CN113257932B - 一种高性能的光电探测器及其制备方法 - Google Patents

一种高性能的光电探测器及其制备方法 Download PDF

Info

Publication number
CN113257932B
CN113257932B CN202110517706.5A CN202110517706A CN113257932B CN 113257932 B CN113257932 B CN 113257932B CN 202110517706 A CN202110517706 A CN 202110517706A CN 113257932 B CN113257932 B CN 113257932B
Authority
CN
China
Prior art keywords
layered
cspbbr
dimensional non
substrate
cadmium sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110517706.5A
Other languages
English (en)
Other versions
CN113257932A (zh
Inventor
彭明发
刘玉申
洪学鹍
马玉龙
张磊
况亚伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN202110517706.5A priority Critical patent/CN113257932B/zh
Publication of CN113257932A publication Critical patent/CN113257932A/zh
Application granted granted Critical
Publication of CN113257932B publication Critical patent/CN113257932B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电探测器技术领域,公开了一种高性能的光电探测器制备方法,在硅基衬底上旋涂CdSxSe1‑x纳米片,利用电子束光刻及电子束蒸发镀膜技术沉积上金电极,然后旋涂CsPbBr3纳米晶体,退火处理后得到全无机CsPbBr3钙钛矿纳米晶体/二维非层状硒硫化镉纳米片的复合物结构光电探测器。本发明通过利用全无机钙钛矿晶体具有较高的稳定性,同时利用二维非层状材料的优异物理性能与钙钛矿的强光吸收特性相结合,改善复合纳米结构界面处的电荷载流子传输能力,从而提高光电探测器的性能。

Description

一种高性能的光电探测器及其制备方法
技术领域
本发明涉及一种光电探测器及其制备方法,尤其是涉及一种全无机CsPbBr3钙钛矿纳米晶体/二维非层状硒硫化镉复合结构光电探测器的制备方法。
背景技术
近年来,有机-无机杂化钙钛矿引起了广泛的关注。由于其具有光吸收系数大、载流子迁移率高、载流子扩散长度长等优点,在光电器件中具有广阔的应用前景。但是杂化钙钛矿中有机组分的环境稳定性较差,因此限制了其实际应用。为了解决这一问题,各种不同维度的全无机卤化铅钙钛矿(CsPbX3,X=Cl,Br,I)作为替代材料已被广泛研究,包括:零维量子点、一维纳米线、二维纳米片。与有机-无机杂化钙钛矿相比,全无机钙钛矿因其高稳定性和优异的光电性能而被认为是一种明星材料,被广泛的应用在高性能的光电子器件领域,例如:新型发光二极管、激光、太阳能电池和光电探测器等。其中,光电探测器是一种可以将入射光转换为电信号的光电器件。例如:全无机CsPbBr3钙钛矿已被广泛证明在光电探测器中具有优异的光电性能,如高响应率为10.1A/W,探测能力为1.2×1013Jones,快速响应速度为0.7ms/0.8ms。然而,由于钙钛矿在光电探测器制备过程中存在溶液环境稳定性差的问题,从而使得光电探测器的性能极大的受到制备工艺的限制。
为了解决这一问题,研究人员利用全无机钙钛矿与二维层状纳米结构相结合的方法来改善电荷载流子转移,从而提高钙钛矿光电探测器的光电性能。将二维层状材料的优异物理性能与钙钛矿的强光吸收特性相结合,提高了光电探测器的性能。与二维层状纳米结构相比,二维非层状纳米材料因其独特的性质而成为传统二维层状材料的补充材料,近年来引起了越来越多的研究兴趣。例如,二维非层状材料在三个维度方向均具有较强化学键,其表面由钝化的悬浮键组成,这与层状材料是不同的。由于这些独特的性能,人们成功开发了各种二维非层状纳米材料。其中,二维非层状硒硫化镉(CdSxSe1-x)由于其优异的光学性能和在整个可见区域可调谐的禁带,被认为是一种有前景的构建高性能光电探测器的材料。众所周知,二维材料与量子点之间的界面电荷传输能力对于提高光电探测器的性能至关重要。到目前为止,通过能带对准的方法将钙钛矿量子点与二维层状材料集成在一起的相关研究已经有相关报道。然而,对全有机钙钛矿/二维非层状纳米结构光电探测器界面处的电荷转移行为的研究迄今很少被提及,而该研究对于提高光电探测器的性能有很高的研究价值。因此,将全无机钙钛矿与二维非层状纳米片结合,通过能带对准工程研究复合纳米结构界面处的电荷转移行为将是一个非常有价值的研究工作。
