CN106396683B - 一种钛铝碳与碳化钛复合储氢材料及其制备方法 - Google Patents

一种钛铝碳与碳化钛复合储氢材料及其制备方法 Download PDF

Info

Publication number
CN106396683B
CN106396683B CN201610735959.9A CN201610735959A CN106396683B CN 106396683 B CN106396683 B CN 106396683B CN 201610735959 A CN201610735959 A CN 201610735959A CN 106396683 B CN106396683 B CN 106396683B
Authority
CN
China
Prior art keywords
titanium
powder
hydrogen storage
carbonized
aluminium carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610735959.9A
Other languages
English (en)
Other versions
CN106396683A (zh
Inventor
柳青
丁海民
王进峰
石玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201610735959.9A priority Critical patent/CN106396683B/zh
Publication of CN106396683A publication Critical patent/CN106396683A/zh
Application granted granted Critical
Publication of CN106396683B publication Critical patent/CN106396683B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

一种钛铝碳与碳化钛复合储氢材料及其制备方法,所述复合储氢材料根据氢在钛铝碳中更容易扩散及在碳化钛中具有更大储存容量的特点,经备料、混料、压制、烧结等步骤制备。本发明制备的复合储氢材料具有优良的储放氢热动力学性能及较高的储氢容量,以及优良的循环稳定性,可实现氢在室温下的快速可逆储放。本发明的制备方法工艺简单,适合工业化应用。

