CN107919409A - 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法 - Google Patents

一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法 Download PDF

Info

Publication number
CN107919409A
CN107919409A CN201710853010.3A CN201710853010A CN107919409A CN 107919409 A CN107919409 A CN 107919409A CN 201710853010 A CN201710853010 A CN 201710853010A CN 107919409 A CN107919409 A CN 107919409A
Authority
CN
China
Prior art keywords
nano wire
cspbbr
perovskite
film
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710853010.3A
Other languages
English (en)
Other versions
CN107919409B (zh
Inventor
王浩
曾俊鹏
周海
张军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201710853010.3A priority Critical patent/CN107919409B/zh
Publication of CN107919409A publication Critical patent/CN107919409A/zh
Application granted granted Critical
Publication of CN107919409B publication Critical patent/CN107919409B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提出了一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法,器件的结构为透明玻璃/CsPbBr3钙钛矿纳米线薄膜/Au,其中通过无皂溶液法与离子交换法结合的两步法合成的CsPbBr3纳米线薄膜为钙钛矿吸光层。此器件展示了大的开关比和很强的水氧稳定性,在平均温度32oC,平均相对湿度75%的大气环境下放置约200h,其光电流衰减幅度小于4.9%;器件在强度为2.2mW cm‑2紫外光的持续照射10000s后器件光暗电流没有明显的衰减;该探测器光电探测范围为300‑540nm的可见光。该器件制作工艺简单,成本低,适合于大批量、大面积产业化生产。器件暗电流非常小,仅为100pA,有利于节约能源。本发明制作的探测器具有较高的响应度和探测灵敏度。

Description

一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及 其制备方法
技术领域
本发明涉及半导体纳米材料以及光电探测器技术领域,尤其是涉及将无皂溶液法与离子交换法结合起来制备全无机钙钛矿纳米线薄膜。通过不同纳米线生长时间和不同的退火温度以制备高性能的可见光的光电探测器。
背景技术
近年来,卤化物钙钛矿材料由于广泛的波长可调谐、高的载流子扩散长度等优点,其在太阳能电池、发光二极管以及其他光电器件领域收到广泛关注[1,2]。对于探测器来说,有机-无机材料由于制备工艺简单、能耗低的可见光探测等优点备受瞩目。有机-无机杂化钙钛矿通过结合N型材料和P型材料,组成的PIN结构光电探测器,具有极高的探测度和响应速度,超过了现今市场上的主流硅基探测器[3];而通过在钙钛矿层上直接覆盖金属电极,制作成的平面结构光电探测器,则具有工艺简单,结构轻薄,材料利用率高等优点。但有机无机杂化钙钛矿探测器的稳定性存在问题,因为有机阳离子MA+(FA+)在氧气,湿热和紫外(UV)光环境下易受环境退化的影响。
由于合适的带隙和高量子效率,全无机卤化铅钙钛矿CsPbX3(X=I,Br,Cl)被认为是有机无机杂化钙钛矿的最适合的替代品[4,5]。经过一段时间的发展,以全无机钙钛矿为基础的光电探测器各项光电性能已经不亚于杂化钙钛矿探测器。就稳定性而言,Cs基钙钛矿探测器远超MA+(FA+)基钙钛矿探测器。以最简单的全无机钙钛矿纳米晶薄膜探测器为例,其光电开关比可以达到106,而响应时间仅为微秒级别[6]
纳米线被认为是最简单有效的纳米结构之一,铯铅溴全无机钙钛矿纳米线由于其较长的光载体寿命以及快速的电荷转移,很适合用作光电探测设备。之前有过很多关于铯铅溴纳米线的报道,这些报道中,大多利用传统的一锅法生产出超细纳米线,但利用它们组装成薄膜时还需要复杂的真空覆膜技术;也有些报道通过数次高速离心来提高纳米线的纯度,但可能破坏配体;甚至有的需要先合成纳米晶再合成纳米线,而在此过程中很容易产生额外的纳米片。这些关于铯铅溴纳米线的报道显示,无机铯铅溴纳米线的合成依赖着严苛的条件、复杂的工艺以及精密的仪器[7],且合成的纳米线并不足以制作高性能光电探测器。
而此次我们将无皂溶液法与离子交换法相结合,制备出了具有钙钛矿相的高质量铯铅溴(CsPbBr3)纳米线。并且在此基础上成功地制作出了高性能的平面结构的光电探测器件,拥有优良的光电性能和很强的水氧、紫外稳定性。
参考文献
[1]H.P.Zhou,H.S.Duan,Q.Chen,Z.Hong,G.Li,S.Luo,J.B.You,T.B.Song,Y.S.Liu,Y.Yang,Interface engineering of highly efficient perovskite solarcells,Science 2014,345,542.
[2]M.Saliba,T.Matsui,J.Y.Seo,K.Domanski,J.P.Correa-Baena,M.K.Nazeeruddin,.S.M.Zakeeruddin,.W.Tress,A.Abate,A.Hagfeldt,and M.Cesium-containing triple cation perovskite solar cells:improved stability,reproducibility and high efficiency,Energy Environ.Sci.2016,9,1989.
[3].H.Zhou,P.Gui,Q.Yu,J.Mei,H.Wang and G.Fang,Self-powered,visible-blind ultraviolet photodetector based on n-ZnO nanorods/i-MgO/p-GaN structurelight-emitting diodes.Journal of Materials Chemistry C,2015,3(5):990-994.
[4]R.Dong,Y.Fang,J.Chae,J.Dai,Z.Xiao,Q.Dong,Y.Yuan,A.Centrone,X.C.Zeng,J.Huang,High-gain and low-driving-voltage photodetectors based onorganolead triiodide perovskites,Adv.Mater.2015,27,1912.
[5]Y.Lee,J.Kwang,C.H.Ra,W.J.Yoo,J.-H.Ahn,J.H.Park,J.H.Cho,High-Performance Perovskite–Graphene Hybrid Photodetector,Adv.Mater.2015,27,41.
[6]X.Li,F.Cao,D.Yu,J.Chen,Z.Sun,Y.Shen,Y.Zhu,L.Wang,Y.Wei and Y.Wu,All Inorganic Halide Perovskites Nanosystem:Synthesis,Structural Features,Optical Properties and Optoelectronic Applications.Small,2017,13(9):1603996.
[7]Lai,M.,Kong,Q.,Bischak,C.G.,Yu,Y.,Dou,L.,Eaton,S.W.Eaton,NaomiS.Ginsberg,&Yang,P,Structural,optical,and electrical properties of phase-controlled cesium lead iodide nanowires.Nano Research.2017,10(4),1107-1114.
发明内容
基于上述技术背景,本发明提供一种基于CsPbBr3全无机钙钛矿纳米线的可见光的光电探测器,其结构为透明玻璃/CsPbBr3钙钛矿纳米线薄膜/Au的全无机钙钛矿平面探测器结构。该光电探测器的制备方法操作步骤简单,实验成本低廉,且所制备的CsPbBr3全无机钙钛矿纳米线薄膜整体结构清晰,CsPbBr3纳米线均匀网状排布于衬底之上。我们制作的探测器具有较高的响应度和探测灵敏度,较快的响应速度以及极强的紫外和水氧稳定性。
本发明是这样实现的。它主要由透明玻璃、钙钛矿吸光层、金属电极组成,其中通过无皂溶液法与离子交换法结合的两步法合成的CsPbBr3钙钛矿纳米线是吸光层,也是兼具电子空穴传输功能的材料。金属电极是由Au叉指结构组成。
本发明的具体制备流程和工艺如下:
(1)分别用去离子水、丙酮、酒精超声透明玻璃衬底各20分钟,然后用紫外臭氧环境处理30分钟;
(2)采用无皂溶液法制备非钙钛矿相CsPbI3纳米线薄膜
先将1M PbI2溶解在DMF(N,N-二甲基甲酰胺)中,在70℃条件下保温12h使之充分溶解,然后过滤备用;将CsI溶解在甲醇溶液中搅拌20分钟备用;PbI2溶液采用5000转60秒旋涂在透明玻璃衬底上,然后在热台上烤干,15分钟后,将带有PbI2薄膜的衬底放置于CsI/甲醇溶液中浸泡6小时,然后烤干;
(3)用离子交换法将非钙钛矿相CsPbI3纳米线薄膜转化为非钙钛矿相CsPbBr3纳米线薄膜
先将CsBr溶解在甲醇溶液中搅拌20分钟备用;将(2)中得到的制备的非钙钛矿相CsPbI3纳米线薄膜浸泡于CsBr/甲醇溶液中5分钟后取出;将异丙醇采用2500转20秒旋涂在带有纳米线薄膜的衬底上,放置于热台上烤干。
(4)通过退火将非钙钛矿相CsPbBr3纳米线薄膜转化为钙钛矿相CsPbBr3纳米线薄膜
先待(3)步中得到的非钙钛矿相CsPbBr3纳米线薄膜完全烤干后,将热台温度快速提升到145℃~195℃的空气中退火,并在此温度下保持10分钟;待其颜色完全转变后取出,自然恢复到室温。
(5)最后采用蒸发蒸镀的方法制备金电极,蒸发前将叉指掩膜板置于纳米线薄膜之上,蒸发速率为蒸镀的Au电极的厚度最终为60-80nm;
(6)检测样品性能。
在步骤(3)退火后,所制备样品在300-450nm范围的可见光照射并施加5V外部反向偏压时,有明显的光电响应。
至此,即可制作成一个完整的可见光的光电探测器。
形貌和晶体结构测试采用紫外可见光分光光度计(MPC-3100SHIMADZU),场致发射扫描电子显微镜(SEM)(JSM-7100F)和X射线衍射(XRD)(Bruker D8 Advance CuKaradiation);光电性能(I-V,I-t)由半导体性能测试仪(Agilent Technologies B1500A)测试。这些测试分析结果分别列于附图中。
本发明的器件结构为透明玻璃/CsPbBr3钙钛矿纳米线薄膜/Au(如图1所示),该器件在5V偏压2.7mW cm-2紫外光照射下开关比达到了150。同时,此器件展示了很强的水氧稳定性,在平均温度32,平均相对湿度75%的大气环境下放置约200h,其光电流衰减幅度小于4.9%;器件在强度为2.2mW cm-2紫外光的持续照射10000s后器件光暗电流没有明显的衰减,可见其在紫外光照下良好的稳定性;该器件光电探测范围为300-540nm可见光。器件光暗电流都非常小,特别是暗电流,仅为100pA,有利于节约能源。本发明制作的探测器具有较高的响应度和探测灵敏度。此器件展示了较好的光电响应性能,其在165℃退火的器件展示了较高的响应度,其值在5V偏压下达7.26mA W-1;而真空退火的器件的探测度很高,达到5.3*1011cmHz W-1/2的响应度。另外,此器件在100微米叉指间距的条件下,光响应的上升和下降时间仅为10ms/22ms,具有很高的响应速度。此器件制作工艺简单,成本低,适合于大批量、大面积产业化生产。
本发明的优点和特色之处在于:
(1)本发明中制作的光电探测器,制作工艺简单,实验原料成本低廉,制作周期短,适合大面积大规模工业化生产。
(2)本发明具有全无机钙钛矿和纳米线结构的双重特点。既具有很高的稳定性和光电响应,又具有很快的响应速度。
附图说明
图1是本发明的器件结构图。
图2不同生长时间CsPbI3纳米线的XRD(a)和SEM(b)-(f),插图是放大的SEM。
图3是本发明的探测器I-T特性曲线。
图4是本发明不同生长时间的纳米线组成的探测器在暗态和紫外光照下I-V特性曲线。
图5是本发明的探测器的(a)响应度曲线与(b)探测灵敏度曲线。
图6是本发明的探测器的不同光强下I-T曲线。
具体实施方式
下面通过实施例将能够更好地理解本发明。
实施例1:不同生长时间CsPbBr3钙钛矿纳米线的探测器的制备:
(1)分别用去离子水、丙酮、酒精超声透明玻璃衬底各20分钟,然后用紫外臭氧环境处理30分钟;
(2)采用无皂溶液法制备非钙钛矿相CsPbI3纳米线薄膜
先将1M PbI2溶解在DMF(N,N-二甲基甲酰胺)中,在70℃条件下保温12h使之充分溶解,然后过滤备用;将CsI溶解在甲醇溶液中搅拌20分钟备用;PbI2溶液采用5000转60秒旋涂在透明玻璃衬底上,然后在热台上烤干,15分钟后,将带有PbI2薄膜的衬底放置于CsI/甲醇溶液中浸泡3-12小时,然后烤干;
(3)用离子交换法将非钙钛矿相CsPbI3纳米线薄膜转化为非钙钛矿相CsPbBr3纳米线薄膜
先将CsBr溶解在甲醇溶液中搅拌20分钟备用;将(2)中得到的制备的非钙钛矿相CsPbI3纳米线薄膜浸泡于CsBr/甲醇溶液中5分钟后取出;将异丙醇采用2500转20秒旋涂在带有纳米线薄膜的衬底上,放置于热台上烤干。
(4)通过退火将非钙钛矿相CsPbBr3纳米线薄膜转化为钙钛矿相CsPbBr3纳米线薄膜
先待(3)中得到的非钙钛矿相CsPbBr3纳米线薄膜完全烤干后,将热台温度快速提升到165℃,并在此温度下保持10分钟;待其颜色完全转变后取出,自然恢复到室温。
(5)最后采用蒸发蒸镀的方法制备金电极,蒸发前将叉指掩膜板置于纳米线薄膜之上,蒸发速率为蒸镀的Au电极的厚度最终为60-80nm;
(6)检测样品性能
将得到的纳米线薄膜进行XRD、SEM等表征分析,并对组装好的光电探测器测试I-t和I-V特性曲线、光电响应曲线和响应速度等性能。这些测试分析结果分别列于附图中。
实施例2:不同温度下退火的CsPbBr3钙钛矿纳米线探测器的制备:
(1)分别用去离子水、丙酮、酒精超声透明玻璃衬底各20分钟,然后用紫外臭氧环境处理30分钟;
(2)采用无皂溶液法制备非钙钛矿相CsPbI3纳米线薄膜
先将1M PbI2溶解在DMF(N,N-二甲基甲酰胺)中,在70℃条件下保温12h使之充分溶解,然后过滤备用;将CsI溶解在甲醇溶液中搅拌20分钟备用;PbI2溶液采用5000转60秒旋涂在透明玻璃衬底上,然后在热台上烤干,15分钟后,将带有PbI2薄膜的衬底放置于CsI/甲醇溶液中浸泡6小时,然后烤干;
(3)用离子交换法将非钙钛矿相CsPbI3纳米线薄膜转化为非钙钛矿相CsPbBr3纳米线薄膜
先将CsBr溶解在甲醇溶液中搅拌20分钟备用;将(2)中得到的制备的非钙钛矿相CsPbI3纳米线薄膜浸泡于CsBr/甲醇溶液中5分钟后取出;将异丙醇采用2500转20秒旋涂在带有纳米线薄膜的衬底上,放置于热台上烤干。
(4)通过退火将非钙钛矿相CsPbBr3纳米线薄膜转化为钙钛矿相CsPbBr3纳米线薄膜
先待(3)中得到的非钙钛矿相CsPbBr3纳米线薄膜完全烤干后,将热台温度快速提升到145℃-195℃,并在此温度下保持10分钟;待其颜色完全转变后取出,自然恢复到室温。
(5)最后采用蒸发镀膜的方法制备金电极,蒸发前将叉指掩膜板置于纳米线薄膜之上,蒸发速率为蒸镀的Au电极的厚度最终为60-80nm;
(6)检测样品性能
将得到的纳米线薄膜进行XRD、SEM等表征分析,并对组装好的光电探测器测试I-t和I-V特性曲线、光电响应曲线和响应速度等性能。这些测试分析结果分别列于附图中。

Claims (2)

1.一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器,它主要由透明玻璃、钙钛矿吸光层、金属电极组成,其特征在于结构为透明玻璃/CsPbBr3钙钛矿纳米线薄膜/Au的全无机钙钛矿平面探测器结构;其中透明玻璃层为衬底;通过无皂溶液法与离子交换法结合的两步法合成的CsPbBr3钙钛矿纳米线薄膜是吸光层,也是兼具电子空穴传输功能的材料;金属电极是由Au叉指结构组成。
2.一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器的制备方法,其步骤如下:
(1)分别用去离子水、丙酮、酒精超声透明玻璃衬底各20分钟,然后用紫外臭氧环境处理30分钟;
(2)采用无皂溶液法制备非钙钛矿相CsPbI3纳米线薄膜
先将1M PbI2溶解在DMF(N,N-二甲基甲酰胺)中,在70℃条件下保温12h使之充分溶解,然后过滤备用;将CsI溶解在甲醇溶液中搅拌20分钟备用;PbI2溶液采用5000转60秒旋涂在透明玻璃衬底上,然后在热台上烤干,15分钟后,将带有PbI2薄膜的衬底放置于CsI/甲醇溶液中浸泡6小时,然后烤干;
(3)用离子交换法将非钙钛矿相CsPbI3纳米线薄膜转化为非钙钛矿相CsPbBr3纳米线薄膜
先将CsBr溶解在甲醇溶液中搅拌20分钟备用;将(2)步中得到的制备的非钙钛矿相CsPbI3纳米线薄膜浸泡于CsBr/甲醇溶液中5分钟后取出;将异丙醇采用2500转20秒旋涂在带有纳米线薄膜的衬底上,放置于热台上烤干;
(4)通过退火将非钙钛矿相CsPbBr3纳米线薄膜转化为钙钛矿相CsPbBr3纳米线薄膜
先待(3)步中得到的非钙钛矿相CsPbBr3纳米线薄膜完全烤干后,将热台温度快速提升到145℃~195℃的空气中退火,并在此温度下保持10分钟;待其颜色完全转变后取出,自然恢复到室温;
(5)最后采用蒸镀法覆盖金电极,蒸发前将叉指间距为100μm叉指掩膜板置于纳米线薄膜上,蒸发速率为蒸镀的Au电极的厚度最终为60-80nm;
(6)检测样品性能
在步骤(3)退火,所制备样品在300-450nm范围的可见光照射并施加5V外部反向偏压时,有明显的光电响应;
至此,即可制作成一个完整的平面结构可见光的光电探测器。
CN201710853010.3A 2017-09-20 2017-09-20 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法 Expired - Fee Related CN107919409B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710853010.3A CN107919409B (zh) 2017-09-20 2017-09-20 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710853010.3A CN107919409B (zh) 2017-09-20 2017-09-20 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN107919409A true CN107919409A (zh) 2018-04-17
CN107919409B CN107919409B (zh) 2019-11-12

Family

ID=61898663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710853010.3A Expired - Fee Related CN107919409B (zh) 2017-09-20 2017-09-20 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN107919409B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767116A (zh) * 2018-06-06 2018-11-06 华南师范大学 一种自驱动光电探测器及其制备方法
CN109030380A (zh) * 2018-07-25 2018-12-18 佛山科学技术学院 一种钙钛矿纳米晶随机激光发射机制的探测方法及装置
CN109037452A (zh) * 2018-07-05 2018-12-18 南京邮电大学 一种含硫有机无机杂化钙钛矿薄膜及纳米棒的制备方法
CN109411327A (zh) * 2018-09-14 2019-03-01 中山大学 一种全无机钙钛矿纳米线CsPbX2Y及其制备方法和应用
CN109686756A (zh) * 2018-12-17 2019-04-26 电子科技大学 一种光电探测器及其制造方法
CN109734122A (zh) * 2019-01-16 2019-05-10 上海理工大学 一种基于离子交换制备钙钛矿纳米线晶体的制备方法
CN111139518A (zh) * 2019-12-23 2020-05-12 大连理工大学 一种空气稳定的全无机混合卤素钙钛矿纳米线的制备方法
CN111834487A (zh) * 2020-07-24 2020-10-27 西安电子科技大学 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法
CN111943524A (zh) * 2020-06-18 2020-11-17 湖北大学 一种无机CsPbxSn1-x(BryI1-y)3纳米线的制备方法及其光电探测器
CN113026102A (zh) * 2021-02-01 2021-06-25 中国科学院合肥物质科学研究院 一种无机钙钛矿材料、光电探测器及其制备方法
CN113257932A (zh) * 2021-05-12 2021-08-13 常熟理工学院 一种高性能的光电探测器及其制备方法
CN113270516A (zh) * 2021-05-07 2021-08-17 南京理工大学 基于CrPbBr3纳米线膜荧光转换的紫外偏振增强探测方法
CN114715933A (zh) * 2020-12-22 2022-07-08 北部湾大学 一种制备CsPbBr3钙钛矿纳米线的方法
CN115101623A (zh) * 2022-06-16 2022-09-23 云南师范大学 微米线阵列高性能钙钛矿型光电探测器、制备方法及应用
CN116705893A (zh) * 2023-08-02 2023-09-05 济南大学 Msm型光电探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916783A (zh) * 2015-06-11 2015-09-16 华中科技大学 钙钛矿纳米线、光电探测器和太阳能电池的制备及应用
CN106571425A (zh) * 2016-09-29 2017-04-19 湖北大学 一种基于ZnO‑钙钛矿结构的紫外‑可见可调光电探测器及其制备方法
CN106629834A (zh) * 2016-12-14 2017-05-10 南京理工大学 一种再结晶法制备铅卤钙钛矿纳米线的方法
CN107170892A (zh) * 2017-07-04 2017-09-15 湖南湘标新材料科技有限公司 一种钙钛矿纳米线阵列光电探测器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916783A (zh) * 2015-06-11 2015-09-16 华中科技大学 钙钛矿纳米线、光电探测器和太阳能电池的制备及应用
CN106571425A (zh) * 2016-09-29 2017-04-19 湖北大学 一种基于ZnO‑钙钛矿结构的紫外‑可见可调光电探测器及其制备方法
CN106629834A (zh) * 2016-12-14 2017-05-10 南京理工大学 一种再结晶法制备铅卤钙钛矿纳米线的方法
CN107170892A (zh) * 2017-07-04 2017-09-15 湖南湘标新材料科技有限公司 一种钙钛矿纳米线阵列光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DANDAN ZHANG 等: "Synthesis of Composition Tunable and Highly Luminescent Cesium Lead Halide Nanowires through Anion-Exchange Reactions", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767116A (zh) * 2018-06-06 2018-11-06 华南师范大学 一种自驱动光电探测器及其制备方法
CN109037452B (zh) * 2018-07-05 2022-01-28 南京邮电大学 一种含硫有机无机杂化钙钛矿薄膜及纳米棒的制备方法
CN109037452A (zh) * 2018-07-05 2018-12-18 南京邮电大学 一种含硫有机无机杂化钙钛矿薄膜及纳米棒的制备方法
CN109030380A (zh) * 2018-07-25 2018-12-18 佛山科学技术学院 一种钙钛矿纳米晶随机激光发射机制的探测方法及装置
CN109030380B (zh) * 2018-07-25 2023-08-22 佛山科学技术学院 一种钙钛矿纳米晶随机激光发射机制的探测方法及装置
CN109411327A (zh) * 2018-09-14 2019-03-01 中山大学 一种全无机钙钛矿纳米线CsPbX2Y及其制备方法和应用
CN109686756B (zh) * 2018-12-17 2021-02-02 电子科技大学 一种光电探测器及其制造方法
CN109686756A (zh) * 2018-12-17 2019-04-26 电子科技大学 一种光电探测器及其制造方法
CN109734122A (zh) * 2019-01-16 2019-05-10 上海理工大学 一种基于离子交换制备钙钛矿纳米线晶体的制备方法
CN111139518A (zh) * 2019-12-23 2020-05-12 大连理工大学 一种空气稳定的全无机混合卤素钙钛矿纳米线的制备方法
CN111943524A (zh) * 2020-06-18 2020-11-17 湖北大学 一种无机CsPbxSn1-x(BryI1-y)3纳米线的制备方法及其光电探测器
CN111834487A (zh) * 2020-07-24 2020-10-27 西安电子科技大学 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法
CN111834487B (zh) * 2020-07-24 2022-06-03 西安电子科技大学 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法
CN114715933A (zh) * 2020-12-22 2022-07-08 北部湾大学 一种制备CsPbBr3钙钛矿纳米线的方法
CN113026102A (zh) * 2021-02-01 2021-06-25 中国科学院合肥物质科学研究院 一种无机钙钛矿材料、光电探测器及其制备方法
CN113270516A (zh) * 2021-05-07 2021-08-17 南京理工大学 基于CrPbBr3纳米线膜荧光转换的紫外偏振增强探测方法
CN113270516B (zh) * 2021-05-07 2022-10-11 南京理工大学 基于CrPbBr3纳米线膜荧光转换的紫外偏振增强探测方法
CN113257932A (zh) * 2021-05-12 2021-08-13 常熟理工学院 一种高性能的光电探测器及其制备方法
CN113257932B (zh) * 2021-05-12 2022-11-22 常熟理工学院 一种高性能的光电探测器及其制备方法
CN115101623A (zh) * 2022-06-16 2022-09-23 云南师范大学 微米线阵列高性能钙钛矿型光电探测器、制备方法及应用
CN116705893A (zh) * 2023-08-02 2023-09-05 济南大学 Msm型光电探测器及其制备方法

Also Published As

Publication number Publication date
CN107919409B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN107919409B (zh) 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法
Sun et al. Ultrahigh‐performance self‐powered flexible double‐twisted fibrous broadband perovskite photodetector
Xue et al. Investigation of the stability for self-powered CsPbBr3 perovskite photodetector with an all-inorganic structure
CN106571425B (zh) 一种基于ZnO-钙钛矿结构的紫外-可见可调光电探测器及其制备方法
CN103872248B (zh) 一种钙钛矿薄膜光伏电池及其制备方法
CN107275434B (zh) 一种基于ZnO/CsPbBr3/MoO3结构的纯无机光电探测器
CN105304747A (zh) 基于ZnO纳米棒/CH3NH3PbI3/MoO3结构的自驱动光电探测器及其制备方法
CN109698278A (zh) 一种有机无机复合结构自驱动日盲紫外探测器及制备方法
CN107425123A (zh) 一种钙钛矿的宽波段柔性光探测器及其制备方法
CN110611030A (zh) 具有阵列结构电子传输层的钙钛矿太阳能电池及其制备方法
CN105870339B (zh) 一种提高纯度、减少针孔的钙钛矿薄膜的制备方法
Adams et al. Fabrication of rapid response self-powered photodetector using solution-processed triple cation lead-halide perovskite
Li et al. A high performance ZnO based photoelectrochemical cell type UV photodetector with [Co (bpy) 3] 3+/2+ electrolyte and PEDOT/ITO counter electrode
Popoola et al. Fabrication of bifacial sandwiched heterojunction photoconductor–type and MAI passivated photodiode–type perovskite photodetectors
CN113314672A (zh) 一种钙钛矿太阳能电池及其制备方法
CN109103280A (zh) 全无机钙钛矿铁电纤维复合结构的太阳能电池及制备方法
CN103887071B (zh) 一种柔性染料敏化太阳能电池纳米纸基复合光阳极及其制备方法
CN105514280B (zh) 一种钙钛矿太阳能电池及其制备方法
Han et al. Cu2O quantum dots modified α-Ga2O3 nanorod arrays as a heterojunction for improved sensitivity of self-powered photoelectrochemical detectors
Zhang et al. Improving the performance of ultra-flexible perovskite photodetectors through cation engineering
Lv et al. Two-step liquid phase synthesis of ZnO@ CuO core–shell heterojunction nanorods arrays composites photodetectors with the enhanced UV photoelectric performances
CN107342364A (zh) 一种氧化锌‑聚苯胺三明治结构的紫外光电探测器及其制备方法
Burgos et al. Electrodeposition of ZnO nanorods as electron transport layer in a mixed halide perovskite solar cell
Mi et al. Hybrid perovskite photoconductivity visible region detector with high speed and stability
CN210379115U (zh) 具有阵列结构电子传输层的钙钛矿太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191112

Termination date: 20210920

CF01 Termination of patent right due to non-payment of annual fee