CN102557718A - 含TiC颗粒增强三元化合物基柔性多孔陶瓷材料及其制作方法 - Google Patents

含TiC颗粒增强三元化合物基柔性多孔陶瓷材料及其制作方法 Download PDF

Info

Publication number
CN102557718A
CN102557718A CN2011104316014A CN201110431601A CN102557718A CN 102557718 A CN102557718 A CN 102557718A CN 2011104316014 A CN2011104316014 A CN 2011104316014A CN 201110431601 A CN201110431601 A CN 201110431601A CN 102557718 A CN102557718 A CN 102557718A
Authority
CN
China
Prior art keywords
powder
tic
temperature
reaction
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011104316014A
Other languages
English (en)
Inventor
江垚
陈慕容
林良武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN2011104316014A priority Critical patent/CN102557718A/zh
Publication of CN102557718A publication Critical patent/CN102557718A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

本发明公开了含TiC颗粒增强三元化合物基柔性多孔陶瓷材料及其制作方法,通过化学反应生成Ti3SiC2或Ti3AlC2陶瓷具有良好的韧性和可加工性能,以解决金属多孔材料存在的耐腐蚀性差、抗高温氧化能力差和耐磨损性不足缺陷,以及传统多孔陶瓷材料存在的抗热冲击能力差、脆性和难以机加工问题。