发明内容
本发明的目的是解决现有钙钛矿在光电探测器制备过程中的溶液稳定性差,用于提高器件的光电探测性能的问题。提供了一种无机CsPbBr3钙钛矿纳米晶体/二维非层状硒硫化镉复合纳米结构的制备方法,首先在硅基衬底上旋涂CdSxSe1-x纳米片,利用电子束光刻及电子束蒸发镀膜技术沉积上金属电极,然后在沉积金属电极的纳米片旋涂一层CsPbBr3纳米晶体,退火处理后得到无机CsPbBr3钙钛矿纳米晶体/二维非层状硒镉硫化镉复合纳米结构光电探测器。通过能带对准工程,设计II-型异质结构,促进全无机CsPbBr3钙钛矿纳米晶体与二维非层状CdSxSe1-x(0≤x≤1)两者之间电荷载流子的分离与传输,从而提高光电探测器的性能。
根据本发明的第一个方面,本发明提供了一种光电探测器器件,包括基底和测试材料;所述基底包括SiO2/Si衬底和金属电极结构,所述测试材料包括无机CsPbBr3钙钛矿纳米晶体和二维非层状硒硫化镉纳米材料;所述光电探测器由下至上依次包括Si基底、SiO2薄膜层、二维非层状硒硫化镉、金属电极、CsPbBr3钙钛矿纳米晶体,所述SiO2薄膜层层叠于所述Si基底表面形成SiO2/Si衬底,其中SiO2薄膜层作为绝缘层。所述硒硫化镉的化学式为CdSxSe1-x,其中x代表S元素的原子比例,1-x代表Se元素的原子比例,x的数值范围:0≤x≤1,当x=0时,化学所为CdSe,当x=1时,化学式为CdS。
优选的,所述SiO2薄膜层层叠于Si基底表面的厚度为50~200nm。
优选的,所述金属电极的材料为Cr、Au、Ag、Al、Cu或Pt之一,厚度为10~500nm。
根据本发明的第二个方面,本发明提供了一种光电探测器器件的制备方法,依次包括步骤:
一、在SiO2/Si衬底上旋转涂布乙醇分散CdSxSe1-x纳米片;
二、利用电子束光刻技术在涂有CdSxSe1-x纳米片的衬底上沉积金属电极层;
三、在沉积金属电极的CdSxSe1-x纳米片表面旋转涂覆一层CsPbBr3纳米晶体溶液,得到CsPbBr3纳米晶/CdSxSe1-x纳米片复合结构;
四、将CsPbBr3纳米晶/CdSxSe1-x纳米片复合结构的光电探测器在丙酮溶液中浸入10s,除去纳米晶体表面配体;
五、器件在60℃下退火10min,得到复合纳米结构光电探测器器件;
优选的,步骤二所述的金属电极层为Cr、Ag、Al、Au、Cu、Pt或者Cr/Au中的一种或者两种金属层,进一步优选为Cr/Au。
优选的,所述二维非层状硒硫化镉CdSxSe1-x纳米片由如下方法制备而成:
采用管式炉加热生长的方式,将CdS粉和CdSe粉分别放置在管式炉加热的中心区域和中心区域下游;然后,在预先清洗好的Si(100)衬底上沉积金膜,用于二维非层状硒硫化镉纳米片的生长,然后将其放置在管式炉中;加热前,将高纯度N2吹入管中以排除氧气;加热炉进行加热,并以Ar气作为载气,在整个反应过程中压力控制在10mTorr,炉子自然冷却到室温得二维非层状硒硫化镉纳米片。
优选的,所述全无机CsPbBr3钙钛矿纳米晶由如下方法制备而成:Cs2CO3粉加入油酸和十八烯中,在N2保护条件下加热;然后升高温度,在三颈烧瓶中边搅拌边加入PbBr2和十八烯溶液,同时注入油酸和油胺,然后调节温度至180℃,随后快速注入分散于十八烯中的油酸铯溶液;此后,反应所得产物在乙酸甲酯中沉淀纯化;最后制备的CsPbBr3纳米晶分散在正辛烷中,用于器件制备。
本发明所提供的技术方案的优点在于:
1、通过能带对准工程,设计II型异质结构,促进无机CsPbBr3钙钛矿纳米晶体与二维非层状硒硫化镉纳米片两者之间电荷载流子的传输与分离;
2、解决现有钙钛矿在微纳光电探测器制备过程中,涉及到水溶液处理过程中的不稳定性问题。
附图说明
图1为光电探测器器件结构示意图。
图2为CsPbBr3钙钛矿纳米晶体/二维非层状硒化镉硫化镉材料的TEM图。
图3为CsPbBr3和CdSxSe1-x的能带结构和载流子传输示意图。
图4为实施例1制备的器件测试的性能图。
图5为实施例2制备的器件测试的性能图。
图6为实施例3制备的器件测试的性能图。
图7为实施例1、实施例2和实施例3的器件性能对比图。
具体实施方式
下面结合实施例对本发明作进一步说明,但不作为对本发明的限定。
实施例1
二维非层状硒硫化镉(CdSxSe1-x)纳米片的合成。采用管式炉加热生长的方式,将5mg CdS粉和5mg CdSe粉分别放置在管式炉加热的中心区域和中心区域下游。然后,在预先清洗好的Si(100)衬底上沉积2nm厚的金膜,用于CdSxSe1-x纳米片的生长,然后将其放置在距离炉中心约17cm的下游位置。加热前,将高纯度N2吹入管中以排除氧气。加热炉在40分钟内加热至850℃,并以纯度为99.9%Ar气作为载气维持120分钟,在整个反应过程中压力控制在10mTorr。然后,炉子自然冷却到室温得二维非层状硒硫化镉(CdSxSe1-x)纳米片。
全无机CsPbBr3钙钛矿纳米晶的合成。0.75g Cs2CO3粉加入3mL的油酸和75mL的十八烯到三颈烧瓶中,在N2保护条件下90℃保持60分钟。N2保护持续整个制备过程。然后温度增加到120℃,在三颈烧瓶中边搅拌边加入0.8g的PbBr2和50mL的十八烯溶液,同时注入5mL油酸和5mL油胺,然后调节温度至180℃,随后快速注入8mL分散于十八烯中的油酸铯溶液到烧瓶中。此后,反应所得产物在乙酸甲酯中沉淀纯化两次。最后制备的CsPbBr3纳米晶分散在正辛烷中,用于器件制备。
异质结构的光电探测器器件的制备方法为,在二氧化硅/硅衬底上旋转涂布乙醇分散的CdSxSe1-x纳米片(10μL),其中二氧化硅薄膜层的厚度为200nm。利用电子束光刻技术在涂有纳米片的基底上沉积Cr/Au(10nm/80nm)金属层,其两端电极的宽度为3μm,然后取20μL 10mg/mL的CsPbBr3的正辛烷分散溶液,利用旋转涂布方式以2000rpm的速度旋涂在基底表面,取60μL的丙酮溶液滴在器件上保持10s,用于去除CsPbBr3纳米晶体表面的配体。然后将具有CsPbBr3/CdSxSe1-x复合纳米结构的器件在60℃下退火处理10min,得到异质结构光电探测器器件。
CsPbBr3钙钛矿纳米晶体/二维非层状CdSxSe1-x纳米片复合结构的TEM图如图2所示。图2的结果表明CdSxSe1-x纳米片的形貌完整,表面没有明显的缺陷,说明合成的CdSxSe1-x纳米片的晶体质量较好,而CsPbBr3钙钛矿纳米晶体的颗粒大小约为10nm,且在纳米片表面分布较为均匀,表明利用旋转涂覆的方法可以确保CsPbBr3钙钛矿纳米晶体较为均匀的覆盖在CdSxSe1-x纳米片表面。
根据能带工程理论,结合CsPbBr3和CdSxSe1-x的能带结构,将两种材料接触后易于构成II型异质结构,而异质结界面处形成的内建电场将有利于促进无机CsPbBr3钙钛矿纳米晶体与二维非层状CdSxSe1-x纳米片两者之间电荷载流子的传输与分离,从而提升器件性能。CsPbBr3和CdSxSe1-x的能带结构图如图3所示,当入射光的能量大于材料禁带宽度时,材料中将产生光生载流子,当两种材料接触时,光生载流子将在两种材料的界面处聚集,在界面处内建电场的作用下CsPbBr3纳米晶体导带中的电子将漂移到CdSxSe1-x纳米片中,而CdSxSe1-x纳米片价带中的空穴将转移到CsPbBr3纳米晶体中,从而减少了界面处的电子和空穴发生复合的几率。因此,通过设计并构建II型异质结将会极大的提升器件的光电性能,这一结果将在后续的实施例中得以证明。
所得异质结光电探测器器件在室温的大气环境,控制入射光波长为405nm,改变入射光的光强,测试器件的光电性能,测试结果如图4所示。由图4结果可以看出当扫描电压控制在-3V到3V之间,在405nm波长入射光照下,CsPbBr3/CdSxSe1-x复合纳米结构光电探测器器件的光电流随着入射光强的增加而增加。当入射光强为10.92μW/cm2时,器件在3V偏压下的光电流为1.5×10-9A;当入射光强增加到22.92mW/cm2时,光电流高达7.1×10-7A。
实施例2:请参考实施例1中的CdSxSe1-x纳米片的合成方法。在二氧化硅/硅衬底上旋转涂布乙醇分散的CdSxSe1-x纳米片(10μL),利用电子束光刻技术在涂有纳米片的基底上沉积Cr/Au(10nm/80nm)金属层,其两端电极宽度为3μm,随后将制备的器件在60℃下退火处理10min。所得单一组分CdSxSe1-x纳米片光电探测器器件的测试条件参考实施例1,器件性能测试结果如图5所示。
由图5结果可以看出在与实施例1相同的扫描电压和入射光波长作用下,单一组分CdSxSe1-x纳米片光电探测器器件的光电流也是随着入射光强的增加而增加。当入射光强为10.92μW/cm2时,单一组分纳米片光电探测器器件在3V偏压下的光电流仅为1.0×10-11A;当入射光强增加到22.92mW/cm2时,光电流为也仅为7.9×10-8A。与实施例1中的复合结构光电探测器相比,实施例2中的单一组分CdSxSe1-x纳米片光电探测器器件在10.92μW/cm2的弱光作用下,其光电流数值降低了2个数量级;在22.92mW/cm2光照下,其光电流数值降低了约1个数量级。
实施例3:请参考实施例1中的CsPbBr3钙钛矿纳米晶的合成方法。利用电子束光刻技术在空白的二氧化硅/硅衬底上,沉积Cr/Au(10nm/80nm)金属层,其两端电极宽度为3μm。然后取20μL 10mg/mL的CsPbBr3溶液,利用旋转涂布方式在制备金属电极的基底表面,取60μL的丙酮溶液滴在器件上保持10s,用于去除纳米晶表明的配体,随后将制备的器件在60℃下退火处理10min。得到单一组分CsPbBr3纳米晶体光电探测器器件的测试条件参考实施例1,器件性能测试结果如图6所示。
由图6结果可以看出在与实施例1相同的扫描电压和入射光波长作用下,单一组分CsPbBr3钙钛矿纳米晶体光电探测器器件的光电流也是随着入射光强的增加而增加。当入射光强为10.92μW/cm2时,单一组分纳米晶体光电探测器器件在3V偏压作用下的光电流下仅为2.3×10-10A;当入射光强增加到22.92mW/cm2时,光电流为也仅为1.4×10-7A。与实施例1中的复合结构光电探测器相比,实施例3中的单一组分CsPbBr3钙钛矿纳米晶体光电探测器器件在10.92μW/cm2的弱光作用下,其光电流数值降低了65倍;在22.92mW/cm2光照下,其光电流数值降低了约5倍。
对比例1:请分别参考实施例1、实施例2和实施例3制备三种不同类型的光电探测器:CsPbBr3/CdSxSe1-x复合纳米结构光电探测器、单一组分CdSxSe1-x纳米片光电探测器、以及单一组分CsPbBr3钙钛矿纳米晶体光电探测器。控制测试条件,与实施例1相同的入射光波长和偏压作用条件下,改变入射光强,对比三种不同类型光电探测器器件在不同入射光强作用下的光电性能,对比结果如图7所示。
由图7结果可以看出,通过设计II型异质结的CsPbBr3/CdSxSe1-x复合纳米结构光电探测器器件的光电性能明显优异单一组分CdSxSe1-x纳米片光电探测器和单一组分CsPbBr3钙钛矿纳米晶体光电探测器。这一结果得益于CsPbBr3和CdSxSe1-x结合构成的II型异质结,在CsPbBr3/CdSxSe1-x复合纳米结构的界面处形成的内建电场作用下有利于光生载流子的分离与传输,协同增效从而提升了器件的光电性能。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种光电探测器器件,包括基底和测试材料,所述基底包括SiO2/Si衬底和金属电极结构,其特征在于:所述测试材料包括无机CsPbBr3钙钛矿纳米晶体和二维非层状硒硫化镉纳米片;所述光电探测器由下至上依次包括Si基底、SiO2薄膜层、二维非层状硒硫化镉、金属电极、无机CsPbBr3钙钛矿纳米晶体,所述SiO2薄膜层层叠于所述Si基底表面形成SiO2/Si衬底,其中SiO2薄膜层作为绝缘层;
二维非层状硒硫化镉纳米片的合成:采用管式炉加热生长的方式,将5mg CdS粉和5mgCdSe粉分别放置在管式炉加热的中心区域和中心区域下游,然后,在预先清洗好的Si(100)衬底上沉积2nm厚的金膜,用于二维非层状硒硫化镉纳米片的生长,然后将其放置在距离炉中心约17cm的下游位置;加热前,将高纯度N2吹入管中以排除氧气;加热炉在40分钟内加热至850℃,并以纯度为99.9%Ar气作为载气维持120分钟,在整个反应过程中压力控制在10mTorr;然后,炉子自然冷却到室温得二维非层状硒硫化镉纳米片;
所述光电探测器器件的制备方法,依次包括步骤:
一、在SiO2/Si衬底上旋转涂布乙醇分散二维非层状硒硫化镉纳米片;
二、利用电子束光刻技术在涂有二维非层状硒硫化镉纳米片的衬底上沉积金属电极层;
三、在沉积金属电极的二维非层状硒硫化镉纳米片表面旋转涂覆一层CsPbBr3纳米晶体溶液,得到CsPbBr3纳米晶/二维非层状硒硫化镉纳米片复合结构;
四、将CsPbBr3纳米晶/二维非层状硒硫化镉纳米片复合结构的光电探测器在丙酮溶液中浸入10s,除去纳米晶体表面配体;
五、器件在60℃下退火10min,得到复合纳米结构光电探测器器件。
2.根据权利要求1所述的光电探测器器件,其特征在于:所述SiO2薄膜层层叠于Si基底表面的厚度为50~200nm。
3.根据权利要求1所述的光电探测器器件,其特征在于:所述金属电极的材料为Cr、Au、Ag、Al、Cu或Pt之一,厚度为10~500nm。
4.根据权利要求1所述的光电探测器器件,其特征在于:步骤二所述的金属电极层为Cr、Ag、Al、Au、Cu、Pt或者Cr/Au中的一种或者两种金属层。
5.根据权利要求1所述的光电探测器器件,其特征在于:步骤二所述的金属电极层为Cr/Au。
6.根据权利要求1所述的光电探测器器件,其特征在于:
无机CsPbBr3钙钛矿纳米晶体 由如下方法制备而成:Cs2CO3粉加入油酸和十八烯中,在N2保护条件下加热;然后升高温度,在三颈烧瓶中边搅拌边加入PbBr2和十八烯溶液,同时注入油酸和油胺,然后调节温度至180℃,随后快速注入分散于十八烯中的油酸铯溶液;此后,反应所得产物在乙酸甲酯中沉淀纯化;最后制备的CsPbBr3纳米晶分散在正辛烷中,用于器件制备。
CN202110517706.5A 2021-05-12 2021-05-12 一种高性能的光电探测器及其制备方法 Active CN113257932B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110517706.5A CN113257932B (zh) 2021-05-12 2021-05-12 一种高性能的光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110517706.5A CN113257932B (zh) 2021-05-12 2021-05-12 一种高性能的光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN113257932A CN113257932A (zh) 2021-08-13
CN113257932B true CN113257932B (zh) 2022-11-22

Family

ID=77223089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110517706.5A Active CN113257932B (zh) 2021-05-12 2021-05-12 一种高性能的光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN113257932B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685555B (zh) * 2022-03-04 2024-01-05 中国科学院深圳先进技术研究院 一种二维(PEA)2PbX4纳米片、制备方法及其在紫外光探测器中的应用
CN116847665B (zh) * 2023-09-01 2023-12-19 济南大学 一种硅基外延钙钛矿异质pn结光电探测器及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919409A (zh) * 2017-09-20 2018-04-17 湖北大学 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106947463B (zh) * 2017-03-20 2020-01-03 重庆纳鼎光电科技有限公司 一种CdS包覆无机钙钛矿纳米材料的制备方法及其产品和应用
CN108314077A (zh) * 2018-02-01 2018-07-24 扬州大学 简易制备全无机钙钛矿纳米结构的方法
CN108217718A (zh) * 2018-03-13 2018-06-29 南方科技大学 一种abx3钙钛矿纳米晶的合成方法及其产品和用途
CN109638091B (zh) * 2018-11-17 2020-07-10 华中科技大学 一种高性能混合型光电探测器的构筑方法及其调控策略
CN110718633A (zh) * 2019-11-08 2020-01-21 苏州大学 一种基于钙钛矿-碳纳米管体异质结的宽谱光电探测器
CN111978950A (zh) * 2020-09-07 2020-11-24 南京大学 一种超高水稳定性的CsPbBr3@SiO2纳米粒子的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919409A (zh) * 2017-09-20 2018-04-17 湖北大学 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法

Also Published As

Publication number Publication date
CN113257932A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
Nalwa A review of molybdenum disulfide (MoS 2) based photodetectors: from ultra-broadband, self-powered to flexible devices
Wang et al. Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors
Faisal et al. Synthesis of ZnO nanorods on a silicon substrate via hydrothermal route for optoelectronic applications
Teng et al. Photoelectric detectors based on inorganic p‐type semiconductor materials
Tian et al. Low‐dimensional nanomaterial/Si heterostructure‐based photodetectors
Xie et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications
Zhao et al. Growth and device application of CdSe nanostructures
Zhai et al. Recent developments in one‐dimensional inorganic nanostructures for photodetectors
Sun et al. Recent advances in group III–V nanowire infrared detectors
Yang et al. Developing seedless growth of ZnO micro/nanowire arrays towards ZnO/FeS2/CuI PIN photodiode application
Zhang et al. Controlled synthesis and photonics applications of metal halide perovskite nanowires
Yadav et al. Sol-gel-based highly sensitive Pd/n-ZnO thin film/n-Si Schottky ultraviolet photodiodes
Tian et al. Hybrid nanostructures for photodetectors
Xu et al. Recent progress on infrared photodetectors based on InAs and InAsSb nanowires
CN113257932B (zh) 一种高性能的光电探测器及其制备方法
Li et al. Using novel semiconductor features to construct advanced ZnO nanowires-based ultraviolet photodetectors: A brief review
Shoaib et al. Controllable Vapor Growth of Large-Area Aligned CdS x Se 1− x Nanowires for Visible Range Integratable Photodetectors
Saikia et al. Synthesis, characterization and photovoltaic application of silver doped CdS/PVA nanocomposite thin films
Mahyavanshi et al. Photovoltaic action with broadband photoresponsivity in germanium-MOS 2 ultrathin heterojunction
Wang et al. Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology
Das et al. SnS2/Si nanowire vertical heterostructure for high performance ultra-low power broadband photodetector with excellent detectivity
Jiang et al. Van der Waals epitaxial growth of two-dimensional PbSe and its high-performance heterostructure devices
Daimary et al. Ultrafast photoresponse using axial n-ZnO/p-CuO heterostructure nanowires array-based photodetectors
Ramakrishnan et al. Review on metal sulfide-based nanostructures for photodetectors: From ultraviolet to infrared regions
Li et al. Wavelength-controlled photodetector based on single CdSSe nanobelt

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant