CN111875383A - 一种非化学计量比碳化钛储氢材料及其制备方法 - Google Patents

一种非化学计量比碳化钛储氢材料及其制备方法 Download PDF

Info

Publication number
CN111875383A
CN111875383A CN202010811047.1A CN202010811047A CN111875383A CN 111875383 A CN111875383 A CN 111875383A CN 202010811047 A CN202010811047 A CN 202010811047A CN 111875383 A CN111875383 A CN 111875383A
Authority
CN
China
Prior art keywords
powder
titanium carbide
hydrogen storage
zirconium
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010811047.1A
Other languages
English (en)
Other versions
CN111875383B (zh
Inventor
丁海民
柳青
王进峰
范孝良
王鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202010811047.1A priority Critical patent/CN111875383B/zh
Publication of CN111875383A publication Critical patent/CN111875383A/zh
Application granted granted Critical
Publication of CN111875383B publication Critical patent/CN111875383B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种非化学计量比碳化钛储氢材料及其制备方法,它根据碳化钛中碳空位以及锆掺杂对其储氢性能的影响,以碳空位为碳化钛的主要储氢位置,通过锆的掺杂改善碳空位容氢能力,提高非化学计量比碳化钛储氢材料的储氢容量,同时通过长时间高温热处理实现碳化钛储氢材料中碳空位的有序化,为氢在碳化钛中的扩散提供通道,提高氢的扩散能力,这一方面可以改善非化学计量比碳化钛的储放氢热动力学性能,更为重要的是能够使氢原子充分进入到碳化钛中各个碳空位中,从而发挥碳空位的容氢能力,最终制备出具有优良性能的非化学计量比碳化钛储氢材料。

Description

一种非化学计量比碳化钛储氢材料及其制备方法
技术领域:
本发明属于储氢材料技术领域,具体涉及一种非化学计量比碳化钛储氢材料及其制备方法。
背景技术:
近年来,面对日益严重的能源短缺和环境污染问题,各国投入大量力量进行新能源技术的研究、开发和利用,并取得了明显成效,如太阳能、风能发电等技术的不断进步和应用的持续推广。在这其中,氢能被认为是理想的“绿色能源”之一。而要实现氢能的应用,氢的储运是必须解决的关键问题。氢的储存有多种形式,其中固态储氢由于具有体积储氢容量高、安全性好和能耗少等优点,被认为是储氢的主要方式之一。而对于氢的固态存储,重点是开发高性能的储氢材料。合格的固态储氢材料应具有高的容量、良好的吸放氢热动力学性能及循环稳定性。当前研究者已开发了多种氢固态存储材料,如申请号为CN201510687910.6的中国发明专利申请公开了一种镁铝硼镍基储氢材料及其制备方法,通过将镁粉、镍粉、硼粉及铝粉等热压成块,再用液氦快速冷却得到一种镁铝硼镍基储氢材料,该材料活化周期短,吸放氢速率快;申请号为CN201510680110.1的中国发明专利申请公开了一种复合储氢材料及其制备方法,该方法制备的储氢材料由硼化氢锂及非晶钛镁-稀土-镍-合金氢化物组成,该储氢材料具有低的放氢温度和高的放氢量;专利号为ZL02138978.0的中国发明专利发明了一种经微波等离子体刻蚀的一维纳米碳储氢材料及其制备方法,主要是采用微波等离子体刻蚀方法对一维纳米碳表面进行刻蚀,从而由表及里地增加和增大氢的扩散通道,提高一维纳米碳的储氢容量;专利号为ZL201410181654.9的中国发明专利发明了一种铝锂储氢材料及其制备方法,所发明的铝锂储氢材料具有较高的储氢容量。综合而言,当前,对固态储氢材料的研究主要集中于包括金属氢化物、配位氢化物、碳纳米材料及金属有机骨架材料等。这些材料各有优势,但目前各自又有不足。如镁系储氢合金储氢容量高、成本低,但是放氢温度高;金属配位氢化物储氢容量高,但是再氢化困难等。这些不足限制了固态储氢材料的进一步推广应用。为此,研究者采取了多种措施对金属氢化物等储氢材料加以改进,如表面改性处理、材料的复合化及纳米化等,取得了一定的效果。除此之外,陶瓷材料由于具有一系列优良特性,如高的熔点、硬度及弹性模量等,以及部分陶瓷材料优良的功能特性,广泛应用于工程及功能材料领域,其中部分陶瓷材料,如TiC等过渡族金属碳氮化物,也具有一定的储氢能力,在储氢领域也有良好的应用前景,但是目前该类储氢材料,储氢容量较低且由于氢在其晶格中扩散困难导致其储放氢热动力学性能差。
发明内容:
本发明旨在提供一种非化学计量比碳化钛储氢材料及其制备方法。碳化钛中碳空位的存在,即其非化学计量比特性,是其能够储氢的先决条件,但是碳空位容氢能力的有限性,制约了碳化钛储氢容量的提高,本发明针对这一问题,以碳空位为碳化钛储氢的主要位置,通过锆的掺杂改善碳空位容氢能力,提高非化学计量比碳化钛储氢材料的储氢容量,同时针对氢在碳化钛晶格中扩散困难的问题,通过长时间高温热处理实现碳化钛储氢材料中碳空位的有序化,为氢在碳化钛中的扩散提供了有效通道,这一方面可以改善非化学计量比碳化钛的储放氢热动力学性能,更为重要的是能够使氢原子充分进入到碳化钛中各个碳空位中,从而发挥碳空位的容氢能力,进一步提高碳化钛储氢容量。
本发明的第一目的,是提供一种非化学计量比碳化钛储氢材料。
本发明的第二目的,是提供一种的非化学计量比碳化钛储氢材料制备方法。
为实现上述发明目的,本发明公开了下述技术方案:
首先,本发明公开一种非化学计量比碳化钛储氢材料,该储氢材料为锆掺杂的含碳空位的非化学计量比的碳化钛,该非化学计量比碳化钛储氢材料的C/(Ti,Zr)原子比为0.50~0.65,Zr/Ti原子比为0.05~0.35。
进一步的,所述碳空位为长程有序化的碳空位。
其次,本发明公开一种非化学计量比碳化钛储氢材料的制备方法,包括如下步骤:
(1)原料准备:分别称量碳化钛(TiC)粉、钛粉及锆粉,各原料粉体的质量百分比分别为:TiC粉:46.35%~67.29%,钛粉:18.52%~24.85%,锆粉:7.86%~35.13%。其中TiC粉中C/Ti原子比为0.97~1,纯度99.7wt%以上,粒度0.5~8μm,钛粉纯度99.8wt%以上,粒度5~20μm,锆粉纯度99.8%wt以上,粒度5~20μm。
(2)原料混配:将称量好的TiC粉、钛粉与锆粉置于石油醚中,机械搅拌0.5~2h,然后置于通风处,放置8~24小时,使石油醚完全挥发,得到混合均匀的TiC-Ti-Zr混合粉料。
