CN112567262B - 一种雷达系统及车辆 - Google Patents

一种雷达系统及车辆 Download PDF

Info

Publication number
CN112567262B
CN112567262B CN201980053320.4A CN201980053320A CN112567262B CN 112567262 B CN112567262 B CN 112567262B CN 201980053320 A CN201980053320 A CN 201980053320A CN 112567262 B CN112567262 B CN 112567262B
Authority
CN
China
Prior art keywords
array
virtual
antenna array
horizontal
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980053320.4A
Other languages
English (en)
Other versions
CN112567262A (zh
Inventor
劳大鹏
刘劲楠
王犇
周沐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202111422772.0A priority Critical patent/CN114280593A/zh
Priority to CN202111579671.4A priority patent/CN114397626A/zh
Publication of CN112567262A publication Critical patent/CN112567262A/zh
Application granted granted Critical
Publication of CN112567262B publication Critical patent/CN112567262B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/325Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of coded signals, e.g. P.S.K. signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna

Abstract

一种雷达系统(400)及车辆,用以在获得较高角度分辨率的前提下,减少发射天线和接收天线的数量,从而达到减少设计和加工难度。雷达系统(400)包括:发射器(401),用于发射雷达信号;接收器(402),用于接收雷达信号经目标反射后的回波信号;其中,发射器(401)中的发射天线阵列和接收器(402)中的接收天线阵列用于形成虚拟线性阵列和虚拟平面阵列,虚拟线性阵列中包括在第一方向上的均匀线阵,虚拟平面阵列中包括均匀面阵;均匀线阵中相邻两个阵元之间的第一间距小于均匀面阵中在第一方向上相邻的两个阵元之间的第二间距。

