个接收天线接收至少一个信号;
    根据所述至少一个信号进行目标检测;
    其中,所述至少一个信号对应至少两个检测信息集合,所述至少两个检测信息集合对应所述至少两个发射天线,所述至少两个检测信息集合用于所述目标检测。
  2. 如权利要求1所述的方法,其特征在于,根据所述至少一个信号进行目标检测,包括:
    若所述至少两个检测信息集合存在至少一个空集,确定未检测到有效目标。
  3. 如权利要求1所述的方法,其特征在于,根据所述至少一个信号进行目标检测,包括:
    根据所述至少两个检测信息集合确定目标信息集合;
    若所述目标信息集合为空集,确定未检测到有效目标;和/或,
    若所述目标信息集合为非空集合,则确定所述目标信息集合指示至少一个有效目标,其中,所述至少一个有效目标的检测信息包含于所述至少两个检测信息集合中的每个检测信息集合中。
  4. 如权利要求3所述的方法,其特征在于,所述至少一个有效目标包括第一有效目标,所述方法还包括:
    确定所述第一有效目标的第一特征参数;
    其中,在所述至少两个检测信息集合中,所述第一有效目标的所述第一特征参数所对应的检测信息的取值相同;或者,
    在所述至少两个检测信息集合中,所述第一有效目标的所述第一特征参数所对应的检测信息的取值的差值小于第一预设阈值。
  5. 如权利要求4所述的方法,其特征在于,确定所述第一有效目标的第一特征参数,包括:
    根据所述至少一个信号以及所述至少两个检测信息集合确定所述第一特征参数。
  6. 如权利要求4或5所述的方法,其特征在于,所述第一检测目标的检测参数还包括第二特征参数,所述方法还包括:
    确定所述第一检测目标的第二特征参数,其中,在所述至少两个检测信息集合中,所述第一有效目标的所述第二特征参数所对应的检测信息的取值相同;或者,
    在所述至少两个检测信息集合中,所述第一有效目标的所述第二特征参数所对应的检测信息的取值的差值小于第二预设阈值。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述至少一个接收天线包括至少两个接收天线,所述至少一个信号包括多个信号,所述方法还包括:
    将所述多个信号转换到距离-多普勒-角度域,以确定所述检测信息。
  8. 一种信号发送方法,其特征在于,包括:
    确定第一雷达的第一发射参数;
    根据所述第一发射参数发射信号;
    其中,所述第一雷达包括多个发射天线,所述第一发射参数用于指示所述多个发射天线发射信号的时间间隔和/或发送起始时刻,或者,所述第一发射参数用于指示所述多个发射天线发送信号的频率间隔和/或频域起始位置。
  9. 如权利要求8所述的方法,其特征在于,确定第一雷达的第一发射参数,包括:
    将所述第一雷达的第一发射参数从第一值更新为第二值。
  10. 如权利要求8或9所述的方法,其特征在于,所述方法还包括:
    获取来自第一通信装置的第一信息;
    所述第一信息用于指示所述第一发射参数,和/或,所述第一信息用于指示至少一个第二雷达的第二发射参数,所述第一发射参数是根据所述第二发射参数确定的。
  11. 如权利要求8-10任一所述的方法,其特征在于,所述方法还包括:
    向所述第一通信装置发送第二信息,其中,所述第二信息包括所述第一发射参数。
  12. 如权利要求10或11所述的方法,其特征在于,所述第一信息还用于指示如下的至少一种信息:
    所述至少一个第二雷达的位置信息;
    所述至少一个第二雷达的朝向信息;
    所述至少一个第二雷达的照射角度。
  13. 如权利要求9所述的方法,其特征在于,将所述第一雷达的第一发射参数从第一值更新为第二值,包括:
    按照预设调整粒度将所述第一发射参数从所述第一值更新为所述第二值,其中,所述预设调整粒度包括:一个脉冲重复周期PRT,一个探测帧,连续的多个探测帧,或者,天线的轮换周期。
  14. 一种信号发送方法,其特征在于,应用于第一雷达,所述第一雷达包括至少三个发射天线,所述至少三个发射天线包括第一发射天线、第二发射天线以及第三发射天线,所述方法包括:
    确定所述第一雷达的第一发射参数;
    通过所述至少三个发射天线,根据所述第一发射参数发送信号;
    其中,所述至少三个发射天线采用时分多路复用TDM发送信号,所述第一发射参数用于指示所述至少三个发射天线的信号发射的起始时刻,所述第一发射天线与所述第二发射天线的信号发射的起始时刻在时域上相邻,所述第二发射天线的信号发射的起始时刻与所述第三发射天线在时域上相邻,所述第一发射天线和所述第二发射天线的信号发射的起始时刻之间的时间间隔不同于所述第二发射天线和所述第三发射天线的信号发射的起始时刻之间的时间间隔;或者,
    所述至少三个发射天线采用频分多路复用FDM发送信号,所述第一发射参数用于指示所述至少三个发射天线的信号发射的中心频率,所述第一发射天线与所述第二发射天线的信号发射的中心频率在频率上相邻,所述第二发射天线的信号发射的中心频率与所述第三发射天线在频率上相邻,所述第一发射天线和所述第二发射天线的信号发射的中心频率之间的频率间隔不同于所述第二发射天线和所述第三发射天线的信号发射的中心频率之间的频率间隔。
  15. 一种雷达探测装置,其特征在于,所述雷达探测装置包括至少两个发射天线和至 少一个接收天线,所述雷达探测装置还包括:
    收发单元,用于通过所述至少一个接收天线接收至少一个信号;
    处理单元,用于根据所述至少一个信号进行目标检测;
    其中,所述至少一个信号对应至少两个检测信息集合,所述至少两个检测信息集合对应所述至少两个发射天线,所述至少两个检测信息集合用于所述目标检测。
  16. 如权利要求15所述的雷达探测装置,其特征在于,所述处理单元具体用于:
    若所述至少两个检测信息集合存在至少一个空集,确定未检测到有效目标。
  17. 如权利要求15所述的雷达探测装置,其特征在于,所述处理单元具体用于:根据所述至少两个检测信息集合确定目标信息集合;
    若所述目标信息集合为空集,确定未检测到有效目标;和/或,
    若所述目标信息集合为非空集合,则确定所述目标信息集合指示至少一个有效目标,其中,所述至少一个有效目标的检测信息包含于所述至少两个检测信息集合中的每个检测信息集合中。
  18. 如权利要求17所述的雷达探测装置,其特征在于,所述至少一个有效目标包括第一有效目标,所述处理单元还用于:
    确定所述第一有效目标的第一特征参数;
    其中,在所述至少两个检测信息集合中,所述第一有效目标的所述第一特征参数所对应的检测信息的取值相同;或者,
    在所述至少两个检测信息集合中,所述第一有效目标的所述第一特征参数所对应的检测信息的取值的差值小于第一预设阈值。
  19. 如权利要求18所述的雷达探测装置,其特征在于,所述处理单元具体用于:
    根据所述至少一个信号以及所述至少两个检测信息集合确定所述第一特征参数。
  20. 如权利要求18或19所述的雷达探测装置,其特征在于,所述第一检测目标的检测参数还包括第二特征参数,所述处理单元还用于:
    确定所述第一检测目标的第二特征参数,其中,在所述至少两个检测信息集合中,所述第一有效目标的所述第二特征参数所对应的检测信息的取值相同;或者,
    在所述至少两个检测信息集合中,所述第一有效目标的所述第二特征参数所对应的检测信息的取值的差值小于第二预设阈值。
  21. 如权利要求15-20任一项所述的雷达探测装置,其特征在于,所述至少一个接收天线包括至少两个接收天线,所述至少一个信号包括多个信号,所述处理单元还用于:
    将所述多个信号转换到距离-多普勒-角度域,以确定检测信息。
  22. 一种雷达探测装置,其特征在于,包括:
    处理单元,用于确定第一雷达的第一发射参数;
    收发单元,用于根据所述第一发射参数发射信号;
    其中,所述第一雷达包括多个发射天线,所述第一发射参数用于指示所述多个发射天线发射信号的时间间隔和/或发送起始时刻,或者,所述第一发射参数用于指示所述多个发射天线发送信号的频率间隔和/或频域起始位置。
  23. 如权利要求22所述的雷达探测装置,其特征在于,所述处理单元具体用于:
    将所述第一雷达的第一发射参数从第一值更新为第二值。
  24. 如权利要求22或23所述的雷达探测装置,其特征在于,所述处理单元还用于:
    获取来自第一通信装置的第一信息;
    所述第一信息用于指示所述第一发射参数,和/或,所述第一信息用于指示至少一个第二雷达的第二发射参数,所述第一发射参数是根据所述第二发射参数确定的。
  25. 如权利要求22-24任一所述的雷达探测装置,其特征在于,所述收发单元还用于:
    向所述第一通信装置发送第二信息,其中,所述第二信息包括所述第一发射参数。
  26. 如权利要求24或25所述的雷达探测装置,其特征在于,所述第一信息还用于指示如下的至少一种信息:
    所述至少一个第二雷达的位置信息;
    所述至少一个第二雷达的朝向信息;
    所述至少一个第二雷达的照射角度。
  27. 如权利要求23所述的雷达探测装置,其特征在于,所述处理单元具体用于:
    按照预设调整粒度将所述第一发射参数从所述第一值更新为所述第二值,其中,所述预设调整粒度包括:一个脉冲重复周期PRT,一个探测帧,连续的多个探测帧,或者,天线的轮换周期。
  28. 一种雷达探测装置,其特征在于,所述雷达探测装置包括至少三个发射天线,所述至少三个发射天线包括第一发射天线、第二发射天线以及第三发射天线,所述雷达探测装置包括:
    处理单元,用于确定所述第一雷达的第一发射参数;
    收发单元,用于通过所述至少三个发射天线,根据所述第一发射参数发送信号;
    其中,所述至少三个发射天线采用TDM发送信号,所述第一发射参数用于指示所述至少三个发射天线的信号发射的起始时刻,所述第一发射天线与所述第二发射天线的信号发射的起始时刻在时域上相邻,所述第二发射天线的信号发射的起始时刻与所述第三发射天线在时域上相邻,所述第一发射天线和所述第二发射天线的信号发射的起始时刻之间的时间间隔不同于所述第二发射天线和所述第三发射天线的信号发射的起始时刻之间的时间间隔;或者,
    所述至少三个发射天线采用FDM发送信号,所述第一发射参数用于指示所述至少三个发射天线的信号发射的中心频率,所述第一发射天线与所述第二发射天线的信号发射的中心频率在频率上相邻,所述第二发射天线的信号发射的中心频率与所述第三发射天线在频率上相邻,所述第一发射天线和所述第二发射天线的信号发射的中心频率之间的频率间隔不同于所述第二发射天线和所述第三发射天线的信号发射的中心频率之间的频率间隔。
  29. 一种雷达探测装置,其特征在于,所述雷达探测装置包括:
    存储器:用于存储指令;
    处理器,用于从所述存储器中调用并运行所述指令,使得所述雷达探测装置或者安装有所述雷达探测装置的设备执行如权利要求1~7或8~13或14中任意一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~7或8~13或14中任意一项所述的方法。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1~7或8~13或14中任意一项所述的方法。
PCT/CN2020/077304 2019-07-15 2020-02-28 一种检测方法、信号发送方法及装置 WO2021008139A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20840356.8A EP3992668A4 (en) 2019-07-15 2020-02-28 DETECTION METHOD, SIGNAL SENDING METHOD AND APPARATUS
US17/576,468 US20220137179A1 (en) 2019-07-15 2022-01-14 Detection method and signal sending method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910637405.9 2019-07-15
CN201910637405.9A CN112305543A (zh) 2019-07-15 2019-07-15 一种检测方法、信号发送方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/576,468 Continuation US20220137179A1 (en) 2019-07-15 2022-01-14 Detection method and signal sending method and apparatus

Publications (1)

Publication Number Publication Date
WO2021008139A1 true WO2021008139A1 (zh) 2021-01-21

Family

ID=74210174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077304 WO2021008139A1 (zh) 2019-07-15 2020-02-28 一种检测方法、信号发送方法及装置

Country Status (4)

Country Link
US (1) US20220137179A1 (zh)
EP (1) EP3992668A4 (zh)
CN (1) CN112305543A (zh)
WO (1) WO2021008139A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020107222A1 (de) * 2020-03-17 2021-09-23 HELLA GmbH & Co. KGaA Verfahren zur Bestimmung einer Richtungsinformation
CN113541326A (zh) * 2021-06-29 2021-10-22 北京有感科技有限责任公司 无线充电系统
SE545649C2 (en) * 2022-02-17 2023-11-21 Topgolf Sweden Ab Doppler radar coexistence

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707266A (zh) * 2012-05-24 2012-10-03 北京理工大学 一种具有抗干扰和多目标识别功能的雷达及其检测方法
US20180172813A1 (en) * 2016-12-15 2018-06-21 Texas Instruments Incorporated Maximum Measurable Velocity in Frequency Modulated Continuous Wave (FMCW) Radar
US20180348339A1 (en) * 2017-05-31 2018-12-06 Google Llc Radar Modulation For Radar Sensing Using a Wireless Communication Chipset
CN109407088A (zh) * 2017-08-18 2019-03-01 恩智浦有限公司 用于检测并缓解相互干扰的雷达单元、集成电路和方法
CN109752718A (zh) * 2017-11-08 2019-05-14 通用汽车环球科技运作有限责任公司 用于避免干扰的伪随机啁啾信号调度系统和方法
WO2019113517A1 (en) * 2017-12-07 2019-06-13 Texas Instruments Incorporated Radar processing chain for fmcw radar systems
CN109991577A (zh) * 2019-04-15 2019-07-09 西安电子科技大学 基于fda-ofdm的低截获发射信号设计方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1006980C2 (nl) * 1997-09-09 1999-03-10 Hollandse Signaalapparaten Bv Antennesysteem.
US7151483B2 (en) * 2004-05-03 2006-12-19 Raytheon Company System and method for concurrent operation of multiple radar or active sonar systems on a common frequency
US9223009B1 (en) * 2011-12-19 2015-12-29 Lockheed Martin Corporation Method and system for electromagnetic interference (EMI) mitigation using an auxiliary receiver
US9673957B2 (en) * 2013-09-19 2017-06-06 Telefonaktiebolaget Lm Ericsson (Publ) System and method for providing interference characteristics for interference mitigation
CN104502893B (zh) * 2014-12-10 2017-05-10 北京智谷睿拓技术服务有限公司 定位方法、定位装置以及用户设备
CN104502900B (zh) * 2015-01-13 2017-03-29 武汉大学 一种单频网雷达多目标跟踪方法
CN106338727B (zh) * 2016-09-05 2019-03-05 南京理工大学 一种车载辅助驾驶雷达的目标检测方法
WO2018106467A1 (en) * 2016-12-05 2018-06-14 Intel IP Corporation Vehicle-to-everything positioning technique
CN106814358A (zh) * 2017-03-31 2017-06-09 山东省科学院自动化研究所 一种用于超宽带穿墙雷达中多人体目标检测的系统及方法
US10861327B2 (en) * 2018-01-12 2020-12-08 Qualcomm Incorporated Vehicle ranging and positioning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707266A (zh) * 2012-05-24 2012-10-03 北京理工大学 一种具有抗干扰和多目标识别功能的雷达及其检测方法
US20180172813A1 (en) * 2016-12-15 2018-06-21 Texas Instruments Incorporated Maximum Measurable Velocity in Frequency Modulated Continuous Wave (FMCW) Radar
US20180348339A1 (en) * 2017-05-31 2018-12-06 Google Llc Radar Modulation For Radar Sensing Using a Wireless Communication Chipset
CN109407088A (zh) * 2017-08-18 2019-03-01 恩智浦有限公司 用于检测并缓解相互干扰的雷达单元、集成电路和方法
CN109752718A (zh) * 2017-11-08 2019-05-14 通用汽车环球科技运作有限责任公司 用于避免干扰的伪随机啁啾信号调度系统和方法
WO2019113517A1 (en) * 2017-12-07 2019-06-13 Texas Instruments Incorporated Radar processing chain for fmcw radar systems
CN109991577A (zh) * 2019-04-15 2019-07-09 西安电子科技大学 基于fda-ofdm的低截获发射信号设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3992668A4 *

Also Published As

Publication number Publication date
EP3992668A4 (en) 2022-08-03
US20220137179A1 (en) 2022-05-05
EP3992668A1 (en) 2022-05-04
CN112305543A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2021008139A1 (zh) 一种检测方法、信号发送方法及装置
WO2020156133A1 (zh) 一种目标物探测方法及对应的探测装置
US11754668B2 (en) Detection method, detection apparatus, and system
US20210239824A1 (en) Radar signal processing method and apparatus
US20210356556A1 (en) Radio Signal Sending Method and Apparatus
US20210396839A1 (en) Method for Detecting Target Object by Using Radio Signal and Related Apparatus
US20230014866A1 (en) Signal processing method and apparatus, and storage medium
JP2022093367A (ja) 情報測定方法および情報測定装置
US20220082655A1 (en) Radar signal sending method and device
WO2020259636A1 (zh) 一种通信方法及装置
US20220204004A1 (en) Information Reporting Method, Information Receiving Method, and Apparatus
WO2023212935A1 (zh) 一种信号发送方法、接收方法及对应装置
EP4276490A1 (en) Interference listening method and device, and radar
JP2023034316A (ja) 電子機器、電子機器の制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020840356

Country of ref document: EP

Effective date: 20220125