(3)热压烧结:将混合均匀的TiC-Ti-Zr混合粉料置于石墨模具中,并在热压烧结炉中进行热压烧结,烧结气氛为氩气气氛,烧结过程中压强为20~60MPa,得到锆掺杂的非化学计量比碳化钛块体。
(4)热处理:将得到的碳化钛块体置于氩气保护的热处理炉中,在600~800℃保温30~60小时,使锆掺杂的非化学计量比碳化钛块体中的碳空位实现长程有序化,随炉冷却至150℃以下,得到所需的非化学计量比碳化钛储氢材料。
进一步的,步骤(3)中热压烧结的具体过程为:首先加热到800~1000℃保温1~2小时,随后继续升高温度至1650~1850℃,保温2~4小时,然后将烧结得到的块体随炉冷却至150℃以下,得到锆掺杂的非化学计量比碳化钛块体。
本发明与现有技术相比具有如下优点:
1、所制备的非化学计量比碳化钛储氢材料为陶瓷材料且与其氢化物晶格类型一致,储放氢循环过程中体积变化小,储氢循环稳定性高,抗杂质气体中毒能力好。
2、通过锆的掺杂,有效改善了非化学计量比碳化钛中碳空位容氢能力,提高了非化学计量比碳化钛储氢材料的储氢容量。
3、通过长时间高温热处理,实现了非化学计量比碳化钛碳空位的长程有序化,为氢在碳化钛晶格中的扩散提供了通道,提高了氢在碳化钛的扩散能力,这一方面可以改善非化学计量比碳化钛的储放氢热动力学性能,更为重要的是能够使氢原子充分进入到碳化钛中各个碳空位中,从而发挥碳空位的容氢能力,进一步提高碳化钛储氢容量。
4、制备方法简单、原料丰富且价格低廉。
具体实施方式:
下面结合具体实施例,进一步阐述发明。应说明的是:以下实施例仅用以说明本发明而并非限制本发明所描述的技术方案。一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围当中。
实施例1:
(1)原料准备:分别称量碳化钛(TiC)粉、钛粉及锆粉,各原料粉体的质量百分比分别为:TiC粉:60.00%,钛粉:24.71%,锆粉:15.29%。其中TiC粉中C/Ti原子比为1,纯度99.7%,粒度2μm,钛粉纯度99.8%,粒度10μm,锆粉纯度99.8%,粒度15μm。
(2)原料混配:将称量好的TiC粉、钛粉与锆粉置于石油醚中,机械搅拌1h,然后将其置于通风处,放置12小时,使石油醚完全挥发,得到混合均匀的TiC-Ti-Zr混合粉料。
(3)热压烧结:将混合均匀的TiC-Ti-Zr混合粉料置于石墨模具中,并在热压烧结炉中进行热压烧结,烧结气氛为氩气气氛,烧结过程中压强为30MPa。热压烧结的具体过程为:首先加热到850℃保温2小时,随后继续升高温度至1800℃,保温3小时,然后将烧结得到的块体随炉冷却至150℃以下,得到锆掺杂的非化学计量比碳化钛块体。
(4)热处理:将得到的碳化钛块体置于氩气保护的热处理炉中,在700℃保温45小时,使锆掺杂的非化学计量比碳化钛块体中的碳空位实现长程有序化,随炉冷却至150℃以下,得到所需的非化学计量比碳化钛储氢材料。
得到的碳化钛储氢材料化学计量比为Ti0.9Zr0.1C0.6,经电化学储氢试验测定,所得碳化钛储氢材料可在室温下实现氢的可逆存储,储氢容量约为4.0wt%。
实施例2:
(1)原料准备:分别称量碳化钛(TiC)粉、钛粉及锆粉,各原料粉体的质量百分比分别为:TiC粉:67.29%,钛粉:24.85%,锆粉:7.86%,其中TiC粉中C/Ti原子比为1,纯度99.7%,粒度4μm,钛粉纯度99.8%,粒度20μm,锆粉纯度99.8%,粒度20μm。
(2)原料混配:将称量好的TiC粉、钛粉与锆粉置于石油醚中,机械搅拌1.5h,然后将其置于通风处,放置15小时,使石油醚完全挥发,得到混合均匀的TiC-Ti-Zr混合粉料。
(3)热压烧结:将混合均匀的TiC-Ti-Zr混合粉料置于石墨模具中,并在热压烧结炉中进行热压烧结,烧结气氛为氩气气氛,烧结过程中压强为40MPa。热压烧结的具体过程为:首先加热到900℃保温2小时,随后继续升高温度至1800℃,保温3小时,然后将烧结得到的块体随炉冷却至150℃以下,得到锆掺杂的非化学计量比碳化钛块体。
(4)热处理:将得到的碳化钛块体置于氩气保护的热处理炉中,在760℃保温35小时,使锆掺杂的非化学计量比碳化钛块体中的碳空位实现长程有序化,随炉冷却至150℃以下,得到所需的非化学计量比碳化钛储氢材料。
得到的碳化钛储氢材料化学计量比为Ti0.95Zr0.05C0.65,经电化学储氢试验测定,所得碳化钛储氢材料可在室温下实现氢的可逆存储,储氢容量约为3.0wt%。
实施例3
(1)原料准备:分别称量碳化钛(TiC)粉、钛粉及锆粉,各原料粉体的质量百分比分别为:TiC粉:46.35%,钛粉:18.52%,锆粉:35.13%,其中TiC中C/Ti原子比为1,纯度99.7%,粒度0.5μm,钛粉纯度99.8%,粒度7μm,锆粉纯度99.8%,粒度15μm。
(2)原料混配:将称量好的TiC粉、钛粉与锆粉置于石油醚中,机械搅拌2h,然后将其置于通风处,放置16小时,使石油醚完全挥发,得到混合均匀的TiC-Ti-Zr混合粉料。
(3)热压烧结:将混合均匀的TiC-Ti-Zr混合粉料置于石墨模具中,并在热压烧结炉中进行热压烧结,烧结气氛为氩气气氛,烧结过程中压强为45MPa。热压烧结的具体过程为:首先加热到850℃保温2小时,随后继续升高温度至1850℃,保温3小时,然后将烧结得到的块体随炉冷却至150℃以下,得到锆掺杂的非化学计量比碳化钛块体。
(4)热处理:将得到的碳化钛块体置于氩气保护的热处理炉中,在800℃保温32小时,使锆掺杂的非化学计量比碳化钛块体中的碳空位实现长程有序化,随炉冷却至150℃以下,得到所需的非化学计量比碳化钛储氢材料。
得到的碳化钛储氢材料化学计量比为Ti0.75Zr0.25C0.5,经电化学储氢试验测定,所得碳化钛储氢材料可在室温下实现氢的可逆存储,储氢容量约为4.5wt.%。
比较例1
(1)原料准备:分别称量碳化钛(TiC)粉、钛粉,各原料粉体的质量百分比分别为:TiC粉:65.00%,钛粉:35%。其中TiC粉中C/Ti原子比为1,纯度99.7%,粒度2μm,钛粉纯度99.8%,粒度10μm。
(2)原料混配:将称量好的TiC粉与钛粉置于石油醚中,机械搅拌1h,然后将其置于通风处,放置12小时,使石油醚完全挥发,得到混合均匀的TiC-Ti混合粉料。
(3)热压烧结:将混合均匀的TiC-Ti混合粉料置于石墨模具中,并在热压烧结炉中进行热压烧结,烧结气氛为氩气气氛,烧结过程中压强为30MPa。热压烧结的具体过程为:首先加热到850℃保温2小时,随后继续升高温度至1800℃,保温3小时,然后将烧结得到的块体随炉冷却至150℃以下,得到非化学计量比碳化钛块体。
(4)热处理:将得到的碳化钛块体置于氩气保护的热处理炉中,在700℃保温45小时,使非化学计量比碳化钛块体中的碳空位实现长程有序化,随炉冷却至150℃以下,得到所需的非化学计量比碳化钛储氢材料。
得到的碳化钛储氢材料化学计量比为TiC0.6,经电化学储氢试验测定,所得碳化钛储氢材料可在室温下实现氢的可逆存储,储氢容量约为2.7wt%。远小于实施例1所制备Ti0.9Zr0.1C0.6的储氢容量。可以看出,该比较例与实施例1原料准备、原料混配、热压烧结及热处理工序完全一致,主要的区别是没有锆元素的掺杂,该比较例表明锆掺杂能有效提高非化学计量比碳化钛的储氢容量,而模拟计算表明这主要是由于锆的存在提高了碳空位的容氢能力,锆掺杂后使得邻近碳空位的容氢能力由4个氢原子提高到8个氢原子。
比较例2
(1)原料准备:分别称量碳化钛(TiC)粉、钛粉及锆粉,各原料粉体的质量百分比分别为:TiC粉:46.35%,钛粉:18.52%,锆粉:35.13%,其中TiC中C/Ti原子比为1,纯度99.7%,粒度0.5μm,钛粉纯度99.8%,粒度7μm,锆粉纯度99.8%,粒度15μm。
(2)原料混配:将称量好的TiC粉、钛粉与锆粉置于石油醚中,机械搅拌2h,然后将其置于通风处,放置16小时,使石油醚完全挥发,得到混合均匀的TiC-Ti-Zr混合粉料。
(3)热压烧结:将混合均匀的TiC-Ti-Zr混合粉料置于石墨模具中,并在热压烧结炉中进行热压烧结,烧结气氛为氩气气氛,烧结过程中压强为45MPa。热压烧结的具体过程为:首先加热到850℃保温2小时,随后继续升高温度至1850℃,保温3小时,然后将烧结得到的块体随炉冷却至150℃以下,得到锆掺杂的非化学计量比碳化钛块体。
得到的碳化钛储氢材料化学计量比为Ti0.75Zr0.25C0.5,经电化学储氢试验测定,所得碳化钛储氢材料可在室温下难以实现氢的有效存储,储氢容量仅为1.0wt.%,远小于实施例3所制备Ti0.75Zr0.25C0.5的储氢容量。可以看出,该比较例与实施例3成分相同,原料准备、原料混配及热压烧结工序完全一致,但比较例未进行长时热处理,制备的Ti0.75Zr0.25C0.5中碳空位随机分布,未形成长程有序结构,使得储氢过程中氢原子受空位之间其他原子的影响,难以扩散到大部分碳空位中,从而使得储氢容量较实施例3显著下降。

Claims (4)

1.一种非化学计量比碳化钛储氢材料,其为锆掺杂的含碳空位的非化学计量比的碳化钛,其特征在于:该非化学计量比碳化钛储氢材料的C/(Ti,Zr)原子比为0.50~0.65,Zr/Ti原子比为0.05~0.35。
2.如权利要求1所述的非化学计量比碳化钛储氢材料,其特征在于:所述碳空位为长程有序化的碳空位。
3.一种如权利要求1或2所述的非化学计量比碳化钛储氢材料的制备方法,其特征在于:包括以下步骤:
(1)原料准备:分别称量碳化钛(TiC)粉、钛粉及锆粉,各原料粉体的质量百分比分别为:TiC粉:46.35%~67.29%,钛粉:18.52%~24.85%,锆粉:7.86%~35.13%;其中TiC粉中C/Ti原子比为0.97~1,纯度99.7wt%以上,粒度0.5~8μm,钛粉纯度99.8wt%以上,粒度5~20μm,锆粉纯度99.8%wt以上,粒度5~20μm;
(2)原料混配:将称量好的TiC粉、钛粉与锆粉置于石油醚中,机械搅拌0.5~2h,然后置于通风处,放置8~24小时,使石油醚完全挥发,得到混合均匀的TiC-Ti-Zr混合粉料;
(3)热压烧结:将混合均匀的TiC-Ti-Zr混合粉料置于石墨模具中,并在热压烧结炉中进行热压烧结,烧结气氛为氩气气氛,烧结过程中压强为20~60MPa,得到锆掺杂的非化学计量比碳化钛块体;
(4)热处理:将得到的碳化钛块体置于氩气保护的热处理炉中,在600~800℃保温30~60小时,使锆掺杂的非化学计量比碳化钛块体中的碳空位实现长程有序化,随炉冷却至150℃以下,得到所需的非化学计量比碳化钛储氢材料。
4.如权利要求3所述的制备方法,其特征在于:步骤(3)中热压烧结的具体过程为:首先加热到800~1000℃保温1~2小时,随后继续升高温度至1650~1850℃,保温2~4小时,然后将烧结得到的块体随炉冷却至150℃以下,得到锆掺杂的非化学计量比碳化钛块体。
CN202010811047.1A 2020-08-13 2020-08-13 一种非化学计量比碳化钛储氢材料及其制备方法 Expired - Fee Related CN111875383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010811047.1A CN111875383B (zh) 2020-08-13 2020-08-13 一种非化学计量比碳化钛储氢材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010811047.1A CN111875383B (zh) 2020-08-13 2020-08-13 一种非化学计量比碳化钛储氢材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111875383A true CN111875383A (zh) 2020-11-03
CN111875383B CN111875383B (zh) 2022-04-15

Family

ID=73202649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010811047.1A Expired - Fee Related CN111875383B (zh) 2020-08-13 2020-08-13 一种非化学计量比碳化钛储氢材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111875383B (zh)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374358A1 (en) * 1988-11-29 1990-06-27 Toshiba Tungaloy Co. Ltd. High strength nitrogen-containing cermet and process for preparation thereof
US5401694A (en) * 1987-01-13 1995-03-28 Lanxide Technology Company, Lp Production of metal carbide articles
WO2001044526A1 (en) * 1999-12-17 2001-06-21 Tohoku Techno Arch Co., Ltd. Hydrogen storage alloy
CN1398781A (zh) * 2002-08-30 2003-02-26 太原理工大学 一种制备乙炔和碳纳米管的装置
JP2005226114A (ja) * 2004-02-12 2005-08-25 Nasu Denki Tekko Co Ltd 水素吸蔵合金粉末の製造方法、及び当該製造方法により得られる水素吸蔵合金粉末
US7699904B2 (en) * 2004-06-14 2010-04-20 University Of Utah Research Foundation Functionally graded cemented tungsten carbide
CN102557638A (zh) * 2010-12-09 2012-07-11 中国科学院金属研究所 锆钛铝硅碳固溶体材料及其制备方法
CN103626496A (zh) * 2013-12-05 2014-03-12 燕山大学 一种非化学计量比碳化钛与氮化铝、氮化钛复合材料
CN103667846A (zh) * 2013-12-16 2014-03-26 华北电力大学(保定) 一种无相界碳化钛梯度材料的制备方法
CN103936421A (zh) * 2014-03-25 2014-07-23 沈阳化工大学 一种TiC0.6/ TiC0.6-Al2O3复合陶瓷的制备方法
CN104030246A (zh) * 2014-04-30 2014-09-10 燕山大学 一种铝锂储氢材料及其制备方法
CN104072139A (zh) * 2014-06-30 2014-10-01 沈阳化工大学 金属钛碳化物陶瓷的制备方法
KR20150078210A (ko) * 2013-12-30 2015-07-08 주식회사 원일티엔아이 티타늄-지르코늄계 수소저장합금 및 그 제조방법
CN105271113A (zh) * 2015-10-16 2016-01-27 安徽工业大学 一种复合储氢材料及其制备方法
CN105274411A (zh) * 2015-10-22 2016-01-27 燕山大学 一种镁铝硼镍基储氢材料及其制备方法
CN106242571A (zh) * 2016-08-29 2016-12-21 华北电力大学(保定) 一种碳化钛储氢材料的制备方法
CN106396683A (zh) * 2016-08-29 2017-02-15 华北电力大学(保定) 一种钛铝碳与碳化钛复合储氢材料及其制备方法
CN108439986A (zh) * 2018-05-09 2018-08-24 西北工业大学 (HfTaZrTiNb)C高熵陶瓷粉体及高熵陶瓷粉体和高熵陶瓷块体的制备方法
WO2019181604A1 (ja) * 2018-03-23 2019-09-26 日清エンジニアリング株式会社 複合粒子および複合粒子の製造方法
WO2020115953A1 (ja) * 2018-12-04 2020-06-11 株式会社三徳 水素吸蔵材、負極、及びニッケル水素二次電池

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401694A (en) * 1987-01-13 1995-03-28 Lanxide Technology Company, Lp Production of metal carbide articles
EP0374358A1 (en) * 1988-11-29 1990-06-27 Toshiba Tungaloy Co. Ltd. High strength nitrogen-containing cermet and process for preparation thereof
WO2001044526A1 (en) * 1999-12-17 2001-06-21 Tohoku Techno Arch Co., Ltd. Hydrogen storage alloy
CN1398781A (zh) * 2002-08-30 2003-02-26 太原理工大学 一种制备乙炔和碳纳米管的装置
JP2005226114A (ja) * 2004-02-12 2005-08-25 Nasu Denki Tekko Co Ltd 水素吸蔵合金粉末の製造方法、及び当該製造方法により得られる水素吸蔵合金粉末
US7699904B2 (en) * 2004-06-14 2010-04-20 University Of Utah Research Foundation Functionally graded cemented tungsten carbide
CN102557638A (zh) * 2010-12-09 2012-07-11 中国科学院金属研究所 锆钛铝硅碳固溶体材料及其制备方法
CN103626496A (zh) * 2013-12-05 2014-03-12 燕山大学 一种非化学计量比碳化钛与氮化铝、氮化钛复合材料
CN103667846A (zh) * 2013-12-16 2014-03-26 华北电力大学(保定) 一种无相界碳化钛梯度材料的制备方法
KR20150078210A (ko) * 2013-12-30 2015-07-08 주식회사 원일티엔아이 티타늄-지르코늄계 수소저장합금 및 그 제조방법
CN103936421A (zh) * 2014-03-25 2014-07-23 沈阳化工大学 一种TiC0.6/ TiC0.6-Al2O3复合陶瓷的制备方法
CN104030246A (zh) * 2014-04-30 2014-09-10 燕山大学 一种铝锂储氢材料及其制备方法
CN104072139A (zh) * 2014-06-30 2014-10-01 沈阳化工大学 金属钛碳化物陶瓷的制备方法
CN105271113A (zh) * 2015-10-16 2016-01-27 安徽工业大学 一种复合储氢材料及其制备方法
CN105274411A (zh) * 2015-10-22 2016-01-27 燕山大学 一种镁铝硼镍基储氢材料及其制备方法
CN106242571A (zh) * 2016-08-29 2016-12-21 华北电力大学(保定) 一种碳化钛储氢材料的制备方法
CN106396683A (zh) * 2016-08-29 2017-02-15 华北电力大学(保定) 一种钛铝碳与碳化钛复合储氢材料及其制备方法
WO2019181604A1 (ja) * 2018-03-23 2019-09-26 日清エンジニアリング株式会社 複合粒子および複合粒子の製造方法
CN108439986A (zh) * 2018-05-09 2018-08-24 西北工业大学 (HfTaZrTiNb)C高熵陶瓷粉体及高熵陶瓷粉体和高熵陶瓷块体的制备方法
WO2020115953A1 (ja) * 2018-12-04 2020-06-11 株式会社三徳 水素吸蔵材、負極、及びニッケル水素二次電池

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANNEGRINGOZ等: "Electrochemical hydrogen storage in TiC0.6, not in TiC0.9", 《ELECTROCHEMISTRY COMMUNICATIONS》 *
DING HAIMIN 等: "First-principles study of hydrogen storage in non-stoichiometric TiCx", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
HAIMINDING 等: "The influence of stacking faults on hydrogen storage in TiCx", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
I.BORGH 等: "Synthesis and phase separation of (Ti,Zr)C", 《ACTA MATERIALIA》 *
JULIENNGUYEN等: "Hydrogen insertion in substoichiometric titanium carbide", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
刘少存: "非化学计量比碳化钛(锆)的制备及其结构,力学性能和氧化过程研究", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》 *
马通祥 等: "固体储氢材料研究进展", 《功能材料》 *

Also Published As

Publication number Publication date
CN111875383B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
Huang et al. Electrode properties of melt-spun Mg–Ni–Nd amorphous alloys
CN111647773B (zh) 一种稀土储氢材料及其制备方法
CN105063457B (zh) 一种纳米石墨复合的高容量RE‑Mg‑Ni基贮氢材料及其制备方法
CN101962724B (zh) 一种Mg-RE-Ni合金储氢材料的制备方法
CN105695775B (zh) 一种钇‑铁基合金材料、制备方法及应用
CN103101880B (zh) 一种硼氢化锂/稀土镁基合金复合储氢材料及其制备方法
CN106854715B (zh) 一种含有钇元素的镧-镁-镍系ab3型储氢合金及其制备工艺
CN110656272B (zh) 一种基于高熵效应的镁基贮氢材料及其制备方法
Tian et al. Preparation and electrochemical properties of La0. 70MgxNi2. 45Co0. 75Al0. 30 (x= 0, 0.30, 0.33, 0.36, 0.39) hydrogen storage alloys
CN1651587A (zh) 一种REMg3型贮氢合金及其制备方法
CN114799155A (zh) 陶瓷颗粒强化难熔高熵合金的制备方法
CN114774727A (zh) 纳米二氧化锆增强NbMoTaW难熔高熵合金的制备方法
CN112226663B (zh) 高循环容量ZrCo基氢同位素贮存合金及其制备和应用
CN106702191A (zh) 一种钛铁钇基贮氢材料和中间合金及制备方法
CN111875383B (zh) 一种非化学计量比碳化钛储氢材料及其制备方法
CN111485165B (zh) 一种钇-钪-铁合金材料、钇-钛-钪-铁合金材料、制备方法及应用
CN106396683B (zh) 一种钛铝碳与碳化钛复合储氢材料及其制备方法
CN111074127B (zh) 一种Ce-Mg-Ni低压贮氢合金材料及其制备方法
CN101967660B (zh) 共电脱氧法制取Nb3Al超导材料的方法
Meena et al. Synthesis and hydrogen storage of La23Nd7. 8Ti1. 1Ni33. 9Co32. 9Al0. 65 alloys
CN114784279A (zh) 一种锂离子电池硅基负极材料的制备方法
CN1786239A (zh) 一种高容量稀土镁基贮氢合金制备方法
CN114164368A (zh) 一种稀土储氢合金及其制备方法和应用
CN106756355B (zh) 燃料电池用Mg-Sn-Ni三元贮氢中间合金、贮氢材料和制备方法
CN105274374A (zh) 一种Mg2Ni0.9Co0.1H4基储氢材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220415