Description

含TiC颗粒增强三元化合物基柔性多孔陶瓷材料及其制作方法
技术领域
本发明涉及陶瓷材料,特别涉及含TiC颗粒增强三元化合物基柔性多孔陶瓷材料及其制作方法。
背景技术
多孔材料是可持续发展和促进环境友好型工业发展的重要支撑之一。多孔材料由于具有一定孔径范围分布的孔隙,较大的比表面积,吸附容量和许多特殊的性能,可实现过滤、分离、节流、催化反应、隔音,隔热,抗震、吸附 多种功能,广泛应用于医药、化工、冶金、海水淡化以及环境保护 各个领域。特别是,当前随着过程工业的飞速发展,能源短缺、资源短缺和环境污染 问题日趋严重,多孔材料在过滤领域的应用对于提高工业生产效率、节约能源、保障环境友好和资源的再利用有着重大意义。目前国内外能够工业应用的多孔过滤材料主要有高分子材料和无机材料(包括陶瓷材料和金属材料)。这些传统的多孔过滤材料已广泛应用于冶金、水处理、食品、医药、生物和废液废气处理 领域。
然而,高分子多孔材料存在抗高温高压性能差,不耐有机溶剂,抗环境腐蚀性能不足以及力学性能不足 缺陷,从而限制了这类材料只能局限于环境较为友好的水处理和生物 领域的应用。相比于高分子多孔材料,无机多孔材料具有明显的材料性能优势。金属多孔材料,如Ti基合金、Ni基合金、以及316L不锈钢 ,具有良好的力学性能和可焊接密封性能;但是,金属材料耐酸碱腐蚀性能较差、抗硬质颗粒的磨损性能不足以及抗高温氧化性能差,极大的限制了此类材料广泛应用。多孔陶瓷材料,如Al2O3、SiO2、SiC、TiO2、ZrO2 ,弥补了金属多孔材料抗腐蚀性能的不足,具有耐高温、耐高压和耐环境腐蚀 优异性能,广泛应用于过程工业、化工与石油化工 领域;但是,陶瓷材料差的抗热冲击性、脆性和难以机加工 缺陷,制约着其应用领域的扩展。
Ti3MC2(M包括Si或Al )三元化合物陶瓷,具有良好的导热导电性和耐腐蚀性能。与传统陶瓷材料不同的是, Ti3SiC2或Ti3AlC2陶瓷具有良好的韧性和可加工性能,以及抗热冲击性能。然而,这种材料相对较低的硬度和固有的层状结构,使其在受到硬质颗粒的磨削力时较易磨损,特别是将其制备成多孔材料后,其磨损性能进一步恶化,大大降低了这种材料的使用寿命。
TiC陶瓷具有高的硬度和强度,这种硬质陶瓷同样具有良好的导电性能和耐环境腐蚀性能。与Ti3MC2三元化合物陶瓷不同的是,它具有优异的抗磨损性能。然而,TiC陶瓷高的硬度和脆性导致其难以机加工,以及难与其他组件焊接密封。
发明内容
本发明所解决的技术问题在于提供一种含TiC颗粒增强三元化合物基柔性多孔陶瓷材料及其制作方法,即一种TiC颗粒增强Ti3MC2三元化合物基柔性多孔陶瓷材料,以解决金属多孔材料存在的耐腐蚀性差、抗高温氧化能力差和耐磨损性不足 缺陷,以及传统多孔陶瓷材料存在的抗热冲击能力差、脆性和难以机加工 问题。
一种含TiC颗粒增强三元化合物基柔性多孔陶瓷材料,按照原子数量比如下:Ti  45%-65% 、C 40%-25%  M 15%-10%。
一种含TiC颗粒增强三元化合物基柔性多孔陶瓷材料的制作方法,包括以下步骤:
(1)配料混合:选取分解温度在380℃以下的碳酸盐或碳酸氢盐粉,如NH4HCO3粉、(NH4)2CO3粉和MgCO3粉 、TiH2粉、TiC粉、M粉为原料,将各原料粉末采用泰勒标准筛进行筛分,筛分时间60--120分钟,各原料粉末的选择粒度如下:碳酸盐粉-80目及以下,TiH2粉-200目及以下,TiC粉-400目,元素M粉-325目及以下,将各原料粉末按如下成分配比进行配料按各物料的原子百分比 at.%,下同:碳酸盐:5%--15%,TiH2:35%--20%, TiC:35%--50%,元素M:10%--15%,将配好的物料放入球磨机进行混合,球磨气氛为真空或惰性气体保护,球料比为1:1--3:1,球磨时间6--8小时;
(2)混合粉末冷压成形,将混合好的粉末采用冷压成形设备进行压制,设备包括液压机或 静压机 ,压制压力控制在150--450MPa,保压时间为10--30秒;
(3)碳酸盐分解造孔,将成形冷压坯进行低温分解,所用设备为脱脂炉、氢气炉或氮气炉 ,分解温度为150--350℃,升温速率控制在3--5min/s,分解时间为30--60分钟,分解完后随炉冷却,在此阶段,进行如下反应: 
MeCO3 → MeO + CO2↑
MeHCO3 → MeO+H2O↑+ CO2↑
Me包括NH4+,Mg2+,碳酸盐的分解造成CO2或水蒸气释放,将在坯体中形成一部分颗粒间隙孔隙;
(4)TiH2脱氢造孔,将低温分解坯进行中温TiH2脱氢,所用设备为脱氢炉,脱氢温度为480--580℃,升温速率控制在8--10min/s,脱氢时间为60--90分钟,脱氢完后,采用惰性气体强冷至50℃以下出炉,在此阶段,进行如下反应:
TiH2 → Ti + H2↑
脱氢阶段,坯体中大量氢气的释放将造成坯体多孔骨架的基本形成;
(5)Ti-M预反应造孔。脱氢坯出炉后,在5--10分钟之内放入真空炉中进行预反应烧结。预反应温度为600--1000℃,升温速率控制在1--2min/s,预反应时间为240--360分钟,真空度控制在10-3--10-2Pa范围,在此阶段,进行如下反应:
Ti +M → Ti-M金属间化合物
Me包括Si和Al 。预反应阶段,由于Ti与M元素在互扩散过程中扩散速率的差异,引发Kirkendall空洞效应,进一步在坯体中形成一部分孔隙;
(6)反应烧结形成TiC/Ti3MC2多孔体:在Ti-M预反应的基础上,进一步升高温度进行反应烧结。为抑制高温轻质元素的挥发,采用惰性气体保护烧结。反应烧结温度为1300--1400℃,升温速率控制在3--5min/s,反应烧结时间为300--420分钟,惰性气体压力控制在0.04--0.06MPa范围,在此阶段,进行如下反应:
Ti-M +TiC → Ti3MC2
反应完后随炉冷却。
在本发明中,所述的M为Si粉或Al粉。
有益效果:
本发明具有以下优点:
(1) 采用三阶段造孔及两阶段反应烧结方法制备TiC/Ti3MC2复合多孔材料,具有孔隙度高并且孔径小的孔结构特点,其孔隙度可达50%--70%,最大孔径可控制在8-10μm以内,具有优良的过滤性能;
(2)制备的TiC/Ti3MC2复合多孔材料具有良好的孔结构稳定性,微观结构均匀性和材料强度;所设计的三阶段造孔及两阶段反应烧结方法具有短流程,过程可控和连续性强等特点。第一阶段碳酸盐的分解在坯体中初步形成 颗粒间隙孔隙,在结构上有利于后续TiH2脱氢阶段氢气的释放,避免了大量氢气释放对坯体造成的损伤;TiH2脱氢后使得坯体多孔骨架基本形成,其反应产物Ti由于释放氢后将具有一定的反应活性,有利于后续Ti-M的互扩散预反应;Ti-M的预反应 过程中,由于Ti与M元素在互扩散过程中扩散速率的差异,将进一步在坯体中形成一部分Kirkendall孔隙 ,同时反应产物Ti-M金属间化合物直接参与Ti3MC2三元化合物的合成;在最后阶段,Ti-M与TiC反应生成Ti3MC2,即Ti3MC2在TiC颗粒上原位生成,保证了两者之间的微观结合强度。由此制备的TiC/Ti3MC2复合多孔材料具有良好的孔结构稳定性,微观结构均匀性和材料强度。
(3)提出TiC颗粒增强Ti3MC2三元化合物基柔性多孔陶瓷材料,这种新型的无机多孔材料集中了TiC和Ti3MC2材料的性能优点,具有良好的抗腐蚀性能,抗高温氧化性能和抗热冲击性能,同时具有良好的力学性能,抗磨损性能和可加工性。
具体实施方式
为了使本发明的技术手段、创作特征、工作流程、使用方法达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
实施例1:
一种TiC/Ti3SiC2颗粒增强三元化合物基柔性多孔陶瓷材料的制备方法:首先,选取MgCO3粉、TiH2粉、TiC粉和Si粉为原料,将各原料粉末采用泰勒标准筛进行筛分,筛分时间120分钟,各原料粉末的选择粒度如下:MgCO3粉-80目,TiH2粉-300目,TiC粉-400目,Si粉-400目;将各原料粉末按如下成分配比进行配料(原子百分比):MgCO3:8%,TiH2:33%, TiC:47%,Si:12%;将配好的物料放入球磨机进行混合,球磨气氛为惰性气体保护,球料比为3:1,球磨时间8小时。然后,将混合好的粉末采用液压机进行压制,压制压力控制在450MPa,保压时间为10秒。然后,将成形冷压坯用氮气炉进行低温分解,分解温度为350℃,升温速率控制在5min/s,分解时间为60分钟,分解完后随炉冷却。然后,将低温分解坯用脱氢炉进行TiH2脱氢,脱氢温度为560℃,升温速率控制在10min/s,脱氢时间为60分钟,脱氢完后,采用惰性气体强冷至50℃以下出炉。然后,将脱氢坯在5--10分钟之内放入真空炉中进行预反应烧结,预反应温度为950℃,升温速率控制在1min/s,预反应时间为360分钟,真空度控制在10-3--10-2Pa范围。最后,进一步升高温度进行反应烧结,反应烧结温度为1400℃,升温速率控制在3min/s,反应烧结时间为420分钟,惰性气体压力控制在0.04--0.06MPa范围,反应完后随炉冷却。从而制备出TiC/Ti3SiC2颗粒增强三元化合物基柔性多孔陶瓷材料。
实施例2:
一种TiC/Ti3AlC2颗粒增强三元化合物基柔性多孔陶瓷材料的制备方法:首先,选取NH4HCO3粉、TiH2粉、TiC粉和Al粉为原料,将各原料粉末采用泰勒标准筛进行筛分,筛分时间60分钟,各原料粉末的选择粒度如下:NH4HCO3粉-80目,TiH2粉-200目,TiC粉-400目,Al粉-325目;将各原料粉末按如下成分配比进行配料(原子百分比):NH4HCO3:15%,TiH2:20%, TiC:50%,Al:15%;将配好的物料放入球磨机进行混合,球磨气氛为真空,球料比为1:1,球磨时间6小时。然后,将混合好的粉末采用 静压机进行压制,压制压力控制在150MPa,保压时间为30秒。然后,将成形冷压坯用脱脂炉进行低温分解,分解温度为150℃,升温速率控制在3min/s,分解时间为30分钟,分解完后随炉冷却。然后,将低温分解坯用脱氢炉进行TiH2脱氢,脱氢温度为480℃,升温速率控制在8min/s,脱氢时间为90分钟,脱氢完后,采用惰性气体强冷至50℃以下出炉。然后,将脱氢坯在5--10分钟之内放入真空炉中进行预反应烧结,预反应温度为620℃,升温速率控制在2min/s,预反应时间为240分钟,真空度控制在10-3--10-2Pa范围。最后,进一步升高温度进行反应烧结,反应烧结温度为1300℃,升温速率控制在5min/s,反应烧结时间为300分钟,惰性气体压力控制在0.04--0.06MPa范围,反应完后随炉冷却。从而制备出TiC/Ti3AlC2颗粒增强三元化合物基柔性多孔陶瓷材料。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其 效物界定。

Claims (3)

1.一种含TiC颗粒增强三元化合物基柔性多孔陶瓷材料,其特征在于,按照原子数量比如下:Ti  45%-65% 、C 40%-25% 、M 15%-10%。
2.含TiC颗粒增强三元化合物基柔性多孔陶瓷材料的制作方法,其特征在于,包括以下步骤:
(1)配料混合:选取分解温度在380℃以下的碳酸盐或碳酸氢盐粉,如NH4HCO3粉、(NH4)2CO3粉和MgCO3粉、TiH2粉、TiC粉、M粉为原料,将各原料粉末采用泰勒标准筛进行筛分,筛分时间60--120分钟,各原料粉末的选择粒度如下:碳酸盐粉-80目及以下,TiH2粉-200目及以下,TiC粉-400目,元素M粉-325目及以下,将各原料粉末按如下成分配比进行配料按各物料的原子百分比 at.%,下同:碳酸盐:5%--15%,TiH2:35%--20%, TiC:35%--50%,元素M:10%--15%,将配好的物料放入球磨机进行混合,球磨气氛为真空或惰性气体保护,球料比为1:1--3:1,球磨时间6--8小时;
(2)混合粉末冷压成形,将混合好的粉末采用冷压成形设备进行压制,设备包括液压机或 静压机,压制压力控制在150--450MPa,保压时间为10--30秒;
(3)碳酸盐分解造孔,将成形冷压坯进行低温分解,所用设备为脱脂炉、氢气炉或氮气炉,分解温度为150--350℃,升温速率控制在3--5min/s,分解时间为30--60分钟,分解完后随炉冷却;
(4)TiH2脱氢造孔,将低温分解坯进行中温TiH2脱氢,所用设备为脱氢炉,脱氢温度为480--580℃,升温速率控制在8--10min/s,脱氢时间为60--90分钟,脱氢完后,采用惰性气体强冷至50℃以下出炉,脱氢阶段,坯体中大量氢气的释放将造成坯体多孔骨架的基本形成;
(5)Ti-M预反应造孔,脱氢坯出炉后,在5--10分钟之内放入真空炉中进行预反应烧结,预反应温度为600--1000℃,升温速率控制在1--2min/s,预反应时间为240--360分钟,真空度控制在10-3--10-2Pa范围,预反应阶段,由于Ti与M元素在互扩散过程中扩散速率的差异,引发Kirkendall空洞效应,进一步在坯体中形成一部分孔隙;
(6)反应烧结形成TiC/Ti3MC2多孔体:在Ti-M预反应的基础上,进一步升高温度进行反应烧结,为抑制高温轻质元素的挥发,采用惰性气体保护烧结,反应烧结温度为1300--1400℃,升温速率控制在3--5min/s,反应烧结时间为300--420分钟,惰性气体压力控制在0.04--0.06MPa范围,反应完后随炉冷却。
3.根据权利要求1或2所述的含TiC颗粒增强三元化合物基柔性多孔陶瓷材料的制作方法,其特征在于,所述的M为Si或Al。
CN2011104316014A 2011-12-21 2011-12-21 含TiC颗粒增强三元化合物基柔性多孔陶瓷材料及其制作方法 Pending CN102557718A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011104316014A CN102557718A (zh) 2011-12-21 2011-12-21 含TiC颗粒增强三元化合物基柔性多孔陶瓷材料及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011104316014A CN102557718A (zh) 2011-12-21 2011-12-21 含TiC颗粒增强三元化合物基柔性多孔陶瓷材料及其制作方法

Publications (1)

Publication Number Publication Date
CN102557718A true CN102557718A (zh) 2012-07-11

Family

ID=46404502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011104316014A Pending CN102557718A (zh) 2011-12-21 2011-12-21 含TiC颗粒增强三元化合物基柔性多孔陶瓷材料及其制作方法

Country Status (1)

Country Link
CN (1) CN102557718A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007633A (zh) * 2012-12-21 2013-04-03 江苏云才材料有限公司 耐高温、抗氧化、耐腐蚀max相过滤分离元件
CN103343251A (zh) * 2013-06-30 2013-10-09 成都易态膜分离技术有限公司 烧结Ti-Al基合金多孔材料、应用及改善其孔结构的方法
CN103819193A (zh) * 2014-02-20 2014-05-28 北京交通大学 一种多孔Ti3AlC2陶瓷及其NaCl水洗制备方法
CN104402484A (zh) * 2014-10-29 2015-03-11 安徽省皖捷液压科技有限公司 一种耐腐蚀韧度佳的特种陶瓷喷嘴及其制作方法
CN105801121A (zh) * 2016-03-15 2016-07-27 中南大学 一种三元化合物基柔性多孔陶瓷复合材料的制备方法
CN106396683A (zh) * 2016-08-29 2017-02-15 华北电力大学(保定) 一种钛铝碳与碳化钛复合储氢材料及其制备方法
US10077214B2 (en) 2013-06-30 2018-09-18 Intermet Technologies Chengdu Co., Ltd Sintered porous material and filter element using same
CN109231988A (zh) * 2018-11-01 2019-01-18 燕山大学 一种大空位非计量比活性Ti3AlC2陶瓷材料的制备方法
CN109273685A (zh) * 2018-09-07 2019-01-25 中南大学 一种纳微结构锂离子电池负极复合材料
CN110981489A (zh) * 2019-12-30 2020-04-10 燕山大学 一种TiNx-Ti3SiC2复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101555137A (zh) * 2009-05-20 2009-10-14 南京工业大学 (TiB2+TiC)/Ti3SiC2复相陶瓷材料及其制备方法
CN101747075A (zh) * 2008-12-10 2010-06-23 中国科学院金属研究所 多孔导电max相陶瓷及其制备方法和用途
CN102206079A (zh) * 2011-03-29 2011-10-05 西北有色金属研究院 一种大尺寸Ti3SiC2陶瓷材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747075A (zh) * 2008-12-10 2010-06-23 中国科学院金属研究所 多孔导电max相陶瓷及其制备方法和用途
CN101555137A (zh) * 2009-05-20 2009-10-14 南京工业大学 (TiB2+TiC)/Ti3SiC2复相陶瓷材料及其制备方法
CN102206079A (zh) * 2011-03-29 2011-10-05 西北有色金属研究院 一种大尺寸Ti3SiC2陶瓷材料的制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007633A (zh) * 2012-12-21 2013-04-03 江苏云才材料有限公司 耐高温、抗氧化、耐腐蚀max相过滤分离元件
CN103343251A (zh) * 2013-06-30 2013-10-09 成都易态膜分离技术有限公司 烧结Ti-Al基合金多孔材料、应用及改善其孔结构的方法
US10077214B2 (en) 2013-06-30 2018-09-18 Intermet Technologies Chengdu Co., Ltd Sintered porous material and filter element using same
CN103819193A (zh) * 2014-02-20 2014-05-28 北京交通大学 一种多孔Ti3AlC2陶瓷及其NaCl水洗制备方法
CN104402484A (zh) * 2014-10-29 2015-03-11 安徽省皖捷液压科技有限公司 一种耐腐蚀韧度佳的特种陶瓷喷嘴及其制作方法
CN105801121A (zh) * 2016-03-15 2016-07-27 中南大学 一种三元化合物基柔性多孔陶瓷复合材料的制备方法
CN105801121B (zh) * 2016-03-15 2018-05-04 中南大学 一种三元化合物基柔性多孔陶瓷复合材料的制备方法
CN106396683A (zh) * 2016-08-29 2017-02-15 华北电力大学(保定) 一种钛铝碳与碳化钛复合储氢材料及其制备方法
CN109273685A (zh) * 2018-09-07 2019-01-25 中南大学 一种纳微结构锂离子电池负极复合材料
CN109231988A (zh) * 2018-11-01 2019-01-18 燕山大学 一种大空位非计量比活性Ti3AlC2陶瓷材料的制备方法
CN109231988B (zh) * 2018-11-01 2020-09-22 燕山大学 一种大空位非计量比活性Ti3AlC2陶瓷材料的制备方法
CN110981489A (zh) * 2019-12-30 2020-04-10 燕山大学 一种TiNx-Ti3SiC2复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN102557718A (zh) 含TiC颗粒增强三元化合物基柔性多孔陶瓷材料及其制作方法
CN104174845B (zh) 一种选区激光熔化成型制备钛合金零件的方法
CN105499576A (zh) 一种粉末冶金制备多孔钛铝合金的方法
CN104264148B (zh) 一种钛合金表面真空钎涂金属陶瓷复合涂层的方法
CN104911434B (zh) 一种碳化物增强Mo2NiB2金属陶瓷及其制备方法
CN101358304A (zh) NiAl金属间化合物多孔材料及其制备方法
CN103304239A (zh) 一种铝电解槽用TiB2基金属陶瓷材料及其制备方法
CN102505128A (zh) 一种熔盐电解直接制备多孔金属制品的方法
CN101994043A (zh) 一种高铌钛铝多孔金属间化合物梯度材料及其制备方法
CN105197952A (zh) 纳米单晶硼化镧的制备及其在电镜灯丝制备中的应用
CN103464764A (zh) 一种金属基耐磨耐蚀表面涂层复合材料及其制备方法
CN111360272A (zh) 一种氧化物界面增韧非晶基复合材料及其制备方法
CN103205592A (zh) 一种用于松质骨的泡沫钛制备方法
CN104674098A (zh) 基于TiCN-(Ti,M)CN混芯结构的金属陶瓷材料及其制备方法
CN103433488B (zh) 一种氮化钛-铁金属陶瓷的制备方法
CN105801121B (zh) 一种三元化合物基柔性多孔陶瓷复合材料的制备方法
CN102443796A (zh) 一种多孔Fe-Al金属间化合物涂层及其制备方法
CN101508572B (zh) 高致密单相TiB2陶瓷的快速制备方法
CN103819193A (zh) 一种多孔Ti3AlC2陶瓷及其NaCl水洗制备方法
CN102050626A (zh) 一种陶瓷喷砂嘴制造方法
CN102925890A (zh) 一种镍-铝基金属间化合物耐腐蚀涂层的制备方法
CN102731071A (zh) 一种铝钛硼和稀有金属协同增韧氧化铝的制备方法
CN102162044A (zh) 一种碳化钨/钴系多孔材料的制备方法
KR20150025196A (ko) 분말사출성형에 의한 복합소재 제조방법
CN103880425A (zh) 一种Al3BC3粉体及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20120711

C20 Patent right or utility model deemed to be abandoned or is abandoned