Description

一种钛铝碳与碳化钛复合储氢材料及其制备方法
技术领域:
本发明属于储氢材料技术领域,具体涉及一种钛铝碳与碳化钛复合储氢材料及其制备方法。
背景技术:
能源是人类社会发展的重要物质基础。长期以来,人类的能源系统是以石油、煤炭、天然气等化石燃料为主。但是化石燃料储量有限且不可再生,同时化石燃料燃烧造成日益严重的“温室效应”和大气污染等环境问题,威胁到人类的生存。因此,可持续的、绿色的新能源是未来能源系统的必然选择,如核能、太阳能、风能、潮汐能、氢能等。在这其中,氢能由于具有一系列的优点而被认为是最理想的未来“绿色能源”。但是当前氢能的利用仍面临着一系列的技术问题,其中最为关键的是氢的安全、高效储运技术。氢的储运有多种形式,包括气态储氢、液态储氢和固态储氢,其中固态储氢具有储氢含量高、安全性好、能耗少和氢气纯度高等优点,被认为是最佳的方式。而对于氢的固态存储,重点是开发高性能的储氢材料。对此,研究者已做了大量的工作,取得了明显的成效,如申请号为CN201310717737.0的中国发明专利申请公开了一种掺杂过渡金属氟化物的氢化铝储氢材料及其制备方法,该掺杂过渡金属氟化物的氢化铝储氢材料,由AlH3和MFx组分制成。该储氢材料能够在室温下较快地放出氢气,且放氢量可达6.5wt%。且制备简单,易于控制,可控性好;专利号为ZL201310656908.3的中国发明专利发明了一种镁基复合储氢材料及其制备方法,发明的镁基复合储氢材料具有核壳结构;核为镁的超细粉体颗粒,位于镁基复合储氢材料内部;壳由过渡金属形成,位于镁基复合储氢材料外层。该储氢材料具有良好的储氢动力学性能,吸放氢平台稳定,滞后反应小,吸氢速度较快,放氢温度较低;专利号为ZL201310560102.4的中国发明专利发明了一种含LiMgN的高容量储氢材料制备方法,用该方法制备的颗粒状LiMgN储氢材料的储氢容量达到3.2wt%。尽管目前已开发出了多种储氢材料,且这些储氢材料各有优势,但是也各自又有不足。如原料成本高、放氢温度高或再氢化困难等。这些不足限制了固态储氢材料的进一步推广应用。
发明内容:
本发明针对现有储氢材料的不足,提供了一种钛铝碳与碳化钛复合储氢材料及其制备方法。
本发明的技术方案为:
一种钛铝碳与碳化钛复合储氢材料,其特征在于:所述复合储氢材料由以下组分组成:所述钛铝碳为三元化合物,具体为Ti3AlC2或者Ti2AlC,所述碳化钛为TiCx,其中0.48≤x≤0.8,复合储氢材料中钛铝碳的质量比为2%-15%,其余为碳化钛。
所述的一种钛铝碳与碳化钛复合储氢材料的制备方法,其特征在于:所述制备方法由以下步骤组成:
(1)原料准备:准备好制备复合储氢材料所需的原料铝粉与碳化钛粉或钛铝碳粉与碳化钛粉,所述钛铝碳粉为三元化合物,具体为Ti3AlC2或者Ti2AlC,所述碳化钛粉为非化学计量比TiCx,其中0.48≤x≤0.8。当原料为铝粉与碳化钛粉时铝粉的质量比为0.3%到3%,其余为碳化钛粉;当原料为钛铝碳粉与碳化钛粉时,钛铝碳粉的质量比为2%-15%,其余为碳化钛粉;
(2)原料混配:将铝粉与碳化钛粉或者钛铝碳粉与碳化钛粉混合均匀;
(3)球磨:将铝粉与碳化钛粉或者钛铝碳粉与碳化钛粉混合粉料在高能球磨机中球磨3-8小时;
(4)压制成型:将混合均匀的混合粉料压制成所需的形状;
(5)烧结:将压制成型的原料置于烧结炉中,原料为铝粉与碳化钛粉时,加热到950-1200℃,保温3-8小时,当原料为钛铝碳粉与碳化钛粉时加热到600-950℃保温3-8小时,然后随炉冷却到室温,即得到钛铝碳与碳化钛复合储氢材料。
本发明所制备的钛铝碳与碳化钛复合储氢材料及其制备方法与现有储氢材料与技术相比具有如下优点:
1.所制备的钛铝碳与碳化钛复合储氢材料中,钛铝碳化合物主要作用是为氢扩散提供通道,促进氢在储氢材料中的扩散,而碳化钛是氢储存的主要载体,两者复合所得的复合储氢材料既有良好的储放氢热动力学性能,又有较高的储氢容量;测试表明,复合储氢材料的储氢容量达到2.6%.wt-3.6%.wt之间,储放氢速率较单纯的碳化钛储氢材料提高了1-3倍。
2.所制复合储氢材料具有优良的化学稳定性和抗氧化能力,储氢时具有高的抗杂质气体中毒能力和循环稳定性;
3.制备方法简单、原料丰富且价格低廉。
具体实施方式:
下面结合具体实施例,进一步阐述发明。应说明的是:以下实施例仅用以说明本发明而并非限制本发明所描述的技术方案。一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围当中。
实施例1:
(1)原料准备:准备好制备复合储氢材料所需的原料铝粉与碳化钛粉,其中碳化钛粉为TiC0.65,铝粉的质量比为1%,其余为碳化钛粉;
(2)原料混配:将铝粉与碳化钛粉混合均匀;
(3)球磨:将铝粉与碳化钛粉混合粉料在高能球磨机中球磨4小时;
(4)压制成型:将混合均匀的混合粉料压制成所需的形状;
(5)烧结:将压制成型的原料置于烧结炉中,加热到1000℃保温3小时,然后随炉冷却到室温,即得到钛铝碳与碳化钛复合储氢材料。
经电化学储氢试验测定,所得钛铝碳与碳化钛复合储氢材料可在室温下实现氢的可逆存储,储氢容量约为3.0wt.%。
实施例2:
(1)原料准备:准备好制备复合储氢材料所需的原料钛铝碳粉及碳化钛粉,其中钛铝碳粉为Ti3AlC2,碳化钛粉为TiC0.60,钛铝碳粉的质量比为5%,其余为碳化钛粉;
(2)原料混配:将钛铝碳粉及碳化钛粉混合均匀;
(3)球磨:将钛铝碳粉及碳化钛粉混合粉料在高能球磨机中球磨5小时;
(4)压制成型:将混合均匀的混合粉料压制成所需的形状;
(5)烧结:将压制成型的原料置于烧结炉中,加热到800℃保温3小时,然后随炉冷却到室温,即得到钛铝碳与碳化钛复合储氢材料。
经电化学储氢试验测定,所得钛铝碳与碳化钛复合储氢材料可在室温下实现氢的可逆存储,储氢容量约为3.3wt.%。
实施例3:
(1)原料准备:准备好制备复合储氢材料所需的原料钛铝碳粉及碳化钛粉,其中钛铝碳粉为Ti2AlC,碳化钛为TiC0.70,钛铝碳粉的质量比为15%,其余为碳化钛粉;
(2)原料混配:将钛铝碳粉及碳化钛粉混合均匀;
(3)球磨:将钛铝碳粉及碳化钛粉混合粉料在高能球磨机中球磨5小时;
(4)压制成型:将混合均匀的混合粉料压制成所需的形状;
(5)烧结:将压制成型的原料置于烧结炉中,加热到700℃保温6小时,然后随炉冷却到室温,即得到钛铝碳与碳化钛复合储氢材料。
经电化学储氢试验测定,所得钛铝碳与碳化钛复合储氢材料可在室温下实现氢的可逆存储,储氢容量约为2.7wt.%。

Claims (2)

1.一种钛铝碳与碳化钛复合储氢材料,其特征在于:所述复合储氢材料由以下组分组成:所述钛铝碳为三元化合物,具体为Ti3AlC2或者Ti2AlC,所述碳化钛为TiCx,其中0.48≤x≤0.8,复合储氢材料中钛铝碳的质量比为2%-15%,其余为碳化钛。
2.如权利要求1所述的一种钛铝碳与碳化钛复合储氢材料的制备方法,其特征在于:所述制备方法由以下步骤组成:
(1)原料准备:准备好制备复合储氢材料所需的原料铝粉与碳化钛粉或者钛铝碳粉与碳化钛粉,所述钛铝碳粉为三元化合物,具体为Ti3AlC2或者Ti2AlC,所述碳化钛粉为TiCx,其中0.48≤x≤0.8;当原料为铝粉与碳化钛粉时铝粉的质量比为0.3%到3%,其余为碳化钛粉;当原料为钛铝碳粉与碳化钛粉时,钛铝碳粉的质量比为2%-15%,其余为碳化钛粉;
(2)原料混配:将铝粉与碳化钛粉或者钛铝碳粉与碳化钛粉混合均匀;
(3)球磨:将铝粉与碳化钛粉或者钛铝碳粉与碳化钛粉混合粉料在高能球磨机中球磨3-8小时;
(4)压制成型:将混合均匀的混合粉料压制成所需的形状;
(5)烧结:将压制成型的原料置于烧结炉中,原料为铝粉与碳化钛粉时,加热到950-1200℃,保温3-8小时,当原料为钛铝碳粉与碳化钛粉时加热到600-950℃保温3-8小时,然后随炉冷却到室温,即得到钛铝碳与碳化钛复合储氢材料。
CN201610735959.9A 2016-08-29 2016-08-29 一种钛铝碳与碳化钛复合储氢材料及其制备方法 Active CN106396683B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610735959.9A CN106396683B (zh) 2016-08-29 2016-08-29 一种钛铝碳与碳化钛复合储氢材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610735959.9A CN106396683B (zh) 2016-08-29 2016-08-29 一种钛铝碳与碳化钛复合储氢材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106396683A CN106396683A (zh) 2017-02-15
CN106396683B true CN106396683B (zh) 2019-03-01

Family

ID=58005349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610735959.9A Active CN106396683B (zh) 2016-08-29 2016-08-29 一种钛铝碳与碳化钛复合储氢材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106396683B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231989A (zh) * 2018-11-01 2019-01-18 燕山大学 一种高活性合金插层Ti3AlMC2陶瓷材料的制备方法
CN111875383B (zh) * 2020-08-13 2022-04-15 华北电力大学(保定) 一种非化学计量比碳化钛储氢材料及其制备方法
CN114105660B (zh) * 2020-08-28 2023-11-24 上海市洁能科技有限公司 储氢结构用材料组合物、储氢结构用材料及储氢单体管

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143991A (ja) * 1994-11-17 1996-06-04 Toyota Motor Corp 耐摩耗性及び耐焼付性に優れたチタン合金及びその製造方法
CN1108392C (zh) * 2000-11-06 2003-05-14 中国科学院金属研究所 一种原位热压/固-液相反应制备钛铝碳块体材料的方法
CN1242083C (zh) * 2001-11-29 2006-02-15 中国科学院金属研究所 一种Ti3AlC2复合材料增强剂的制备方法
CN1478757A (zh) * 2003-07-18 2004-03-03 清华大学 一种用放电等离子烧结制备高纯块体钛铝碳材料的方法
CN100357179C (zh) * 2005-04-29 2007-12-26 北京交通大学 一种钛铝碳化物粉料及其以锡为反应助剂的合成方法
CN100506692C (zh) * 2007-04-27 2009-07-01 武汉理工大学 一种高纯Ti2AlC粉体材料的制备方法
CN102557718A (zh) * 2011-12-21 2012-07-11 中南大学 含TiC颗粒增强三元化合物基柔性多孔陶瓷材料及其制作方法
CN104072139A (zh) * 2014-06-30 2014-10-01 沈阳化工大学 金属钛碳化物陶瓷的制备方法
CN105271232A (zh) * 2015-11-03 2016-01-27 西安交通大学 一种基于超声辅助热爆反应制备Ti2AlC的方法

Also Published As

Publication number Publication date
CN106396683A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN203500844U (zh) 一种可快速吸放氢的金属氢化物储氢装置
Modi et al. Room temperature metal hydrides for stationary and heat storage applications: a review
CN106396683B (zh) 一种钛铝碳与碳化钛复合储氢材料及其制备方法
CN102610842B (zh) 中高温碳-空气电池
CN104513925B (zh) 一种钇‑镍稀土系储氢合金及含该储氢合金的二次电池
CN101549854A (zh) 含碱土金属-铝氢化物的镁基复合储氢材料及制备方法
CN104532095A (zh) 一种钇-镍稀土系储氢合金
CN102586660B (zh) 一种添加金属硫化物的镁基储氢合金复合材料
CN107915203A (zh) 复合氢化物储氢材料的制备方法及复合氢化物储氢材料
CN105271113A (zh) 一种复合储氢材料及其制备方法
CN104100834A (zh) 一种可快速吸放氢的金属氢化物储氢装置
CN106654240A (zh) 一种Ce2Ni7型单相超晶格贮氢合金电极材料及其制备方法
CN104532062A (zh) 一种钇-镍稀土系储氢合金
Qu et al. The development of metal hydrides using as concentrating solar thermal storage materials
CN102205412A (zh) MlNi3.5Co0.6Mn0.4Al0.5储氢合金的氟化处理改性的方法
CN1294376C (zh) 金属氢化物储氢装置及其制作方法
CN110656272A (zh) 一种基于高熵效应的镁基贮氢材料及其制备方法
CN103771337A (zh) 一种掺杂过渡金属氟化物的氢化铝储氢材料及其制备方法
CN101575679A (zh) 一种Mg-Ni系储氢合金的制备方法
CN103879957A (zh) 一种催化剂掺杂的镁基储氢材料及制备
CN106242571A (zh) 一种碳化钛储氢材料的制备方法
CN102502488B (zh) 一种改善硼氢化锂储氢性能的方法
US7833473B2 (en) Material for storage and production of hydrogen, and related methods and apparatus
CN104909337B (zh) 一种偏硼酸锂掺杂氢化锂的储氢复合材料及其制备方法
CN105947975A (zh) 一种高容量储氢材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant