CN111834487B - 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法 - Google Patents

全无机钙钛矿纳米线自供能-短波光电探测器及制备方法 Download PDF

Info

Publication number
CN111834487B
CN111834487B CN202010725697.4A CN202010725697A CN111834487B CN 111834487 B CN111834487 B CN 111834487B CN 202010725697 A CN202010725697 A CN 202010725697A CN 111834487 B CN111834487 B CN 111834487B
Authority
CN
China
Prior art keywords
transport layer
perovskite
electrode
glass substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010725697.4A
Other languages
English (en)
Other versions
CN111834487A (zh
Inventor
朱卫东
柴文明
张春福
陈大正
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Nazhi Optical Research Technology Co ltd
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202010725697.4A priority Critical patent/CN111834487B/zh
Publication of CN111834487A publication Critical patent/CN111834487A/zh
Application granted granted Critical
Publication of CN111834487B publication Critical patent/CN111834487B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种全无机钙钛矿纳米线自供能‑短波光电探测器及制备方法,依次在处理好的FTO导电玻璃衬底上旋涂TiO2溶胶前驱体,得到致密的TiO2电子传输层;然后利用溶液法生长微米级的CsPbIxCl3‑x钙钛矿纳米线,并制备光电探测器。器件结构自上而下包括玻璃衬底、FTO电极、电子传输层、钙钛矿光吸收层、空穴传输层和电极。本发明基于CsPbIxCl3‑x纳米线碳基钙钛矿光电探测器同时具有高灵敏度,快速响应和良好的稳定性,在300~520nm范围内具皮秒级的暗电流和0.2A/W的优异光电探测度。

Description

全无机钙钛矿纳米线自供能-短波光电探测器及制备方法
技术领域
本发明属于钙钛矿光伏技术领域,具体涉及一种全无机钙钛矿纳米线的自供能-短波光电探测器及其制备方法。
背景技术
光电探测器对成像很重要和光通信应用并且是许多电子产品(如数码相机,智能手机)的关键组件手机和医疗诊断仪器。目前,大多数商用光电探测器都基于在传统的晶体无机半导体上,例如硅(Si)和铟砷化镓(InGaAs),需要昂贵的高真空制造流程。此类器件需要外接电源才能实现光电探测功能。
溶液法制备的半导体,例如有机半导体和量子点已被广泛研究作为光电检测中无机半导体的替代品,特别是对于某些需要颜色的特殊应用可调性,大面积或机械柔韧性。但是,由于其低廉性而受到限制载流子迁移率,大多数基于有机半导体的光电探测器或量子点响应速度慢,妨碍了它们的实际应用光通信系统。
在光探测领域中,已经对在光生伏打器件中取得了巨大成功的具有大的光吸收系数和高的载流子迁移率的溶液法制备的金属卤化物钙钛矿进行了深入研究。全无机钙钛矿材料具有可调控的带隙、优异的光电特性和稳定性,而且因其可以吸收光而产生能量供探测器工作,同时简单制备工艺和较低成本,引起了光伏器件领域的广泛关注。
然而,迄今为止,很少报道的钙钛矿光电探测器同时显示出高灵敏度,快速响应和良好的稳定性,这是用于成像和光通信系统的光电探测器的最重要特征之一。先前的报告表明,光电探测器的器件性能,特别是响应速度,在很大程度上取决于器件结构和有源层的材料特性。金属-半导体-金属(MSM)平面结构和p-i-n二极管是钙钛矿光电探测器的两种广泛使用的器件架构。由于使用了有效的电荷阻挡层,钙钛矿光电检测器显着降低了暗电流。根据p–i–n二极管结构显示出大大提高的响应灵敏度,并且响应速度与MSM同行相比。此外,由于存在内置电场和电荷缓冲层对缺陷的有效钝化,p–i–n钙钛矿光电探测器的响应时间为改进到亚纳秒级,在光通信应用,长期稳定性对于钙钛矿光电探测器很重要用于实际应用。提高钙钛矿的稳定性光电探测器,全无机卤化铯钙钛矿(AIHP)CsPbX3(X=Cl,Br,I),已被更好地证明材料稳定性好,已被用来代替混合动力光电探测器中的钙钛矿。但是,大多数报告的AIHP光电探测器基于纳米、微米,MSM结构简单或体积较大的晶体暗电流噪声和低灵敏度。同时,据报道响应速度范围从几十微秒到几百毫秒,这阻碍了它们在成像和光通信中的应用。
发明内容
本发明要解决的技术问题是提供一种全无机钙钛矿纳米线自供能-短波光电探测器及其制备方法,该光电探测器同时具有高灵敏度,快速响应和良好的稳定性,具有较低的暗电流和较高的光电探测度。可以有效提高光电探测器的性能,适应于工业生产的需求。
为达到上述目的,本发明是通过下述方案来实现的。
本发明的全无机钙钛矿纳米线自供能-短波光电探测器的制备方法,包括以下步骤:
步骤1,清洗FTO导电玻璃衬底:将FTO导电玻璃衬底超声清洗;
步骤2,UV-zone处理FTO导电玻璃衬底:将清洗过的FTO导电玻璃衬底放在UV-zone中处理;
步骤3,制备电子传输层:将配置好的TiO2溶胶前驱体旋涂在处理好的FTO导电玻璃衬底上,将旋涂好的TiO2薄膜退火,得到致密的TiO2电子传输层;
步骤4,钙钛矿光吸收层的溶液法制备:
1)将PbI2前驱体溶液滴在制备好的FTO/TiO2衬底上,按照不同的转速旋涂;将得到的PbI2前驱体薄膜退火,冷却至室温;
2)将CsCl溶液滴在一定旋涂速度的涂有PbI2薄膜衬底中心,退火,薄膜上长出微米级的CsPbIxCl3-x钙钛矿纳米线结构;
步骤5,制备空穴传输层:
将空穴传输层材料Spiro-MeOTAD混合物溶液、PTAA、P3HT、CuI、NiOx或MoOx中的一种或多种在室温条件下旋涂在钙钛矿薄膜上;
步骤6,制备电极:采用热蒸镀的方式在空穴传输层上沉积金属电极,或直接采用丝网印刷技术在钙钛矿层上沉积碳电极,得到光电探测器。
进一步,所述步骤3中,以2000-4000rpm的转速旋涂在处理好的FTO导电玻璃衬底上,将旋涂好的TiO2薄膜在50-70℃预热20-30min后,在120-200min时间内从室温加热到450-500℃,退火40-60min;所述致密TiO2薄膜作电子传输厚度为层40-80nm。
进一步,所述步骤4-1)中,以1000-1500rpm的速度旋涂20-40s,接着4000-5000rpm的速度旋转20-40s;得到的PbI2前驱体薄膜。
进一步,所述步骤4-2)中,在150-250℃退火5min;滴在旋涂速度为4000-5000rpm的涂有PbI2薄膜衬底中心,在200℃退火20-40min。
所述CsCl溶液是将CsCl颗粒溶解于甲醇或异丙醇中制备浓度为2-8mg/L的溶液。
进一步,所述步骤5中,Spiro-MeOTAD混合物溶液是按照质量比将4-8%的Spiro-MeOTAD、0.6-1.0%的锂盐Li-TFSI、2.0-2.4%的4-叔丁基吡啶t-BP和89-93%的氯苯混合搅拌24-36h得到。
进一步,在室温条件下将空穴传输层材料旋涂在钙钛矿薄膜上,旋涂速度为2000-4000rpm,时间为30-40s。
进一步,所述步骤6中,热蒸镀法沉积金属电极时,在腔室真空度10-5Pa以下的条件下,以
Figure BDA0002601581060000041
的速率蒸镀100~120nm的金属电极;
进一步,所述步骤6中,直接采用丝网印刷技术在钙钛矿层上沉积碳电极,碳电极的面积为0.09-1cm2,100-120℃退火10-15min,厚度控制在800-1000nm。
本发明进而提高了一种所述方法制备的全无机钙钛矿纳米线的自供能-短波光电探测器,包括自下而上的玻璃衬底、FTO电极、电子传输层、钙钛矿光吸收层、空穴传输层和电极;
所述钙钛矿光吸收层为CsPbIxCl3-x钙钛矿纳米线;
所述电子层包括氧化锡、氧化钛或铝锌氧化物;
所述空穴传输层为Spiro-OMeTAD、PTAA、P3HT、CuI、NiOx或MoOx中的一种或多种;
所述电极为不透明或半透明的金、银电极或导电碳材料电极。
本发明的有益效果如下:
本发明利用溶液法生长微米级的CsPbIxCl3-x钙钛矿纳米线,并制备光电探测器。器件结构自上而下包括玻璃衬底、FTO电极、电子传输层、钙钛矿光吸收层、空穴传输层和电极。创新性的采用溶液法,生长钙钛矿纳米线,增加了钙钛矿层与电极的接触面积,增强了载流子的提取能力,降低了钙钛矿层的漏电;基于CsPbIxCl3-x纳米线碳基钙钛矿光电探测器在300~520nm范围内具皮秒级的暗电流和0.2A/W的优异光电探测度。
附图说明
图1为本发明制备CsPbIxCl3-x全无机钙钛矿纳米线的流程图;
图2(a)、(b)分别为PbI2薄膜和CsPbIxCl3-x全无机钙钛矿纳米线的SEM照片;
图3为碳基-全无机CsPbIxCl3-x全无机钙钛矿纳米线光电探测器的暗电流;
图4为碳基-全无机CsPbIxCl3-全无机x钙钛矿纳米线光电探测器的探测度。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
如图1所示,本发明的一种基于全无机钙钛矿纳米线的自供能-短波光电探测器,其结构自下而上包括玻璃衬底、FTO电极、电子传输层、钙钛矿光吸收层、空穴传输层和电极;其中钙钛矿光吸收层为CsPbIxCl3-x钙钛矿纳米线。
电子传输层应由金属氧化物组成,其中为氧化锡、氧化钛或铝锌氧化物中的一种或多种混合;电子传输层为介孔结构或致密型薄膜,透光度和电子迁移率较高。空穴传输层为Spiro-OMeTAD、PTAA、P3HT、CuI、NiOx和MoOx中的一种或多种。电极为不透明或半透明的金、银电极或导电碳材料电极。
本发明给出了全无机钙钛矿纳米线自供能-短波光电探测器的制备方法,包括以下步骤:
1)清洗FTO导电玻璃衬底:将FTO导电玻璃衬底依次放入Decon-90水溶液、去离子水、丙酮、酒精、去离子水中超声清洗15~20min;
2)UV-zone处理FTO导电玻璃衬底:将清洗过的FTO导电玻璃衬底放在UV-zone中处理10~15min;
3)制备电子传输层:将配置好的TiO2溶胶前驱体以2000-4000rpm的转速旋涂在处理好的FTO导电玻璃衬底上,将旋涂好的TiO2薄膜在50-70℃预热20-30min后,在120-200min时间内从室温加热到450-500℃,退火40-60min,得到致密的厚度为40-80nm的TiO2电子传输层;
4)钙钛矿光吸收层的溶液法制备:
首先按照体积比将PbI2溶解于DMSO或DMF中制得浓度为0.5-1.2mol/L的PbI2前驱体溶液。
将CsCl颗粒溶解于甲醇或异丙醇中制备浓度为2-8mg/L的溶液。
将体积约为80μL的0.5-1.2mol/L PbI2前驱体溶液滴在制备好的FTO/TiO2衬底上;先以1000-1500rpm的速度旋涂20-40s,接着4000-5000rpm的速度旋转20-40s;将得到的PbI2前驱体薄膜在150-250℃退火5min后,冷却至室温;将体积约为40μL的2-8mg/L的CsCl溶液滴在旋涂速度为4000-5000rpm的涂有PbI2薄膜衬底中心,后在200℃退火20-40min后薄膜上长出了纳米线结构。
5)制备空穴传输层:
将空穴传输层材料Spiro-MeOTAD混合物溶液、PTAA、P3HT、CuI、NiOx或MoOx中的一种或多种在室温条件下旋涂在钙钛矿薄膜上;旋涂速度为2000-4000rpm,时间为30-40s。
其中,Spiro-MeOTAD混合物溶液是按照质量比将4-8%的Spiro-MeOTAD、0.6-1.0%的锂盐Li-TFSI、2.0-2.4%的4-叔丁基吡啶t-BP和89-93%的氯苯混合搅拌24-36h得到。
6)制备电极:采用热蒸镀的方式在空穴传输层上沉积金属电极,或直接采用丝网印刷技术在钙钛矿层上沉积碳电极,得到光电探测器。
热蒸镀法沉积金属电极时,在腔室真空度10-5Pa以下的条件下,以
Figure BDA0002601581060000061
Figure BDA0002601581060000062
的速率蒸镀100~120nm的金属电极。
使用丝网印刷技术将导电碳浆料沉积在CsPbIxCl3-x钙钛矿薄膜上,碳电极的面积为0.09-1cm2,然后100-120℃退火10-15min,厚度控制在800-1000nm,得到碳基-全无机钙钛矿纳米线自供能-短波光电探测器。
下面通过具体实施例来进一步说明本发明实施过程。
实施例1
1)清洗FTO导电玻璃衬底:将FTO导电玻璃衬底依次放入Decon-90水溶液、去离子水、丙酮、酒精、去离子水中超声清洗15min;
2)UV-zone处理FTO导电玻璃衬底:将清洗过的FTO导电玻璃衬底放在UV-zone中处理10min;
3)制备电子传输层:将配置好的TiO2溶胶前驱体以2000rpm的转速旋涂在处理好的FTO导电玻璃衬底上,将旋涂好的TiO2薄膜在60℃预热30min后,在180min时间内从室温加热到500℃,退火60min,得到致密的厚度为80nm的TiO2电子传输层;
4)钙钛矿光吸收层的溶液法制备:将体积约为80μL的0.5mol/L PbI2前驱体溶液滴在制备好的FTO/TiO2衬底上,以1800rpm的速度旋涂30s,接着5000rpm的速度旋转30s;将得到的PbI2前驱体薄膜在200℃退火5min后,冷却至室温;将体积约为40μL的4mg/L的CsCl溶液滴在旋涂速度为5000rpm的涂有PbI2薄膜衬底中心,后在200℃退火30min后薄膜上长出了纳米线结构。
5)制备空穴传输层:
制备空穴传输层材料Spiro-MeOTAD混合物溶液:按照质量比将8%的Spiro-MeOTAD、1.0%的锂盐Li-TFSI、2%的4-叔丁基吡啶t-BP和89%的氯苯混合搅拌36h。
将空穴传输层材料Spiro-MeOTAD混合物溶液在室温条件下旋涂在钙钛矿薄膜上;旋涂速度为3000rpm,时间为40s。
6)制备金电极:将上述制备好的衬底置于真空蒸镀室中,在腔室真空度10-5Pa以下的条件下,以
Figure BDA0002601581060000071
的速率蒸镀110nm的金电极得到全无机钙钛矿纳米线自供能-短波光电探测器。
实施例2
1)清洗FTO导电玻璃衬底:将FTO导电玻璃衬底依次放入Decon-90水溶液、去离子水、丙酮、酒精、去离子水中超声清洗20min;
2)UV-zone处理FTO导电玻璃衬底:将清洗过的FTO导电玻璃衬底放在UV-zone中处理15min;
3)制备电子传输层:将配置好的TiO2溶胶前驱体以3000rpm的转速旋涂在处理好的FTO导电玻璃衬底上,将旋涂好的TiO2薄膜在70℃预热30min后,在200min时间内从室温加热到480℃,退火60min,得到致密的厚度为40nm的TiO2电子传输层;
4)钙钛矿光吸收层的溶液法制备:将体积约为80μL的0.8mol/L PbI2前驱体溶液滴在制备好的FTO/TiO2衬底上,以1500rpm的速度旋涂20s,接着5000rpm的速度旋转30s;将得到的PbI2前驱体薄膜在200℃退火5min后,冷却至室温;将体积约为40μL的2mg/L的CsCl溶液滴在旋涂速度为4500rpm的涂有PbI2薄膜衬底中心,后在200℃退火20min后薄膜上长出了纳米线结构。
5)制备空穴传输层:
制备空穴传输层材料Spiro-MeOTAD混合物溶液:按照质量比将4%的Spiro-MeOTAD、0.6%的锂盐Li-TFSI、2.4%的4-叔丁基吡啶t-BP和93%的氯苯混合搅拌24h。
将空穴传输层材料Spiro-MeOTAD混合物溶液在室温条件下旋涂在钙钛矿薄膜上;旋涂速度为4000rpm,时间为30s。
6)制备银电极:将上述制备好的衬底置于真空蒸镀室中,在腔室真空度10-5Pa以下的条件下,以
Figure BDA0002601581060000081
的速率蒸镀100nm的银电极,得到全无机钙钛矿纳米线自供能-短波光电探测器。
实施例3
1)清洗FTO导电玻璃衬底:将FTO导电玻璃衬底依次放入Decon-90水溶液、去离子水、丙酮、酒精、去离子水中超声清洗18min;
2)UV-zone处理FTO导电玻璃衬底:将清洗过的FTO导电玻璃衬底放在UV-zone中处理12min;
3)制备电子传输层:将配置好的SnO2溶胶前驱体以3500rpm的转速旋涂在处理好的FTO导电玻璃衬底上,将旋涂好的SnO2薄膜在50℃预热20min后,在120min时间内从室温加热到500℃,退火60min,得到致密的厚度为50nm的SnO2电子传输层;
4)钙钛矿光吸收层的溶液法制备:将体积约为80μL的1.2mol/L PbI2前驱体溶液滴在制备好的FTO/TiO2衬底上,以1200rpm的速度旋涂30s,接着5000rpm的速度旋转30s;将得到的PbI2前驱体薄膜在200℃退火5min后,冷却至室温;将体积约为40μL的6mg/L的CsCl溶液滴在旋涂速度为4000rpm的涂有PbI2薄膜衬底中心,后在200℃退火40min后薄膜上长出了纳米线结构。
5)制备电极:使用丝网印刷技术将导电碳浆料沉积在CsPbIxCl3-x钙钛矿薄膜上,碳电极的面积为0.2cm2,然后100℃退火15min,得到碳基-全无机钙钛矿纳米线自供能-短波光电探测器。
实施例4
1)清洗FTO导电玻璃衬底:将FTO导电玻璃衬底依次放入Decon-90水溶液、去离子水、丙酮、酒精、去离子水中超声清洗16min;
2)UV-zone处理FTO导电玻璃衬底:将清洗过的FTO导电玻璃衬底放在UV-zone中处理12min;
3)制备电子传输层:将配置好的SnO2溶胶前驱体以4000rpm的转速旋涂在处理好的FTO导电玻璃衬底上,将旋涂好的SnO2薄膜在65℃预热25min后,在150min时间内从室温加热到450℃,退火60min,得到致密的厚度为60nm的SnO2电子传输层;
4)钙钛矿光吸收层的溶液法制备:将体积约为80μL的1mol/L PbI2前驱体溶液滴在制备好的FTO/TiO2衬底上,以1000rpm的速度旋涂40s,接着5000rpm的速度旋转30s;将得到的PbI2前驱体薄膜在200℃退火5min后,冷却至室温;将体积约为40μL的8mg/L的CsCl溶液滴在旋涂速度为4000rpm的涂有PbI2薄膜衬底中心,后在200℃退火30min后薄膜上长出了纳米线结构。
5)制备空穴传输层:
将空穴传输层材料PTAA和P3HT在室温条件下旋涂在钙钛矿薄膜上;旋涂速度为3500rpm,时间为30s。
6)制备银电极:将上述制备好的衬底置于真空蒸镀室中,在腔室真空度10-5Pa以下的条件下,以
Figure BDA0002601581060000101
的速率蒸镀100nm的银电极,得到全无机钙钛矿纳米线自供能-短波光电探测器。
实施例5
1)清洗FTO导电玻璃衬底:将FTO导电玻璃衬底依次放入Decon-90水溶液、去离子水、丙酮、酒精、去离子水中超声清洗20min;
2)UV-zone处理FTO导电玻璃衬底:将清洗过的FTO导电玻璃衬底放在UV-zone中处理15min;
3)制备电子传输层:将配置好的SnO2溶胶前驱体以4000rpm的转速旋涂在处理好的FTO导电玻璃衬底上,将旋涂好的SnO2薄膜在55℃预热30min后,在120min时间内从室温加热到500℃,退火50min,得到致密的厚度为70nm的SnO2电子传输层;
4)钙钛矿光吸收层的溶液法制备:将体积约为80μL的1mol/L PbI2前驱体溶液滴在制备好的FTO/TiO2衬底上,以1300rpm的速度旋涂30s,接着5000rpm的速度旋转20s;将得到的PbI2前驱体薄膜在250℃退火5min后,冷却至室温;将体积约为40μL的5mg/L的CsCl溶液滴在旋涂速度为4500rpm的涂有PbI2薄膜衬底中心,后在200℃退火30min后薄膜上长出了纳米线结构。
5)制备空穴传输层:
将空穴传输层材料NiOx和MoOx在室温条件下旋涂在钙钛矿薄膜上;旋涂速度为2500rpm,时间为40s。
6)制备电极:热蒸镀法沉积金属电极时,在腔室真空度10-5Pa以下的条件下,以
Figure BDA0002601581060000111
的速率蒸镀120nm的金属电极。
实施例6
1)清洗FTO导电玻璃衬底:将FTO导电玻璃衬底依次放入Decon-90水溶液、去离子水、丙酮、酒精、去离子水中超声清洗15min;
2)UV-zone处理FTO导电玻璃衬底:将清洗过的FTO导电玻璃衬底放在UV-zone中处理15min;
3)制备电子传输层:将配置好的SnO2溶胶前驱体以3000rpm的转速旋涂在处理好的FTO导电玻璃衬底上,将旋涂好的SnO2薄膜在70℃预热30min后,在150min时间内从室温加热到500℃,退火60min,得到致密的厚度为80nm的SnO2电子传输层;
4)钙钛矿光吸收层的溶液法制备:将体积约为80μL的1mol/L PbI2前驱体溶液滴在制备好的FTO/TiO2衬底上,以1300rpm的速度旋涂30s,接着5000rpm的速度旋转20s;将得到的PbI2前驱体薄膜在250℃退火5min后,冷却至室温;将体积约为40μL的5mg/L的CsCl溶液滴在旋涂速度为4500rpm的涂有PbI2薄膜衬底中心,后在200℃退火30min后薄膜上长出了纳米线结构。
5)制备空穴传输层:
将空穴传输层材料CuI在室温条件下旋涂在钙钛矿薄膜上;旋涂速度为4000rpm,时间为30s。
6)制备电极:热蒸镀法沉积金属电极时,在腔室真空度10-5Pa以下的条件下,以
Figure BDA0002601581060000112
的速率蒸镀120nm的金属电极。
从以上实施例可以看出,利用两步溶液法制备了如图2(a)、(b)中SEM照片中所示的CsPbIxCl3-x钙钛矿纳米线,并将其制备成了碳基光电探测器,如图3和4所示,其可以探测的光波长范围为300~520nm,具有皮秒级的暗电流和0.2A/W的优异光电探测度。
本发明基于CsPbIxCl3-x钙钛矿纳米线结构制备的光电探测器拥有优异的性能,较低的暗电流和较高的光电探测度。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

Claims (10)

1.一种全无机钙钛矿纳米线自供能-短波光电探测器的制备方法,其特征在于,包括以下步骤:
步骤1,清洗FTO导电玻璃衬底:将FTO导电玻璃衬底超声清洗;
步骤2,UV-zone处理FTO导电玻璃衬底:将清洗过的FTO导电玻璃衬底放在UV-zone中处理;
步骤3,制备电子传输层:将配置好的TiO2溶胶前驱体旋涂在处理好的FTO导电玻璃衬底上,将旋涂好的TiO2薄膜退火,得到致密的TiO2电子传输层;
步骤4,钙钛矿光吸收层的溶液法制备:
1)将PbI2前驱体溶液滴在制备好的FTO/ TiO2衬底上,按照不同的转速旋涂,将得到的PbI2前驱体薄膜退火,冷却至室温;
2)将CsCl溶液滴在一定旋涂速度的涂有PbI2薄膜衬底中心,退火,薄膜上长出微米级的CsPbIxCl3-x钙钛矿纳米线结构,得到钙钛矿光吸收层;
步骤5,制备空穴传输层:
将空穴传输层材料Spiro-MeOTAD混合物溶液、PTAA、P3HT、CuI、NiOx或MoOx中的一种或多种在室温条件下旋涂在钙钛矿吸收层上,得到空穴传输层;
步骤6,制备电极:采用热蒸镀的方式在空穴传输层上沉积金属电极,或直接采用丝网印刷技术在钙钛矿层上沉积碳电极,得到光电探测器。
2.根据权利要求1所述的全无机钙钛矿纳米线自供能-短波光电探测器的制备方法,其特征在于,所述步骤3中,以2000-4000 rpm的转速旋涂在处理好的FTO导电玻璃衬底上,将旋涂好的TiO2薄膜在50-70 ℃预热20-30 min后,在120-200 min时间内从室温加热到450-500℃,退火40-60min;所述致密的TiO2电子传输层厚度为40-80 nm。
3.根据权利要求1所述的全无机钙钛矿纳米线自供能-短波光电探测器的制备方法,其特征在于,所述步骤4中,PbI2前驱体溶液是按照体积比将PbI2溶解于DMSO或DMF中制得;PbI2前驱体溶液浓度为0.5-1.2 mol/L。
4.根据权利要求1所述的全无机钙钛矿纳米线自供能-短波光电探测器的制备方法,其特征在于,所述步骤4-1)中,以1000-1500rpm的速度旋涂20-40 s,接着4000-5000 rpm 的速度旋转20-40 s;得到的PbI2前驱体薄膜,将得到的PbI2前驱体薄膜在150-250℃退火5min后,冷却至室温。
5.根据权利要求1所述的全无机钙钛矿纳米线自供能-短波光电探测器的制备方法,其特征在于,所述步骤4-2)中,将CsCl溶液滴在旋涂速度为4000-5000 rpm的涂有PbI2薄膜衬底中心,在200 ℃退火20-40 min;
所述CsCl溶液是将CsCl颗粒溶解于甲醇或异丙醇中制备浓度为2-8mg/L的溶液。
6.根据权利要求1所述的全无机钙钛矿纳米线自供能-短波光电探测器的制备方法,其特征在于,所述步骤5中,Spiro-MeOTAD混合物溶液是按照质量比将4-8%的Spiro-MeOTAD、0.6-1.0%的锂盐Li-TFSI、2.0-2.4%的4-叔丁基吡啶t-BP和89-93%的氯苯混合搅拌24-36 h得到。
7.根据权利要求1所述的全无机钙钛矿纳米线自供能-短波光电探测器的制备方法,其特征在于,在室温条件下将空穴传输层材料旋涂在钙钛矿光吸收层上,旋涂速度为2000-4000rpm,时间为30-40s。
8.根据权利要求1所述的全无机钙钛矿纳米线自供能-短波光电探测器的制备方法,其特征在于,所述步骤6中,热蒸镀法沉积金属电极时,在腔室真空度10-5 Pa以下的条件下,以1.0~1.2 Å/s的速率蒸镀100~120 nm的金属电极。
9.根据权利要求1所述的全无机钙钛矿纳米线自供能-短波光电探测器的制备方法,其特征在于,所述步骤6中,直接采用丝网印刷技术在空穴传输层上沉积碳电极,将导电碳浆料沉积在空穴传输层上,碳电极的面积为0.09-1 cm2,然后100-120 ℃退火10-15 min,厚度控制在800-1000nm。
10.一种基于权利要求1-9任一项所述方法制备的全无机钙钛矿纳米线的自供能-短波光电探测器,其特征在于,包括自下而上的玻璃衬底、FTO电极、电子传输层、钙钛矿光吸收层、空穴传输层和电极;
所述钙钛矿光吸收层为CsPbIxCl3-x钙钛矿纳米线;
所述电子传输层包括氧化锡、氧化钛或铝锌氧化物;
所述空穴传输层为Spiro-OMeTAD、PTAA、P3HT、CuI、NiOx或MoOx中的一种或多种;
所述电极为不透明或半透明的金、银电极或导电碳材料电极。
CN202010725697.4A 2020-07-24 2020-07-24 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法 Active CN111834487B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010725697.4A CN111834487B (zh) 2020-07-24 2020-07-24 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010725697.4A CN111834487B (zh) 2020-07-24 2020-07-24 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法

Publications (2)

Publication Number Publication Date
CN111834487A CN111834487A (zh) 2020-10-27
CN111834487B true CN111834487B (zh) 2022-06-03

Family

ID=72925371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010725697.4A Active CN111834487B (zh) 2020-07-24 2020-07-24 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN111834487B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112694263A (zh) * 2021-02-09 2021-04-23 上海应用技术大学 分子铁电体复合CsPbBr3光电薄膜材料、制备方法和应用
CN113346021A (zh) * 2021-04-12 2021-09-03 西安电子科技大学 一种含(BA)2Cs5Pb6Cl19钙钛矿层的可见光盲紫外探测器及其制备方法
CN113725370A (zh) * 2021-08-19 2021-11-30 西安石油大学 一种太阳电池中TiO2电子传输层钝化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104769736A (zh) * 2012-09-18 2015-07-08 埃西斯创新有限公司 光电器件
CN106898697A (zh) * 2017-02-27 2017-06-27 周德明 一种新型钙钛矿光电探测器及其制备方法
CN107919409A (zh) * 2017-09-20 2018-04-17 湖北大学 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3676885A1 (en) * 2017-09-01 2020-07-08 King Abdullah University Of Science And Technology Methods and apparatuses for fabricating perovskite-based devices on cost-effective flexible conductive substrates
CN107579138B (zh) * 2017-09-28 2019-01-29 武汉大学 一种全无机钙钛矿肖特基光电探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104769736A (zh) * 2012-09-18 2015-07-08 埃西斯创新有限公司 光电器件
CN106898697A (zh) * 2017-02-27 2017-06-27 周德明 一种新型钙钛矿光电探测器及其制备方法
CN107919409A (zh) * 2017-09-20 2018-04-17 湖北大学 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector》;Ivy M.Asuo et.al.;《Nano energy》;20180619;第51卷;正文第2章实验部分 *

Also Published As

Publication number Publication date
CN111834487A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN111834487B (zh) 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法
Dong et al. Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells
EP3903361A1 (en) Mxene-modified hybrid photoconverter
EP1213775A2 (en) Solid State Dye Sensitized Solar Cell
CN110246967B (zh) 一种低温制备柔性钙钛矿太阳能电池的方法
CN110492000B (zh) 一种基于海藻酸钠交联光活性层的钙钛矿光电探测器及其制备方法
CN109860403B (zh) 获得大晶粒高质量钙钛矿薄膜的后期处理方法及其应用
CN109728169B (zh) 一种掺杂有功能添加剂的钙钛矿太阳电池及其制备方法
CN110311007B (zh) 一种量子点近红外光电探测器及其制备方法
CN105514277A (zh) 一种宽范围光谱吸收的钙钛矿光伏材料及其制备方法
CN111785835A (zh) 一种复合电子传输层钙钛矿太阳能电池及其制备方法
CN111969113A (zh) 一种钙钛矿薄膜形貌的调控方法及其应用
CN110444620B (zh) 一种量子点红外上转换器件及其制备方法
KR102160474B1 (ko) 무기물 정공수송층 제조방법 및 이를 포함하는 페로브스카이트 태양전지
CN109360892B (zh) 一种宽光谱探测器件及其制备方法
Guo et al. Fabrication of an ultrathin PEG-modified PEDOT: PSS HTL for high-efficiency Sn–Pb perovskite solar cells by an eco-friendly solvent etching technique
CN114188485A (zh) 一种基于茚添加剂的锡基钙钛矿太阳能电池及其制备方法
CN105552230A (zh) 基于钙钛矿单晶衬底的太阳电池
CN111601787A (zh) 钙钛矿化合物和使用该钙钛矿化合物的光转换元件
CN110061137B (zh) 一种基于室温成膜制备氧化锡电子传输层的钙钛矿电池及其制备方法
CN113773695A (zh) 基于化学修饰的金属氧化物墨水及其制备方法与应用
Mohammadbeigi et al. Yolk-shell SnO 2@ TiO 2 nanospheres as electron transport layer in mesoscopic perovskite solar cell
WO2023143157A1 (zh) 钙钛矿太阳能电池及其制备方法
CN113745410B (zh) 一种基于P型CuNiO2薄膜的钙钛矿太阳能电池的制备方法
CN116081711A (zh) 油酸盐修饰的氧化镍纳米晶材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221102

Address after: Room 004, Room F2001, 20th Floor, Block 4-A, Xixian Financial Port, Fengxin Road, Fengxin Road, Fengjing Avenue, Fengdong New City Energy Jinmao District, Xixian New District, Xi'an City, Shaanxi Province 710000

Patentee after: Xi'an Nazhi Optical Research Technology Co.,Ltd.

Address before: 710071 No.2, Taibai South Road, Beilin District, Xi'an City, Shaanxi Province

Patentee before: XIDIAN University

TR01 Transfer of patent right