Description

一种雷达系统及车辆
技术领域
本申请涉及传感器技术领域,尤其涉及一种雷达系统及车辆。
背景技术
随着自动驾驶技术的发展,对车载传感器的感知能力提出了更高的要求。对于车载雷达来说,为了提升目标测量精度和目标分辨能力,通常从距离分辨率、速度分辨率和角度分辨率三个维度提升雷达的分辨率。其中,提升角度分辨率可以通过多入多出(multipleinput multiple output,MIMO)虚拟阵列的方式增大虚拟孔径实现,即通过多个发射通道和多个接收通道虚拟出更大的阵列,增大天线的孔径以获得更高的角度分辨率。
示例性地,现有技术中采用的阵列方案可以如图1所示。在该方案中,发射天线阵列1和发射天线阵列2均包含3*8个发射阵元,以形成48个发射通道;接收天线阵列1和接收天线阵列2均包含1*24个接收阵元,以形成48个接收通道。采用图1所示的天线排布方式,发射天线阵列和接收天线阵列可以虚拟出一个包含48*48个虚拟通道的均匀平面阵列,如图2所示。在图2所示的均匀平面阵列中包括144*16个虚拟通道,其中,水平方向的虚拟通道数为24*6=144,垂直方向的虚拟通道数为8*2=16。
采用图1所示的方案,由于虚拟天线阵列为均匀的平面阵列,其水平方向和垂直方向的角度匹配简单,因而为了在水平方向和垂直方向达到较高的分辨率,需要设置较多的发射阵元和接收阵元。设置较多的天线,会增加设计和加工难度,同时也会增加成本。
综上,亟需一种雷达系统,在获得较高角度分辨率的前提下,减少发射阵元和接收阵元的数量,从而达到减少设计和加工难度。
发明内容
本申请实施例提供了一种雷达系统及车辆,用以在获得较高角度分辨率的前提下,减少发射阵元和接收阵元的数量,从而达到减少设计和加工难度。
第一方面,本申请实施例提供了一种雷达系统,该雷达系统包括:发射器,用于发射雷达信号;接收器,用于接收雷达信号经目标反射后的回波信号;其中,发射器中的发射天线阵列和接收器中的接收天线阵列用于形成虚拟线性阵列和虚拟平面阵列,虚拟线性阵列中包括在第一方向上的均匀线阵,虚拟平面阵列中包括均匀面阵;均匀线阵中相邻两个阵元之间的第一间距小于均匀面阵中在第一方向上相邻的两个阵元之间的第二间距。
其中,雷达信号为调频连续波FMCW、多频移键控MFSK、调相连续波PMCW中的任一种。回波信号可用于确定目标的水平方位角和垂直方位角。
其中,第一方向可以为水平方向或垂直方向。若第一方向为水平方向,则虚拟线性阵列用于确定目标的水平方位角测量值,虚拟平面阵列用于确定目标的垂直方位角测量值和水平方位角测量值;若第一方向为垂直方向,则虚拟线性阵列用于确定目标的垂直方位角测量值,虚拟平面阵列用于确定目标的垂直方位角测量值和水平方位角测量值。在本申请的附图及示例中,以第一方向为水平方向为例进行示意。
在第一方面提供的雷达系统中,由于密集的均匀线阵可以保证在第一方向上较大的视场角FOV,因而可以使得通过均匀线阵对第一方向对应的方位角(例如水平方位角)进行解算(即根据虚拟天线阵列中每个阵元的观测结果计算目标的方位角)时的解算结果更为准确。同时,由于均匀线阵可以满足第一方向上的FOV要求,因此均匀面阵中阵元间在第一方向上的间距可以设置得较大(FOV较小,那么在均匀线阵的FOV范围内多个角度方向可能会混叠),配合均匀线阵的FOV获得第一方向上的正确角度信息。也就是说,对应均匀面阵而设置的天线阵列中可以仅包括数量较少的阵元,从而到达减少发射阵元和接收阵元的数量。当均匀线阵和均匀面阵在第一方向上的口径相同时,均匀线阵和均匀阵在第一方向上获得的角度分辨率相同。当均匀线阵在第一方向上的口径大于均匀面阵在第一方向上的口径,均匀线阵在第一方向上获得的角度分辨率更高,可以把在均匀线阵中获得的更高的第一方向的角度信息代入均匀面阵中,解算第二方向(例如可以是垂直方向)上的角度信息。
因此,采用第一方面提供的雷达系统,可以通过发射天线阵列和接收天线阵列虚拟出一个虚拟线性阵列和一个虚拟平面阵列由于虚拟线性阵列和虚拟平面阵列在第一方向上的阵元密度不同(第一间距小于第二间距),因而通过虚拟线性阵列和虚拟平面阵列分别计算第一方向对应的方位角时可以获得不同FOV:虚拟线性阵列在第一方向的FOV比虚拟平面阵列在第一方向的FOV更大,通过虚拟线性阵列计算得到的第一方向的方位角的结果更为准确。因此,通过虚拟线性阵列和虚拟平面阵列这两个阵列的观测结果确定目标的方位角时,可以实现不同FOV的匹配。由于两个虚拟阵列的匹配度比现有技术中的虚拟天线阵列的匹配度复杂,因而可以通过在发射器和接收器中设置较少数量的天线实现本申请中的虚拟线性阵列和虚拟平面阵列。此外,由于虚拟线性阵列和虚拟平面阵列的匹配度复杂,因而通过对两个阵列的解算可以获得较高的角度分别率。也就是说,采用第一方面提供的方案,可以通过较少的发射天线和接收天线实现目标的垂直方位角和水平方位角的高分辨率的解算,从而在提高雷达系统的角度分辨率的情况下,降低天线阵列的设计和加工难度,同时减少雷达系统的成本。
在一种可能的设计中,第一间距为d1,第二间距为d2,d1和d2满足如下关系:
M*d1=N*d2
其中,M和N均为正整数,M>N。采用这种方式,可以使得工程运算更为简单。
在一种可能的设计中,第一间距小于或等于雷达信号的载波波长的一半。在这种情况下,利用虚拟线性阵列确定目标的水平方位角测量值时不会出现角度模糊的情况,因而在确定目标的水平方位角时的解算方式更为简便。
此外,第一方面提供的雷达系统还可以包括处理单元,该处理单元用于根据回波信号确定目标的水平方位角和垂直方位角。通过处理单元可以确定目标的水平方位角和垂直方位角,从而帮助系统对目标的位置进行判断,进而根据目标位置进行相应操作(例如规划自动驾驶的路线)。
具体地,处理单元确定目标的水平方位角和垂直方位角的方式可以是:根据回波信号分别确定虚拟线性阵列对雷达信号的观测结果以及虚拟平面阵列对雷达信号的观测结果;根据虚拟线性阵列对雷达信号的观测结果以及虚拟平面阵列对雷达信号的观测结果确定目标的水平方位角和垂直方位角。也就是说,接收天线阵列接收到回波信号后,处理单元403根据接收天线阵列中每个接收天线接收到的信号,可以解算出虚拟线性阵列对雷达信号的观测结果以及虚拟平面阵列对雷达信号的观测结果。这两种观测结果可以用于解算目标的水平方位角和垂直方位角。
在一种可能的设计中,处理单元具体用于:根据虚拟线性阵列对雷达信号的观测结果确定目标的第一候选水平方位角;根据虚拟平面阵列对雷达信号的观测结果确定目标的第二候选水平方位角以及候选垂直方位角;根据第一候选水平方位角、第二候选水平方位角以及候选垂直方位角确定目标的水平方位角和垂直方位角。采用上述方案,可以结合虚拟线性阵列和虚拟平面阵列对回波信号的观测结果,确定目标的水平方位角和垂直方位角。
其中,处理单元可以根据虚拟线性阵列对雷达信号的观测结果,通过数字波束合成DBF或者快速傅里叶变换FFT方式确定第一候选水平方位角。
同样地,处理单元可以根据虚拟平面阵列对雷达信号的观测结果,通过DBF或者FFT方式确定第二候选水平方位角和候选垂直方位角。
利用虚拟线性阵列确定目标的水平方位角测量值可能会出现角度模糊的情况,即第一候选水平方位角可能包括多个方位角,其中仅有部分水平方位角是目标的真实水平方位角。此外,由于虚拟平面阵列中水平方向上虚拟通道间的间隔比较大,仅靠虚拟平面阵列得到的第二候选水平方位角θ2是存在模糊的。如果通过虚拟线性阵列测量得到的第一候选水平方位角θ1无模糊,将θ1代入虚拟平面阵列的响应矩阵中可以直接求得目标的二维角度信息
Figure GPA0000300543380000051
如果通过线阵测量得到的第一候选水平方位角θ1存在模糊,则需要联合第一候选水平方位角θ1和第二候选水平方位角θ2,利用中国余数定理确定目标的真实水平方位角θ。然后,再将θ代入虚拟平面阵列的响应矩阵中求得目标的二维角度信息
Figure GPA0000300543380000052
在一种可能的设计中,目标的水平方位角包括第一水平方位角和第二水平方位角,目标的垂直方位角包括第一垂直方位角和第二垂直方位角;处理单元还用于:确定第一水平方位角对应的雷达散射截面积RCS大于第二水平方位角对应的RCS;确定第一垂直方位角对应的RCS大于第二垂直方位角对应的RCS;确定第一水平方位角和第一垂直方位角为目标中的第一子目标的位置,第二水平方位角和第二垂直方位角为目标中的第二子目标的位置。采用上述方案,可以在雷达系统周围存在多个目标时,对每个目标的水平方位角和垂直方位角进行匹配:若解算得到两个水平方位角以及两个垂直方位角(即存在两个目标),则对应RCS较大的水平方位角和垂直方位角为一组,代表其中一个目标的二维角度信息;对应RCS较小的水平方位角和垂直方位角为一组,代表另一个目标的二维角度信息。
第一方面提供的雷达系统中,发射天线阵列可以包括垂直发射天线阵列和水平发射天线阵列组成。其中,水平发射天线阵列和接收天线阵列形成虚拟线性阵列,垂直发射天线阵列和接收天线阵列形成虚拟平面阵列。采用上述方案,提供了一种形成虚拟线性阵列和虚拟平面阵列的天线阵列的实现方式。
实际应用中,在发射天线阵列和接收天线阵列的位置已经确定的情况下,虚拟天线阵列的位置是可以唯一确定的:假设Pm是Ntx个发射天线中天线m(m=0,1,...,Ntx-1)的坐标,Qn是Nrx个接收天线中天线n,(n=0,1,...,Nrx-1)的坐标位置,那么形成的虚拟天线阵列中阵元的位置可以由Pm+Qn唯一确定,在m遍历Ntx个发射天线、n遍历Nrx个接收天线后即可确定虚拟天线阵列的位置。
具体应用到第一方面提供的雷达系统中,通过遍历水平发射天线阵列中的发射天线和接收天线阵列中的接收天线,可以唯一确定虚拟线性阵列的位置;通过遍历垂直发射天线阵列中的发射天线和接收天线阵列中的接收天线,可以唯一确定虚拟平面阵列的位置。因此,对虚拟线性阵列以及虚拟平面阵列的位置限定,也可以视为是对真实的发射天线阵列和接收天线阵列的位置限定。
实际实现时,由于芯片的管脚和颗粒不同,发射天线阵列和接收天线阵列可以有不同的实现方式,下面列举其中的两种。
第一种
接收天线阵列包括沿水平方向单排排布的k个接收阵元;垂直发射天线阵列包括分别位于接收天线阵列两侧的第一发射天线阵列和第二发射天线阵列,第一发射天线阵列和第二发射天线阵列均包括沿垂直方向单排排布的m个发射阵元;水平发射天线阵列包括分别与第一发射天线阵列和第二发射天线阵列邻接的第三发射天线阵列和第四发射天线阵列,第三发射天线阵列和第四发射天线阵列均包括沿水平方向单排排布的n个发射阵元。采用第一种实现方式,虚拟线性阵列包括2*n*k个沿水平方向单排排布的虚拟通道;虚拟平面阵列包括2*m*k个虚拟通道,其中水平方向的虚拟通道数为2*k,垂直方向的虚拟通道数为m。
第二种
接收天线阵列包括沿水平方向单排排布的k个接收阵元;垂直发射天线阵列位于接收阵列的一侧,垂直发射天线阵列包括沿垂直方向单排排布的m个发射阵元;水平发射天线阵列与垂直发射天线阵列邻接,水平发射天线阵列包括沿水平方向单排排布的n个发射阵元。采用第二种实现方式,虚拟线性阵列包括n*k个沿水平方向单排排布的虚拟通道;虚拟平面阵列包括m*k个虚拟通道,其中水平方向的虚拟通道数为k,垂直方向的虚拟通道数为m。
第二方面,本申请实施例提供了一种车辆,该车辆包括上述第一方面及其任一种可能的设计中提供的雷达系统以及电子控制单元ECU。其中,雷达系统用于:发射雷达信号;接收雷达信号经目标反射后的回波信号;根据回波信号确定目标的水平方位角和垂直方位角;ECU用于:根据目标的水平方位角和垂直方位角确定车辆的行使路线。
采用第二方面提供的车辆,可以通过雷达系统对目标的位置的测量,实现行驶路线的规划,进而实现自动驾驶。
附图说明
图1为现有技术提供的一种雷达天线阵列方案的示意图;
图2为现有技术提供的一种虚拟天线阵列的示意图;
图3为本申请实施例提供的一种MIMO雷达的结构示意图;
图4为本申请实施例提供的一种雷达系统的结构示意图;
图5为本申请实施例提供的第一种虚拟天线阵列的示意图;
图6为本申请实施例提供的一种雷达系统中的天线阵列的示意图;
图7为本申请实施例提供的第二种虚拟天线阵列的示意图;
图8为本申请实施例提供的另一种雷达系统中的天线阵列的示意图;
图9为本申请实施例提供的第三种虚拟天线阵列的示意图;
图10为本申请实施例提供的另一种雷达系统的结构示意图;
图11为本申请实施例提供的第一种虚拟线性阵列和虚拟平面阵列的响应示意图;
图12为本申请实施例提供的第二种虚拟线性阵列和虚拟平面阵列的响应示意图;
图13为本申请实施例提供的第三种虚拟线性阵列和虚拟平面阵列的响应示意图;
图14为本申请实施例提供的第一种虚拟平面阵列的响应示意图;
图15为本申请实施例提供的第二种虚拟平面阵列的响应示意图;
图16为本申请实施例提供的第四种虚拟线性阵列和虚拟平面阵列的响应示意图;
图17为本申请实施例提供的第三种虚拟平面阵列的响应示意图;
图18为本申请实施例提供的第四种虚拟平面阵列的响应示意图;
图19为本申请实施例提供的第五种虚拟线性阵列和虚拟平面阵列的响应示意图;
图20为本申请实施例提供的第五种虚拟平面阵列的响应示意图;
图21为本申请实施例提供的一种车辆的结构示意图。
具体实施方式
通常,雷达系统可以通过MIMO虚拟阵列的方式增大虚拟孔径,以提升角度分辨率。
具体地,本申请实施例中,MIMO雷达系统可以包括天线阵列、微波集成电路(monolithic microwave integrated circuit,MMIC)和处理单元。天线阵列可以包括多个发射天线和多个接收天线,如图3所示。
其中,微波集成电路用于产生雷达信号,进而通过天线阵列将雷达信号发出。雷达信号发出后,经目标反射后形成回波信号,回波信号被接收天线接收。微波集成电路还用于对天线阵列接收到的回波信号进行变换和采样等处理,并将处理后的回波信号传输至处理单元。
其中,处理单元用于对回波信号进行快速傅里叶变换(Fast FourierTransformation,FFT)、信号处理等操作,从而根据接收到的回波信号确定目标的距离、速度、方位角等信息。具体地,该处理单元可以是微处理器(microcontroller unit,MCU)、中央处理器(central process unit,CPU)、数字信号处理器(digital signal processor,DSP)、现场可编程门阵列(field-programmable gate array,FPGA)等具有处理功能的器件。
其中,天线阵列中包括多个发射天线和多个接收天线。发射天线用于发射雷达信号,接收天线用于接收雷达信号经目标反射后形成的回波信号。天线阵列包括多个发射天线和多个接收天线,即包括多个发射通道和多个接收通道,因而天线阵列可以虚拟成包括多个虚拟收发通道的虚拟阵列,处理单元将接收到的回波信号折算成虚拟阵列的观测结果,即可根据虚拟阵列的观测结果进行处理和解算,获取目标的距离、速度、方位角等信息。
需要说明的是,本申请实施例中所述的雷达系统可以应用于多种领域,示例性地,本申请实施例中的雷达系统包括但不限于车载雷达、路边交通雷达,无人机雷达。
现有技术中,通常通过图1所示的雷达天线阵列方案形成图2所示的虚拟天线阵列(virtual antenna array)。图2所示的虚拟天线阵列为一个144*16的均匀二维阵,水平方向的虚拟通道数为24*6=144,垂直方向的虚拟通道数为8*2=16。
由于图2所示的虚拟天线阵列为均匀的平面阵列,其水平方向和垂直方向的角度匹配简单,因而为了在水平方向和垂直方向达到较高的分辨率,需要设置较多的发射阵元和接收阵元,从而增加水平方向和垂直方向的虚拟通道数,提高水平方位角和垂直方位角的计算精度。
但是,在发射天线和接收天线数目较多的情况下,天线阵列的设计和加工难度会增加(例如,由于发射天线间隔小,因而需要通过打孔实现对天线的馈电,对设计和加工要求较高),此外,天线阵列还会占用芯片上较大的空间,因此图1所示的天线阵列方案虽然可以在一定程度上提升角度分辨率,但是设计和加工难度大,成本也较高。
本申请实施例提供一种雷达系统及车辆,用以在获得较高角度分辨率的前提下,减少发射阵元和接收阵元的数量,从而达到减少设计和加工难度。
另外由于发射阵元连接芯片中发射通道,接收阵元连接芯片中接收通道,减少发射阵元或接收阵元的数量即对应减少芯片中发射通道和接收通道的数量,并且减少对应收发通道数的存储和处理,因而采用本申请提供方案也可以达到降低芯片面积、芯片成本和芯片功耗的目标,从而降低雷达模组的体积、成本和功耗。
需要说明的是,本申请实施例中,多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请中所提到的“耦合”,是指电学连接,具体可以包括直接连接或者间接连接两种方式。下面,对本申请实施例的应用场景加以简单介绍。
下面将结合附图对本申请实施例作进一步地详细描述。
参见图4,本申请实施例提供的雷达系统400包括发射器401和接收器402。
发射器401,用于发射雷达信号。
接收器402,用于接收雷达信号经目标反射后的回波信号。
其中,该回波信号可以用于确定目标的水平方位角和垂直方位角。雷达信号可以为调频连续波(frequency modulated continuous wave,FMCW)、多频移键控(multiplefrequency-shift keying,MFSK)、调相连续波(phase modulated continuous wave,PMCW)中的任一种。当然,雷达信号也可以采用其他汽车毫米波雷达所使用的波形,本申请对此不做限定。
其中,发射器401中的发射天线阵列和接收器402中的接收天线阵列用于形成虚拟线性阵列(也可以称为“一维线阵”)和虚拟平面阵列(也可以称为“二维面阵”),虚拟线性阵列中包括在第一方向上的均匀线阵,虚拟平面阵列中包括均匀面阵;均匀线阵中相邻两个阵元(即虚拟通道)之间的第一间距d1小于均匀面阵中在第一方向上相邻的两个阵元(即虚拟通道)之间的第二间距d2
具体地,第一方向可以为水平方向,也可以为垂直方向。若第一方向为水平方向,则虚拟线性阵列用于确定目标的水平方位角测量值,虚拟平面阵列用于确定目标的垂直方位角测量值和水平方位角测量值;若第一方向为垂直方向,则虚拟线性阵列用于确定目标的垂直方位角测量值,虚拟平面阵列用于确定目标的垂直方位角测量值和水平方位角测量值。在本申请的附图及示例中,以第一方向为水平方向为例进行示意。
需要说明的是,本申请实施例中所述的水平方向和垂直方向,与发射天线阵列和接收天线阵列所形成的虚拟天线阵列(虚拟线性阵列和虚拟平面阵列)的位置相关。以第一方向为水平方向为例,那么水平方向可以理解为虚拟线性阵列中阵元依次排布的方向,垂直方向可以理解为虚拟天线阵列所在的平面内、与水平方向垂直的方向。示例性地,本申请实施例中,水平方向和垂直方向均是相对于配备雷达系统400的车辆所行驶的地面而言的。
此外,本申请实施例中,对均匀线阵和均匀面阵可以由如下理解:均匀线阵包括在第一方向上单排排列的多个阵元,且每两个相邻的阵元之间的间距相等。均匀面阵可以视为由多个均匀线阵沿着与第一方向垂直的第二方向排列后组成,每个均匀线阵包括第一方向单排排列的多个阵元。在均匀面阵中,在第一方向上相邻的两个阵元间的间距相等,在第二方向上相邻的两个阵元间的间距相等。比如,均匀面阵由p*q个阵元组成,即该均匀面阵由q个均匀线阵沿着第二方向等间距排列后组成,每个均匀线阵包括在第一方向上单排排列的p个阵元。在每个均匀线阵中,相邻的两个阵元间的间距相等。
示例性地,虚拟线性阵列和虚拟平面阵列的一种可能的分布形式可如图5所示。以第一方向为水平方向为例,从图5可以看出,虚拟线性阵列中包括一个沿水平方向单排排布的均匀线阵,该均匀线阵包括40个阵元;虚拟平面阵列包括两个均匀面阵,每个均匀面阵包括16*4个阵元。在水平方向上,均匀线阵中两个阵元之间的第一间距大于均匀面阵中两个阵元之间的第二间距。
与现有技术不同的是,本申请实施例中,通过发射器401中的发射天线阵列和接收器402中的接收天线阵列可以虚拟出一个虚拟线性阵列和一个虚拟平面阵列。虚拟线性阵列中包括第一方向上的均匀线阵,虚拟平面阵列中包括均匀面阵。其中,虚拟线性阵列中包括的均匀线阵的数量可以为一个或多个,虚拟平面阵列中包括的均匀面阵的数量也可以为一个或多个。
其中,虚拟线性阵列中包括在第一方向上的均匀线阵,其具体含义可以是:虚拟线性阵列中包括一个或多个第一方向上的均匀线阵。若包括多个第一方向上的均匀线阵,本申请中仅限定可以通过插值的方式在虚拟线性阵列中找到均匀线阵,并不限定虚拟线性阵列为均匀的线性阵列。
同样地,虚拟平面阵列中包括均匀面阵,其具体含义可以是:虚拟平面阵列中包括一个或多个均匀面阵。若包括多个均匀面阵,本申请中仅限定可以通过插值的方式在虚拟平面阵列中找到均匀面阵,并不限定虚拟平面阵列为均匀的平面阵列。
特别地,均匀线阵的排布比均匀面阵的排布密集。采用这种方式,由于密集的均匀线阵可以保证在第一方向上较大的视场角(field of view,FOV),因而可以使得通过均匀线阵对第一方向对应的方位角(例如水平方位角)进行解算(即根据虚拟天线阵列中每个阵元的观测结果计算目标的方位角)时的解算结果更为准确。同时,由于均匀线阵可以满足第一方向上的FOV要求,因此均匀面阵中阵元间在第一方向上的间距可以设置得较大(FOV较小,那么在均匀线阵的FOV范围内多个角度方向可能会混叠),配合均匀线阵的FOV获得第一方向上的正确角度信息。也就是说,对应均匀面阵而设置的天线阵列中可以仅包括数量较少的阵元,从而到达减少发射阵元和接收阵元的数量。当均匀线阵和均匀面阵在第一方向上的口径相同时,均匀线阵和均匀阵在第一方向上获得的角度分辨率相同。当均匀线阵在第一方向上的口径大于均匀面阵在第一方向上的口径,均匀线阵在第一方向上获得的角度分辨率更高,可以把在均匀线阵中获得的更高的第一方向的角度信息代入均匀面阵中,解算第二方向(例如可以是垂直方向)上的角度信息。因而采用本申请的方案,与现有技术相比,可以在第一方向上获得相同的角度分辨率,但是需要的阵元数更少。
在一种可能的示例中,若第一间距为d1、第二间距为d2,则d1和d2可以满足如下关系:M*d1=N*d2;其中,M和N均为正整数,M>N。
以第一方向为水平方向为例,通过发射器401和接收器402虚拟出的虚拟线性阵列,可以确定目标的水平方位角测量值,通过发射器401和接收器402虚拟出的虚拟平面阵列,可以确定目标的水平方位角测量值和垂直方位角测量值。在实际应用中,当均匀线阵或均匀面阵中水平方向的阵元的间隔属于某一范围时,则利用虚拟线性阵列确定的水平方位角可能会存在角度模糊的情况(即在雷达系统视场角范围内,一个目标出现多个测量值)。因此,通过虚拟线性阵列和虚拟平面阵列分别获取目标的水平方位角的测量值之后,可以利用中国余数定理确定目标的真实水平方位角。
下面对模糊的情况进行一些说明:通常,定义不模糊的FOV为FOV=2*arcsin(λ/2d),d为阵元间间隔。不难看出,d越大,不模糊的FOV越小。假设均匀线阵的FOV为FOV1,均匀面阵在第一方向上的FOV为FOV2。由于d1≤d2,那么FOV2≤FOV1。那么对于在FOV1内的目标对应的角度θ1,在均匀面阵的第一方向上测量时,仅能获得FOV2内的角度θ2。目标在第一方向上的真实角度θ=k1*FOV1+θ1=k2*FOV2+θ2,其中k1和k2分别对应系统设计FOV内FOV1和FOV2的混叠系数。FOV1混叠的情况下,k1取不同值时对应θ可以取到不同值,θ取到的不同值可以视为一个目标的多个测量值;FOV1不混叠的情况k1取0。同样地,根据均匀面阵解算得到的θ2也存在模糊的情况,k2取不同值时对应θ可以取到不同值,θ取到的不同值可以视为一个目标的多个测量值。
具体地,第一间距可以小于或等于雷达信号的载波波长的一半。若第一间距小于或等于雷达信号的载波波长的一半,则利用虚拟线性阵列确定目标的水平方位角测量值时不会出现角度模糊的情况,因而在确定目标的水平方位角时的解算方式更为简便。当然,第一间距也可以大于雷达信号的载波波长的一半,此时利用虚拟线性阵列确定目标的水平方位角测量值时会出现角度模糊的情况,因而在确定目标的真实水平方位角时还需利用前述中国余数定理确定。
采用本申请实施例的方案,可以通过发射器401中的发射天线阵列和接收器402中的接收天线阵列虚拟出一个虚拟线性阵列和一个虚拟平面阵列,其中仅虚拟线性阵列中的阵元较密集,虚拟平面阵列中的阵元相对稀疏,因而可以通过较少的发射天线和较少的接收天线实现上述虚拟线性阵列和虚拟平面阵列。由于虚拟线性阵列和虚拟平面阵列在第一方向上的阵元密度不同(第一间距小于第二间距),因而通过虚拟线性阵列和虚拟平面阵列分别计算第一方向对应的方位角时可以获得不同FOV:虚拟线性阵列在第一方向的FOV比虚拟平面阵列在第一方向的FOV更大,通过虚拟线性阵列计算得到的第一方向的方位角的结果更为准确。因此,通过虚拟线性阵列和虚拟平面阵列这两个阵列的观测结果确定目标的方位角时,可以实现不同FOV的匹配。
不难看出,虚拟线性阵列和虚拟平面阵列所形成的虚拟天线阵列的匹配度比图2示出的虚拟天线阵列的匹配度复杂,因此,本申请实施例中,不必将发射器401中的发射天线和接收器402中的接收天线的数量设置得过多,即可通过两个虚拟阵列的解算获取较高的角度分别率:通过在第一方向上阵元分布密集的虚拟线性阵列计算第一方向对应的方位角,再将计算得到的第一方向的角度信息代入虚拟平面阵列的响应矩阵中,计算与第一方向垂直的第二方向(例如可以是垂直方向)对应的角度信息,从而实现第一方向和第二方向的方位角的高分辨率解算。也就是说,采用本申请实施例的方案,可以通过较少的发射天线和较少的接收天线实现目标的垂直方位角和水平方位角的解算,从而降低天线阵列的设计和加工难度,同时减少雷达系统的成本。
本申请实施例中,发射器401中的发射天线阵列和接收器402中的接收天线阵列形成一个虚拟线性阵列和一个虚拟平面阵列。具体地,发射天线阵列可以包括垂直发射天线阵列和水平发射天线阵列;其中,水平发射天线阵列和接收天线阵列形成虚拟线性阵列,垂直发射天线阵列和接收天线阵列形成虚拟平面阵列。
具体地,实际应用中,在发射天线阵列和接收天线阵列的位置已经确定的情况下,虚拟天线阵列的位置是可以唯一确定的:假设Pm是Ntx个发射天线中天线m(m=0,1,...,Ntx-1)的坐标,Qn是Nrx个接收天线中天线n,(n=0,1,...,Nrx-1)的坐标位置,那么形成的虚拟天线阵列中阵元的位置可以由Pm+Qn唯一确定,在m遍历Ntx个发射天线、n遍历Nrx个接收天线后即可确定虚拟天线阵列的位置。
具体应用到本申请实施例中,通过遍历水平发射天线阵列中的发射天线和接收天线阵列中的接收天线,可以唯一确定虚拟线性阵列的位置;通过遍历垂直发射天线阵列中的发射天线和接收天线阵列中的接收天线,可以唯一确定虚拟平面阵列的位置。因此,本申请实施例中对虚拟线性阵列以及虚拟平面阵列的位置限定,也可以视为是对真实的发射天线阵列和接收天线阵列的位置限定。
需要说明的是,发射器401可以是由发射天线阵列和发射通道构成的装置,接收器402可以是由接收天线阵列和接收通道构成的装置。其中,发射天线阵列和接收天线阵列可以位于印刷电路板(print circuitboard,PCB)上,发射通道和接收通道可以位于芯片内,即AOB(antenna on PCB);或者,发射天线阵列和接收天线阵列可以位于芯片封装内,发射通道和接收通道可以位于芯片内,即AIP(antenna in package)。本申请实施例中对于组合形式不做具体限定。
应理解,本申请实施例中对发射器401和接收器402的改进主要体现在发射天线阵列和接收天线阵列的排布方式,因此在后面的描述中不再对发射通道和接收通道进行详细介绍。
实际实现时,由于芯片的管脚和颗粒不同,发射天线阵列和接收天线阵列可以有不同的实现方式,下面列举其中的两种,其他方式不一一枚举。
第一种
在第一种实现方式中,接收天线阵列包括沿水平方向单排排布的k个接收阵元;垂直发射天线阵列包括分别位于接收天线阵列两侧的第一发射天线阵列和第二发射天线阵列,第一发射天线阵列和第二发射天线阵列均包括沿垂直方向单排排布的m个发射阵元;水平发射天线阵列包括分别与第一发射天线阵列和第二发射天线阵列邻接的第三发射天线阵列和第四发射天线阵列,第三发射天线阵列和第四发射天线阵列均包括沿水平方向单排排布的n个发射阵元。
不难看出,在第一种实现方式中,第三发射天线阵列、第四发射天线阵列以及接收天线阵列形成虚拟线性阵列。由于第三发射天线阵列和第四发射天线阵列均包括沿水平方向单排排布的n个发射阵元,接收天线阵列包括沿水平方向单排排布的k个接收阵元,因此虚拟线性阵列包括2*n*k个沿水平方向单排排布的虚拟通道。
第一发射天线阵列、第二发射天线阵列以及接收天线阵列形成虚拟平面阵列。由于第一发射天线阵列和第二发射天线阵列均包括沿垂直方向单排排布的m个发射阵元,接收天线阵列包括沿水平方向单排排布的k个接收阵元,因此虚拟平面阵列包括2*m*k个虚拟通道,其中水平方向的虚拟通道数为2*k,垂直方向的虚拟通道数为m。
示例性地,发射天线阵列和接收天线阵列的分布方式可以如图6所示。在图6的示例中,以k=32、m=8、n=4为例进行示意,实际应用中,k、m和n的数值不限定为图6中示意的情况。其中,第一发射天线阵列和第二发射天线阵列中发射阵元间的间距为3λ(λ为雷达信号的载波波长),第三发射天线阵列和第四发射天线阵列中发射阵元间的间距为1.5λ,接收天线阵列中接收阵元间的间距为2λ。
值得注意的是,由于第一发射天线阵列和第二发射天线阵列中的发射阵元需要与接收天线阵列中的接收阵元形成虚拟通道,因而第一发射天线阵列和第二发射天线阵列通常分布在接收天线阵列的外侧,从而使得每个发射阵元均可以与任一接收阵元形成虚拟通道,避免遮挡。
图6所示的发射天线阵列和接收天线阵列形成的虚拟线性阵列和虚拟平面阵列可以如图7所示。在图7中,虚拟线性阵列包括2*4*32=256个虚拟通道,虚拟平面阵列中水平方向的虚拟通道数为2*32=64,垂直方向的虚拟通道数为8个。
不难看出,在图7的示例中,虚拟线性阵列和虚拟平面阵列在水平方向的孔径大小相同。虚拟线性阵列中包括一个均匀线阵,虚拟平面阵列中包括两个均匀面阵。其中,均匀线阵的排布比均匀面阵的排布密集。
第二种
在第二种实现方式中,接收天线阵列包括沿水平方向单排排布的k个接收阵元;垂直发射天线阵列位于接收阵列的一侧,垂直发射天线阵列包括沿垂直方向单排排布的m个发射阵元;水平发射天线阵列与垂直发射天线阵列邻接,水平发射天线阵列包括沿水平方向单排排布的n个发射阵元。
不难看出,在第二种实现方式中,水平发射天线阵列与接收天线阵列形成虚拟线性阵列。由于水平发射天线阵列包括沿水平方向单排排布的n个发射阵元,接收天线阵列包括沿水平方向单排排布的k个接收阵元,因此虚拟线性阵列包括n*k个沿水平方向单排排布的虚拟通道。
垂直发射天线阵列与接收天线阵列形成虚拟平面阵列。由于垂直发射天线阵列包括沿垂直方向单排排布的m个发射阵元,接收天线阵列包括沿水平方向单排排布的k个接收阵元,因此虚拟平面阵列包括m*k个虚拟通道,其中水平方向的虚拟通道数为k,垂直方向的虚拟通道数为m。
示例性地,发射天线阵列和接收天线阵列的分布方式可以如图8所示。在图8的示例中,以k=32、m=8、n=3为例进行示意,实际应用中,k、m和n的数值不限定为图8中示意的情况。其中,水平发射天线阵列中发射阵元间的间距为1λ(λ为雷达信号的载波波长),垂直发射天线阵列中发射阵元间的间距为3λ,接收天线阵列中接收阵元间的间距为1.5λ。
值得注意的是,由于垂直发射天线阵列中的发射阵元需要与接收天线阵列中的接收阵元形成虚拟通道,因而垂直发射天线阵列通常分布在接收天线阵列的外侧,从而使得每个发射阵元均可以与任一接收阵元形成虚拟通道,避免遮挡。
图8所示的发射天线阵列和接收天线阵列形成的虚拟线性阵列和虚拟平面阵列可以如图9所示。在图9中,虚拟线性阵列包括3*32=96个虚拟通道,虚拟平面阵列中水平方向的虚拟通道数为32,垂直方向的虚拟通道数为8个。
不难看出,在图9中,虚拟线性阵列和虚拟平面阵列在水平方向的孔径大小相同。虚拟线性阵列中包括一个均匀线阵,虚拟平面阵列中包括一个均匀面阵。其中,均匀线阵的排布比均匀面阵的排布密集。
需要说明的是,本申请实施例中,以上两种实现方式仅为示例,发射天线阵列和接收天线阵列的排布方式并不限定为图6或图8所示的方式。
示例性地,在图6的示例中,第一发射天线阵列和第二发射天线阵列均可以由两列或三列沿垂直方向单排排布的8个发射阵元组成;或者,第一发射天线阵列和第二发射天线阵列均可以由四列沿垂直方向单排排布的8个发射阵元组成,其中,发射阵元在水平方向的间距小于1.5λ。
示例性地,在图8的示例中,接收天线阵列可以由两行沿水平方向单排排布的32个接收阵元组成。
此外,雷达系统400还可以包括处理单元403,用于根据回波信号确定目标的水平方位角和垂直方位角,如图10所示。
处理单元403可以视为图3中的处理单元,也可以视为图3中处理单元和微波集成电路的集合,处理单元403与发射器401和接收器402耦合。
具体地,处理单元403可以通过如下方式确定目标的水平方位角和垂直方位角:根据回波信号分别确定虚拟线性阵列对雷达信号的观测结果以及虚拟平面阵列对雷达信号的观测结果;根据虚拟线性阵列对雷达信号的观测结果以及虚拟平面阵列对雷达信号的观测结果确定目标的水平方位角和垂直方位角。
接收天线阵列接收到回波信号后,处理单元403根据接收天线阵列中每个接收天线接收到的信号,可以解算出虚拟线性阵列对雷达信号的观测结果以及虚拟平面阵列对雷达信号的观测结果。
得到虚拟线性阵列对雷达信号的观测结果以及虚拟平面阵列对雷达信号的观测结果之后,处理单元403的处理过程可以分为三个步骤:步骤一,根据虚拟线性阵列对雷达信号的观测结果确定目标的第一候选水平方位角;步骤二,根据虚拟平面阵列对雷达信号的观测结果确定目标的第二候选水平方位角以及候选垂直方位角;步骤三,根据第一候选水平方位角、第二候选水平方位角以及候选垂直方位角确定目标的水平方位角和垂直方位角。下面,对这三个步骤进行详细介绍。
步骤一
虚拟线性阵列对于水平方位角在θ处的目标的相位响应矢量为an(θ):
an(θ)=[1 exp(-j*2πd1sinθ/λ)...exp(-j*2π(n-1)d1sinθ/λ)]
假设目标信号为s(t),则该虚拟线性阵列得到的观测结果xn(t)为:
xn(t)=an(θ)s(t)+u(t)
其中,u(t)为噪声,n∈[1,2,3,...,N]是虚拟线性阵列中每个虚拟通道的序号,N是虚拟线阵包括的虚拟通道的数量,θ为目标的第一候选水平方位角,d1为均匀线阵中相邻两个虚拟通道之间的第一间距,λ为雷达信号的载波波长。处理单元403确定虚拟线性阵列对雷达信号的观测结果后,可以使用数字波束合成(digital beam forming,DBF)或快速傅里叶变换(fast Fourier transform,FFT)等常见的角度估计算法获得目标的第一候选水平方位角θ1。具体步骤可以参照现有技术中的描述,此处不再赘述。
需要注意的是,如前所述,利用虚拟线性阵列确定目标的水平方位角测量值可能会出现角度模糊的情况,即第一候选水平方位角可能包括多个方位角,其中仅有部分水平方位角是目标的真实水平方位角。
在步骤一中,如果d1=λ/2,则此时不存在角度模糊的情况,在系统FOV范围内一个目标只出现一个测量值,即根据上述公式确定的第一候选水平方位角θ1即为目标的真实水平方位角;如果d1>λ/2,则可能存在角度模糊的情况,在系统FOV范围内一个目标可能出现多个测量值,即根据上述公式确定的第一候选水平方位角θ1中可能包括多个测量值,其中的部分测量值为目标的真实水平方位角,此时目标的真实水平方位角还需结合虚拟平面阵列的观测结果确定。
示例地,如图11所示,为根据虚拟线性阵列得到的第一候选水平方位角。若不存在角度模糊的情况,则确定的第一候选水平方位角可以是图11中的θ1,此时θ1即为目标的真实水平方位角;若存在角度模糊的情况,则确定的第一候选水平方位角可以是图11中的θ1,1、θ1,2、θ1,3和θ1,4,其中的部分水平方位角是目标的真实水平方位角。
步骤二
虚拟平面阵列对垂直方位角为
Figure GPA0000300543380000141
的目标的相位响应矢量为:
Figure GPA0000300543380000142
其中,m为虚拟平面阵列中沿垂直方向的虚拟通道数,d3为垂直方向上虚拟通道间的间距,λ为雷达信号的载波波长。
如果虚拟平面阵列在水平方向的虚拟通道数为k,可以得到该虚拟平面阵列对目标的相位响应矩阵为:
Figure GPA0000300543380000143
其中,ak(θ)=[1 exp(-j*2πd2sinθ/λ)...exp(-j*2π(k-1)d2sinθ/λ)]。则该虚拟平面阵列对于水平方位角为θ,垂直方位角为
Figure GPA0000300543380000144
的目标的测量结果X(t)为:
X(t)=As(t)+w(t)
处理单元403确定虚拟平面阵列对雷达信号的观测结果后,可以使用二维DBF或二维FFT等常见的角度估计算法获得目标的第二候选水平方位角θ2和候选垂直方位角
Figure GPA0000300543380000145
具体步骤可以参照现有技术中的描述,此处不再赘述。应理解,由于虚拟平面阵列中水平方向上虚拟通道间的间隔比较大,仅靠虚拟平面阵列得到的第二候选水平方位角θ2是存在模糊的。
步骤三
结合步骤一中得到的第一候选水平方位角以及步骤二中得到的第二候选水平方位角、候选垂直方位角,可以获取目标的二维角度信息
Figure GPA0000300543380000146
情况一
如果通过虚拟线性阵列测量得到的第一候选水平方位角θ1无模糊,将θ1代入虚拟平面阵列的响应矩阵中可以直接求得目标的二维角度信息
Figure GPA0000300543380000147
情况二
如果通过线阵测量得到的第一候选水平方位角θ1存在模糊,则需要联合第一候选水平方位角θ1和第二候选水平方位角θ2,利用中国余数定理确定目标的真实水平方位角θ。然后,再将θ代入虚拟平面阵列的响应矩阵中求得目标的二维角度信息
Figure GPA0000300543380000148
示例性地,如图12所示,通过虚拟线性阵列确定的第一候选水平方位角可以为θ1,1、θ1,2、θ1,3和θ1,4,通过虚拟平面阵列确定的第二候选水平方位角可以为θ2,1、θ2,2、θ2,3、θ2,4和θ2,5、其中θ1,2和θ2,2重合,那么利用中国余数定理确定的目标的真实水平方位角θ即为θ1,2(也就是θ2,2)。将θ代入虚拟平面阵列的响应矩阵中求得
Figure GPA0000300543380000151
即可获得目标的二维角度信息
Figure GPA0000300543380000152
需要说明的是,上述步骤一和步骤二的执行顺序可以交换,或者可以并行处理。步骤三需要在步骤一和步骤二执行完成后执行。此外,以上对水平方位角和垂直方位角的求解步骤可以独立执行,也可以在求解目标的距离和速度时,在RD-MAP(距离速度图)上找出的目标可能存在的RD-CELL(距离速度单元)上进行。在RD-CELL上求解时,若存在多个目标,则多目标在角度上因为混叠而重合的概率会降低,因而在RD-MAP后进行水平方位角和垂直方位角的解算的效果更好。
若雷达系统400周围存在多个目标,其中两个目标的方位角发生混叠而无法区分时,可以利用雷达散射面积(radar-cross section,RCS)或其他信息进行匹配。
具体地,若通过上述虚拟线性阵列和虚拟平面阵列的解算,得到的目标的水平方位角包括第一水平方位角和第二水平方位角,目标的垂直方位角包括第一垂直方位角和第二垂直方位角。那么,处理单元403还用于:确定第一水平方位角对应的RCS大于第二水平方位角对应的RCS;确定第一垂直方位角对应的RCS大于第二垂直方位角对应的RCS;确定第一水平方位角和第一垂直方位角为目标中的第一子目标的位置,第二水平方位角和第二垂直方位角为目标中的第二子目标的位置。
其中,第一子目标和第二子目标为雷达系统周围存在的两个目标。
也就是说,若解算得到两个水平方位角以及两个垂直方位角(即存在两个目标),则对应RCS较大的水平方位角和垂直方位角为一组,代表其中一个目标的二维角度信息;对应RCS较小的水平方位角和垂直方位角为一组,代表另一个目标的二维角度信息。当然,若目标的数量为两个以上,也可以采用类似的方式进行匹配。或者,也可以采用除RCS之外的其他参数进行匹配,本申请实施例中对此不作具体限定。
示例性地,假设雷达系统周围存在两个目标,雷达系统的天线阵列采用图6所示的排布方式,则根据虚拟线性阵列得到的第一候选水平方位角(即目标的水平方位角估计结果)以及根据虚拟平面阵列得到的第二候选水平方位角(即目标的水平方位角估计结果)可以如图13所示。从图13中可以看出,在水平方位角为3°和4°的位置各存在一个目标,分别称之为A和B。
由于虚拟线性阵列和虚拟平面阵列在水平方向的孔径是一样大的,因而二者的水平角度分辨率是一致的。所以,将虚拟线性阵列得到的第一候选水平方位角代入到虚拟平面阵列的响应矩阵中进行垂直角度估计即可得到每个目标各自对应的水平方位角和垂直方位角。如图14所示,利用虚拟平面阵列的响应进行二维角度求解时,A和B两个目标会各自出现4个明显的峰值(与图13中虚拟平面阵列的谱线出现四个明显峰值相对应)。结合虚拟线性阵列的响应可以完成目标的二维角度估计,如图15所示。
此外,当两个目标在水平方向上的角度差恰好等于虚拟平面阵列在水平方向的重复间隔时(如图16中两个目标的水平方位角分别为-26.6°和3°),此时如果将虚拟线性阵列计算得到的这两个角度代入虚拟平面阵列的响应矩阵中进行垂直方位角估计,在垂直方向上会得到两个角度(如图17所示,在2°和6°处出现谱峰),此时水平方位角和垂直方位角的对应关系无法进行区分。
在这种情况下,可以利用目标的RCS进行水平方位角和垂直方位角的匹配,如目标信息为3°的目标RCS比-26.6°的目标RCS高,目标信息为2°的目标RCS比6°的目标RCS高,则水平方位角为3°的目标A对应的垂直方位角为2°,水平方位角为-26.6°°的目标B对应的垂直方位角为6°,如图18所示。
示例性地,假设雷达系统周围存在两个目标A和B,雷达系统的天线阵列采用图8所示的排布方式,则根据虚拟线性阵列得到的第一候选水平方位角(即目标的水平方位角估计结果)以及根据虚拟平面阵列得到的第二候选水平方位角(即目标的水平方位角估计结果)可以如图19所示。
由于虚拟线性阵列和虚拟平面阵列在水平方向的孔径是一样大的,因而二者的水平角度分辨率是一致的。所以,将虚拟线性阵列得到的第一候选水平方位角代入到虚拟平面阵列响应矩阵中进行垂直角度估计即可得到每个目标各自对应的水平方位角和垂直方位角。结合虚拟线性阵列的响应合虚拟平面阵列的响应可以完成目标的二维角度估计,如图20所示。
综上,采用本申请实施例提供的雷达系统400,可以通过发射器401中的发射天线阵列和接收器402中的接收天线阵列虚拟出一个虚拟线性阵列和一个虚拟平面阵列,由于两个虚拟阵列的匹配度比现有技术中的虚拟天线阵列的匹配度复杂,因而可以通过在发射器401和接收器402中设置较少数量的天线实现本申请中的虚拟线性阵列和虚拟平面阵列。此外,由于虚拟线性阵列和虚拟平面阵列的匹配度复杂,因而通过对两个阵列的解算可以获得较高的角度分别率。也就是说,采用本申请实施例提供的方案,可以通过较少的发射天线和接收天线实现目标的垂直方位角和水平方位角的高分辨率的解算,从而在提高雷达系统的角度分辨率的情况下,降低天线阵列的设计和加工难度,同时减少雷达系统的成本。
基于同一发明构思,本申请实施例还提供一种车辆。如图21所示,该车辆包括雷达系统400以及电子控制单元(electronic control Unit,ECU)2101。其中,雷达系统400用于:发射雷达信号;接收雷达信号经目标反射后的回波信号;根据回波信号确定目标的水平方位角和垂直方位角;ECU2101用于:根据目标的水平方位角和垂直方位角确定该车辆的行使路线。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (15)

1.一种雷达系统,其特征在于,包括:
发射器,用于发射雷达信号;
接收器,用于接收所述雷达信号经目标反射后的回波信号;
其中,所述发射器的发射天线阵列和所述接收器的接收天线阵列用于形成虚拟线性阵列和虚拟平面阵列,所述虚拟线性阵列中包括在第一方向上的均匀线阵,所述虚拟平面阵列中包括均匀面阵;所述均匀线阵中相邻两个阵元之间的第一间距小于所述均匀面阵中在所述第一方向上相邻的两个阵元之间的第二间距;所述虚拟线性阵列和所述虚拟平面阵列在第一方向上的孔径大小相同。
2.如权利要求1所述的系统,其特征在于,所述第一间距为d1,所述第二间距为d2,d1和d2满足如下关系:
M*d1=N*d2
其中,M和N均为正整数。
3.如权利要求2所述的系统,其特征在于,所述第一间距小于或等于所述雷达信号的载波波长的一半。
4.如权利要求1~3任一项所述的系统,其特征在于,所述第一方向为水平方向或垂直方向。
5.如权利要求1~3任一项所述的系统,其特征在于,还包括:
处理单元,用于根据所述回波信号确定所述目标的水平方位角和垂直方位角。
6.如权利要求5所述的系统,其特征在于,所述处理单元具体用于:
根据所述回波信号分别确定所述虚拟线性阵列对所述雷达信号的观测结果以及所述虚拟平面阵列对所述雷达信号的观测结果;
根据所述虚拟线性阵列对所述雷达信号的观测结果以及所述虚拟平面阵列对所述雷达信号的观测结果确定所述目标的水平方位角和垂直方位角。
7.如权利要求6所述的系统,其特征在于,所述处理单元具体用于:
根据所述虚拟线性阵列对所述雷达信号的观测结果确定所述目标的第一候选水平方位角;
根据所述虚拟平面阵列对所述雷达信号的观测结果确定所述目标的第二候选水平方位角以及候选垂直方位角;
根据所述第一候选水平方位角、所述第二候选水平方位角以及所述候选垂直方位角确定所述目标的水平方位角和垂直方位角。
8.如权利要求7所述的系统,其特征在于,所述处理单元在根据所述虚拟线性阵列对所述雷达信号的观测结果确定所述目标的第一候选水平方位角时,具体用于:
根据所述虚拟线性阵列对所述雷达信号的观测结果,通过数字波束合成DBF或者快速傅里叶变换FFT方式确定所述第一候选水平方位角。
9.如权利要求7或8所述的系统,其特征在于,所述处理单元在根据所述虚拟平面阵列对所述雷达信号的观测结果确定所述目标的第二候选水平方位角以及候选垂直方位角时,具体用于:
根据所述虚拟平面阵列对所述雷达信号的观测结果,通过DBF或者FFT方式确定所述第二候选水平方位角和所述候选垂直方位角。
10.如权利要求5所述的系统,其特征在于,所述目标的水平方位角包括第一水平方位角和第二水平方位角,所述目标的垂直方位角包括第一垂直方位角和第二垂直方位角;所述处理单元还用于:
确定所述第一水平方位角对应的雷达散射截面积RCS大于所述第二水平方位角对应的RCS;
确定所述第一垂直方位角对应的RCS大于所述第二垂直方位角对应的RCS;
确定所述第一水平方位角和所述第一垂直方位角为所述目标中的第一子目标的位置,所述第二水平方位角和所述第二垂直方位角为所述目标中的第二子目标的位置。
11.如权利要求1~3任一项所述的系统,其特征在于,所述发射天线阵列包括垂直发射天线阵列和水平发射天线阵列;其中,所述水平发射天线阵列和所述接收天线阵列形成所述虚拟线性阵列,所述垂直发射天线阵列和所述接收天线阵列形成所述虚拟平面阵列。
12.如权利要求11所述的系统,其特征在于,所述接收天线阵列包括沿水平方向单排排布的k个接收阵元;
所述垂直发射天线阵列包括分别位于所述接收天线阵列两侧的第一发射天线阵列和第二发射天线阵列,所述第一发射天线阵列和所述第二发射天线阵列均包括沿垂直方向单排排布的m个发射阵元;
所述水平发射天线阵列包括分别与所述第一发射天线阵列和所述第二发射天线阵列邻接的第三发射天线阵列和第四发射天线阵列,所述第三发射天线阵列和所述第四发射天线阵列均包括沿水平方向单排排布的n个发射阵元。
13.如权利要求11所述的系统,其特征在于,所述接收天线阵列包括沿水平方向单排排布的k个接收阵元;
所述垂直发射天线阵列位于所述接收天线 阵列的一侧,所述垂直发射天线阵列包括沿垂直方向单排排布的m个发射阵元;
所述水平发射天线阵列与所述垂直发射天线阵列邻接,所述水平发射天线阵列包括沿水平方向单排排布的n个发射阵元。
14.如权利要求1~3任一项所述的系统,其特征在于,所述雷达信号为调频连续波FMCW、多频移键控MFSK、调相连续波PMCW中的任一种。
15.一种车辆,其特征在于,包括如权利要求1~14任一项所述的雷达系统及电子控制单元ECU;
所述雷达系统用于:发射雷达信号;接收所述雷达信号经目标反射后的回波信号;根据所述回波信号确定所述目标的水平方位角和垂直方位角;
所述ECU用于:根据所述目标的水平方位角和垂直方位角确定所述车辆的行使路线。
CN201980053320.4A 2019-07-22 2019-07-22 一种雷达系统及车辆 Active CN112567262B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111422772.0A CN114280593A (zh) 2019-07-22 2019-07-22 一种雷达系统及车辆
CN202111579671.4A CN114397626A (zh) 2019-07-22 2019-07-22 一种雷达系统及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/097087 WO2021012150A1 (zh) 2019-07-22 2019-07-22 一种雷达系统及车辆

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202111422772.0A Division CN114280593A (zh) 2019-07-22 2019-07-22 一种雷达系统及车辆
CN202111579671.4A Division CN114397626A (zh) 2019-07-22 2019-07-22 一种雷达系统及车辆

Publications (2)

Publication Number Publication Date
CN112567262A CN112567262A (zh) 2021-03-26
CN112567262B true CN112567262B (zh) 2022-01-14

Family

ID=74192437

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201980053320.4A Active CN112567262B (zh) 2019-07-22 2019-07-22 一种雷达系统及车辆
CN202111422772.0A Pending CN114280593A (zh) 2019-07-22 2019-07-22 一种雷达系统及车辆
CN202111579671.4A Pending CN114397626A (zh) 2019-07-22 2019-07-22 一种雷达系统及车辆

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN202111422772.0A Pending CN114280593A (zh) 2019-07-22 2019-07-22 一种雷达系统及车辆
CN202111579671.4A Pending CN114397626A (zh) 2019-07-22 2019-07-22 一种雷达系统及车辆

Country Status (8)

Country Link
US (1) US20220146623A1 (zh)
EP (1) EP3998494A4 (zh)
JP (1) JP7369852B2 (zh)
CN (3) CN112567262B (zh)
BR (1) BR112022001040A2 (zh)
CA (1) CA3148129A1 (zh)
MX (1) MX2022000862A (zh)
WO (1) WO2021012150A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112567262B (zh) * 2019-07-22 2022-01-14 华为技术有限公司 一种雷达系统及车辆
US11709251B1 (en) * 2020-12-09 2023-07-25 First Rf Corporation Radar node with full azimuthal coverage, and associated surveillance methods
CN113253213B (zh) * 2021-04-07 2024-01-30 哈尔滨工业大学(威海) 高频地波雷达电离层回波空间分布特性测量方法及系统
CN113472401A (zh) * 2021-05-20 2021-10-01 西安电子科技大学 一种基于均匀阵的零陷展宽方法及mimo系统
CN113597712B (zh) * 2021-06-21 2022-11-11 华为技术有限公司 天线阵列、探测设备和终端
US20210389453A1 (en) * 2021-08-26 2021-12-16 Intel Corporation Apparatus, system and method of a radar antenna
CN114204282B (zh) * 2021-12-07 2024-02-06 中国电子科技集团公司第十四研究所 一种基于虚拟阵列的大规模阵列天线
CN115378476B (zh) * 2022-08-22 2023-09-22 欧必翼太赫兹科技(北京)有限公司 用于阵列天线进行信号收发的方法及阵列天线

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178356A (zh) * 2011-12-21 2013-06-26 索尼公司 天线装置及波束形成设备
CN103454631A (zh) * 2013-08-31 2013-12-18 西北工业大学 一种基于mimo技术和稀疏阵技术的三维成像方法
CN103901417A (zh) * 2014-04-02 2014-07-02 哈尔滨工程大学 L型阵列mimo雷达低复杂度空间目标二维角度估计方法
CN104345311A (zh) * 2013-08-08 2015-02-11 株式会社万都 用于车辆的雷达和操作该雷达的方法
CN104808201A (zh) * 2015-04-23 2015-07-29 中国电子科技集团公司第四十一研究所 一种二维mimo阵列实现方法
CN104849696A (zh) * 2015-04-27 2015-08-19 中南大学 一种mimo雷达天线阵稀疏布阵方法
CN106154245A (zh) * 2016-06-22 2016-11-23 中国人民解放军信息工程大学 基于等效阵列方向图的集中式mimo雷达阵列设计方法
CN106546983A (zh) * 2015-09-17 2017-03-29 松下电器产业株式会社 雷达装置
CN106990385A (zh) * 2017-03-22 2017-07-28 西安电子科技大学 基于最小冗余线阵的非均匀面阵设计方法
CN107490788A (zh) * 2016-06-13 2017-12-19 中国人民解放军空军预警学院 一种适于mimo机载雷达非平稳杂波抑制的空时自适应处理方法
CN107611624A (zh) * 2017-08-24 2018-01-19 电子科技大学 低旁瓣的基于互质思想的分子阵布阵方法
CN109411902A (zh) * 2016-12-05 2019-03-01 通用汽车环球科技运作有限责任公司 Mimo雷达的模块化架构
CN109407072A (zh) * 2018-12-04 2019-03-01 中国电子科技集团公司第十四研究所 一种复用多子阵结构安检阵列
CN109638437A (zh) * 2018-12-07 2019-04-16 长沙瑞感电子科技有限公司 一种mimo毫米波微带阵列天线

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986602A (en) * 1998-03-02 1999-11-16 Remote Data Systems, Inc. Pulse radar device and method
US8289203B2 (en) * 2009-06-26 2012-10-16 Src, Inc. Radar architecture
CN101697010B (zh) * 2009-10-27 2012-07-18 电子科技大学 一种多功能线型阵列三维合成孔径雷达系统构建方法
CN101950851A (zh) * 2010-06-23 2011-01-19 电子科技大学 一种错开分布的mimo雷达阵列天线构造方法
US20120274499A1 (en) * 2011-04-29 2012-11-01 Spatial Digital Systems Radar imaging via spatial spectrum measurement and MIMO waveforms
CN102521472B (zh) * 2012-01-04 2013-06-12 电子科技大学 一种稀疏mimo平面阵列雷达天线构建方法
KR20140021380A (ko) * 2012-08-10 2014-02-20 삼성전기주식회사 유전체 공진기 어레이 안테나
CN103235294A (zh) * 2013-03-29 2013-08-07 电子科技大学 一种基于外辐射源定位的微弱信号分离估计方法
US9568600B2 (en) * 2014-03-05 2017-02-14 Delphi Technologies, Inc. MIMO antenna with elevation detection
DE102014219113A1 (de) * 2014-09-23 2016-03-24 Robert Bosch Gmbh MIMO-Radarvorrichtung zum entkoppelten Bestimmen eines Elevationswinkels und eines Azimutwinkels eines Objekts und Verfahren zum Betreiben einer MIMO-Radarvorrichtung
CN104614726B (zh) * 2015-03-05 2017-05-10 北京航空航天大学 一种阵列可伸缩式便携mimo‑sar测量雷达系统及其成像方法
JP6377000B2 (ja) 2015-03-25 2018-08-22 パナソニック株式会社 レーダ装置
WO2016164758A1 (en) * 2015-04-08 2016-10-13 Sri International 1d phased array antenna for radar and communications
JP6479602B2 (ja) 2015-08-06 2019-03-06 株式会社東芝 レーダ装置及びそのレーダ信号処理方法
CN105589058B (zh) * 2016-01-29 2019-05-31 宋春丽 一种天线装置及三维雷达系统
CN106054181B (zh) 2016-05-18 2018-07-20 中国电子科技集团公司第四十一研究所 一种用于太赫兹实时成像的一维稀疏阵列布置方法
WO2018007995A1 (en) * 2016-07-08 2018-01-11 Magna Electronics Inc. 2d mimo radar system for vehicle
US9869762B1 (en) 2016-09-16 2018-01-16 Uhnder, Inc. Virtual radar configuration for 2D array
US20180166794A1 (en) * 2016-12-14 2018-06-14 GM Global Technology Operations LLC 2d-mimo radar antenna array geometry and design method
WO2018165633A1 (en) * 2017-03-09 2018-09-13 California Institute Of Technology Co-prime optical transceiver array
JP6887091B2 (ja) * 2017-10-10 2021-06-16 パナソニックIpマネジメント株式会社 レーダ装置
JP7022916B2 (ja) 2017-11-09 2022-02-21 パナソニックIpマネジメント株式会社 レーダ装置及び到来方向推定装置
JP6570610B2 (ja) * 2017-12-22 2019-09-04 三菱電機株式会社 レーダ装置
IL259190A (en) * 2018-05-07 2018-06-28 Arbe Robotics Ltd System and method for frequency hopping MIMO FMCW imaging radar
CN109188386B (zh) * 2018-08-30 2023-04-07 河海大学 基于改进二维esprit算法的mimo雷达高分辨率参数估计方法
CN112567262B (zh) * 2019-07-22 2022-01-14 华为技术有限公司 一种雷达系统及车辆

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178356A (zh) * 2011-12-21 2013-06-26 索尼公司 天线装置及波束形成设备
CN104345311A (zh) * 2013-08-08 2015-02-11 株式会社万都 用于车辆的雷达和操作该雷达的方法
CN103454631A (zh) * 2013-08-31 2013-12-18 西北工业大学 一种基于mimo技术和稀疏阵技术的三维成像方法
CN103901417A (zh) * 2014-04-02 2014-07-02 哈尔滨工程大学 L型阵列mimo雷达低复杂度空间目标二维角度估计方法
CN104808201A (zh) * 2015-04-23 2015-07-29 中国电子科技集团公司第四十一研究所 一种二维mimo阵列实现方法
CN104849696A (zh) * 2015-04-27 2015-08-19 中南大学 一种mimo雷达天线阵稀疏布阵方法
CN106546983A (zh) * 2015-09-17 2017-03-29 松下电器产业株式会社 雷达装置
CN107490788A (zh) * 2016-06-13 2017-12-19 中国人民解放军空军预警学院 一种适于mimo机载雷达非平稳杂波抑制的空时自适应处理方法
CN106154245A (zh) * 2016-06-22 2016-11-23 中国人民解放军信息工程大学 基于等效阵列方向图的集中式mimo雷达阵列设计方法
CN109411902A (zh) * 2016-12-05 2019-03-01 通用汽车环球科技运作有限责任公司 Mimo雷达的模块化架构
CN106990385A (zh) * 2017-03-22 2017-07-28 西安电子科技大学 基于最小冗余线阵的非均匀面阵设计方法
CN107611624A (zh) * 2017-08-24 2018-01-19 电子科技大学 低旁瓣的基于互质思想的分子阵布阵方法
CN109407072A (zh) * 2018-12-04 2019-03-01 中国电子科技集团公司第十四研究所 一种复用多子阵结构安检阵列
CN109638437A (zh) * 2018-12-07 2019-04-16 长沙瑞感电子科技有限公司 一种mimo毫米波微带阵列天线

Also Published As

Publication number Publication date
BR112022001040A2 (pt) 2022-03-15
WO2021012150A1 (zh) 2021-01-28
US20220146623A1 (en) 2022-05-12
CN114397626A (zh) 2022-04-26
JP2022541922A (ja) 2022-09-28
JP7369852B2 (ja) 2023-10-26
EP3998494A4 (en) 2022-08-03
CA3148129A1 (en) 2021-01-28
CN112567262A (zh) 2021-03-26
MX2022000862A (es) 2022-04-20
CN114280593A (zh) 2022-04-05
EP3998494A1 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
CN112567262B (zh) 一种雷达系统及车辆
US10852407B2 (en) Imaging radar sensor with narrow antenna lobe and wide angle-detection range
US10816641B2 (en) Imaging radar sensor with synthetic enlargement of the antenna aperture and two-dimensional beam sweep
US11619706B2 (en) Radar device
EP1041398A2 (en) Radar apparatus using digital beam forming techniques
US11870138B2 (en) MIMO radar sensor for motor vehicles
US20110102242A1 (en) Radar apparatus
CN113314832B (zh) 一种毫米波车载mimo雷达天线阵列装置及设计方法
EP3961242A1 (en) Multiple-mode radar with resolution of spatial ambiguity
EP3572838A1 (en) Radar device
US11493620B2 (en) Distributed monopulse radar antenna array for collision avoidance
CN112740071A (zh) 用于车辆的雷达系统
JP2011226794A (ja) レーダ装置
CN113176559B (zh) 二维测角车载雷达系统、雷达二维测角方法及存储介质
WO2022266817A1 (zh) 天线阵列、探测设备和终端
CN115728722A (zh) 4d雷达的天线阵列、数据探测方法及4d雷达
CN112578353A (zh) 测量目标角度的装置及方法、传感器和设备
JP7224292B2 (ja) レーダ装置およびそれを備える自動車
CN217846611U (zh) 雷达传感器及电子设备
CN109613474A (zh) 一种适用于短距离车载雷达的测角补偿方法
JP2012168194A (ja) レーダ装置
CN116819533B (zh) 雷达处理模组、雷达及雷达探测方法
Yu et al. W-Band Co-Prime Array FMCW MIMO Radar With IPCE Algorithm for High-Angular Resolution
WO2023218632A1 (ja) レーダ装置および物標検知方法
EP4331048A1 (en) Mimo radar using a frequency scanning antenna

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant