CN106898697A - 一种新型钙钛矿光电探测器及其制备方法 - Google Patents

一种新型钙钛矿光电探测器及其制备方法 Download PDF

Info

Publication number
CN106898697A
CN106898697A CN201710108779.2A CN201710108779A CN106898697A CN 106898697 A CN106898697 A CN 106898697A CN 201710108779 A CN201710108779 A CN 201710108779A CN 106898697 A CN106898697 A CN 106898697A
Authority
CN
China
Prior art keywords
layer
photodetector
preparation
tio
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710108779.2A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710108779.2A priority Critical patent/CN106898697A/zh
Publication of CN106898697A publication Critical patent/CN106898697A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种新型钙钛矿光电探测器及其制备方法,属于光电探测技术领域。本发明提供了一种基于TiO2电子传输层和无机金属氧化物界面修饰层的钙钛矿光电探测器及其制备方法,探测器包括在导电基底上通过原子层沉积技术生长的TiO2致密层作为电子传输层,接着制备一层有机无机杂化钙钛矿薄膜作为光敏层,随后沉积一层spiro‑OMeTAD空穴传输层,接着沉积一层无机氧化物界面修饰层(包括MoO3、WO3或者V2O5的一种),最后沉积一层Au或者Ag作为金属电极。所述TiO2作为电子传输层和无机氧化物作为界面修饰层,提升了光电探测器寿命、降低了探测器的暗电流,提高了其探测率,降低了器件的制备成本,有利于实现钙钛矿光电探测器的产业化。

Description

一种新型钙钛矿光电探测器及其制备方法
技术领域
本发明属于光电探测技术领域,更具体地涉及一种新型钙钛矿光电探测器及其制备方法。
背景技术
光电探测器在光通信,环境监测,图像传感、红外遥感等军事和国民经济的众多领域有着广泛的应用。有机无机杂化钙钛矿材料所具有的消光系数高、吸收范围宽、激子扩散长度长、可溶液加工等优点使其非常适宜制作光电探测器。但是钙钛矿材料稳定性能较差,在水氧条件下容易分解,造成探测器的寿命低下。在器件的制备过程中,钙钛矿层常制备在TiO2基底之上。但是,TiO2常需要经过高温灼烧,一方面造成器件制备成本高,另一方面也与柔性衬底无法兼容。目前钙钛矿光电探测器的研究尚刚刚起步,新的器件结构和器件的制备方便亟待开发。
发明内容
针对背景中的问题,本发明的目的在于提供一种新型钙钛矿光电探测器及其制备方法,通过原子层沉积技术制备TiO2致密层和无机金属氧化物界面修饰层在器件中的使用,提高了钙钛矿光电探测器的稳定性,提高了器件的探测率,降低了器件制备成本。
为实现上述目的,按照本发明的一个方面,提供了一种新型钙钛矿光电探测器,其特征在于:所述光电探测器从下至上由透明导电基底、TiO2电子传输层、光敏层、空穴传输层、界面修饰层和金属反射电极组成。
进一步的,所述的透明导电基底为ITO或者FTO透明导电玻璃,其方块电阻10-25Ω,透过率为80-95%。
进一步的,所述的电子传输层为TiO2致密层,TiO2致密层通过原子层沉积技术制备。
进一步的,所述的光敏层为CH3NH3PbX3钙钛矿材料,其中X=Cl、Br、I或者它们的混合物。
进一步的,所述的空穴传输层为spiro-OMeTAD。
进一步的,所述的界面修饰层为高功函数的无机透明金属氧化物,所述的高功函数的无机透明金属氧化物为MoO3、WO3或者V2O5。
进一步的,所述的金属反射电极为Al、Ag或者Au。
按照本发明的另一方面,提供了一种新型钙钛矿光电探测器的制备方法,其特征在于,该方法包括以下步骤:
步骤(1) 透明导电基底清洗
透明导电基底依次采用丙酮、水、玻璃清洗剂清洗,清洗完毕后在异丙醇、去离子水、乙醇各超声处理15分钟,处理完毕后用高纯氮气吹干,然后放置在紫外灯下,照射20分钟;
步骤(2)原子层沉积技术制备致密TiO2电子传输层
在透明导电基底上通过原子层沉积(ALD)技术制备一层致密的TiO2作为电子传输层,TiO2层的厚度为10-30nm;
步骤(3)溶液法制备钙钛矿光敏层
所述的钙钛矿光敏层为CH3NH3PbX3,其中X=Cl、Br、I或者它们的混合物,将配置好的钙钛矿前驱体溶液通过匀胶机旋转涂覆在TiO2电子传输层上,然后在加热板上退火处理;加热温度90-110℃,退火时间30-120分钟;
步骤(4)空穴传输层的制备
将配置好的spiro-OMeTAD溶液旋涂在钙钛矿光敏层上,然后在加热板上退火处理;
步骤(5)界面修饰层的制备
所述的界面所述的界面修饰层为高功函数的无机透明金属氧化物,所述的高功函数的无机透明金属氧化物为MoO3、WO3或者V2O5
将上述制备好的基底放入真空蒸发镀膜设备中,真空度达到小于5×10-4将MoO3、WO3或者V2O5的粉体通过真空蒸镀的方式沉积到spiro-OMeTAD空穴传输层上;
步骤(6)金属反射电极的制备
沉积完上述金属氧化物的界面修饰层继续沉积50-300nm的Al、Ag或者Au作为金属反射电极,完成器件的制备。
总体而言,按照本发明的上述技术构思与现有技术相比,主要具备以下的技术优点:
1、本发明采用原子层沉积技术生长TiO2致密电子传输层,使得TiO2电子传输层的导电性大大提高,所得电子传输层薄膜均匀、密实没有孔洞,降低了器件的暗电流,提高了器件的探测率;TiO2制备无需高温烧灼工艺,降低了器件的制备成本,可以与柔性基底兼容;2、本发明采用热蒸镀的方法生长的无机金属氧化物界面修饰层,可以有效保护器件,防止水氧进入钙钛矿光敏层,提高了器件的稳定性和寿命。同时界面修饰层可以起到电子阻挡层的作用,减小了漏电流,提高了器件的性能。
附图说明
图1是本发明的新型钙钛矿光电探测器结构示意图;其中1为透明导电基底、2为TiO2电子传输层、3为光敏层、4为空穴传输层、5为界面修饰层和6为金属反射电极。
具体实施方式
为了使本发明的技术方案更加明白,结合以下实例对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用以解释发明,并不用于限定本发明。如图1所示,光电探测器从下至上由透明导电基底1、TiO2电子传输层2、光敏层3、空穴传输层4、界面修饰层5和金属反射电极6组成。
进一步的,所述的透明导电基底为ITO或者FTO透明导电玻璃,其方块电阻10-25Ω,透过率为80-95%。
进一步的,所述的电子传输层为TiO2致密层,TiO2致密层通过原子层沉积技术制备,厚度为10-30nm。
进一步的,所述的光敏层为CH3NH3PbX3钙钛矿材料,其中X=Cl、Br、I或者它们的混合物,厚度为200-1000nm。
进一步的,所述的空穴传输层为spiro-OMeTAD。
进一步的,所述的界面修饰层为高功函数的无机透明金属氧化物,所述的高功函数的无机透明金属氧化物为MoO3、WO3或者V2O5
所述的金属反射电极为Al、Ag或者Au。
实施例一
步骤(1) 选择方块10-25Ω,透过率为80-95%的ITO导电玻璃为透明导电基底,随后用丙酮、水、玻璃清洗剂清洗,清洗完毕后在异丙醇、去离子水、乙醇各超声处理15分钟,处理完毕后用高纯氮气吹干,然后放置在紫外灯下,照射20分钟。
步骤(2)原子层沉积技术制备致密TiO2电子传输层
在ITO透明导电基底上通过原子层沉积技术制备一层20nm厚的致密TiO2作为电子传输层。
步骤(3)溶液法制备钙钛矿光敏层
使用二甲基甲酰胺为溶剂,摩尔比例为1:3的PbCl2和CH3NH3I为溶质,并在60℃下搅拌溶解,得到质量分数为30%的钙钛矿前驱体溶液。将将配置好的钙钛矿前驱体溶液通过匀胶机旋转涂覆在TiO2电子传输层上,转速为2000-5000rmp,时间为30-60s,然后在100℃加热板上退火120分钟。
步骤(4)空穴传输层的制备
取一定量的spiro-OMeTAD溶入氯苯,配置成80mg/ml的溶液,搅拌溶解,将配置好spiro-OMeTAD溶液旋涂在钙钛矿光敏层上,转速为1000-3000rmp,时间为20-50s,然后在70℃加热板上退火处理5-30分钟。
步骤(5)界面修饰层的制备
将上述制备好的基底放入真空蒸发镀膜设备中,真空度达到小于5×10-4Pa后将MoO3粉体通过真空蒸镀的方式沉积到spiro-OMeTAD空穴传输层上;MoO3的沉积厚度为5-40nm,通过石英晶振片进行监控。
步骤(6)金属反射电极的制备
沉积完上述MoO3界面修饰层后,继续沉积100nm的Al作为金属反射电极,完成器件的制备。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种新型钙钛矿光电探测器,其特征在于:所述光电探测器从下至上由导电基底、TiO2电子传输层、光敏层、空穴传输层、界面修饰层和金属反射电极组成。
2.如权利要求1所述的光电探测器,其特征在于,所述的透明导电基底为ITO或者FTO透明导电玻璃,其方块电阻10-25Ω,透过率为80-95%。
3.如权利要求1所述的光电探测器,其特征在于,所述的电子传输层为TiO2致密层,TiO2致密层通过原子层沉积技术制备。
4.如权利要求1所述的光电探测器,其特征在于,所述的光敏层为CH3NH3PbX3钙钛矿材料,其中X=Cl、Br、I或者它们的混合物。
5.如权利要求1所述的光电探测器,其特征在于,所述的空穴传输层为spiro-OMeTAD。
6.如权利要求1所述的光电探测器,其特征在于,所述的界面修饰层为高功函数的无机透明金属氧化物,包括 MoO3、WO3或者V2O5
7.如权利要求1所述的光电探测器,其特征在于,所述的金属反射电极为Al、Ag或者Au。
8.一种新型钙钛矿光电探测器的制备方法,其特征在于,该方法包括以下步骤:
步骤(1) 透明导电基底清洗
透明导电基底依次采用丙酮、水、玻璃清洗剂清洗,清洗完毕后在异丙醇、去离子水、乙醇各超声处理15分钟,处理完毕后用高纯氮气吹干,然后放置在紫外灯下,照射20分钟;
步骤(2)原子层沉积技术制备致密TiO2电子传输层
在透明导电基底上通过原子层沉积(ALD)技术制备一层致密的TiO2作为电子传输层,TiO2层的厚度为10-30nm;
步骤(3)溶液法制备钙钛矿光敏层
所述的钙钛矿光敏层为CH3NH3PbX3,其中X=Cl、Br、I或者它们的混合物,将配置好的钙钛矿前驱体溶液通过匀胶机旋转涂覆在TiO2电子传输层上,然后在加热板上退火处理;加热温度90-110℃,退火时间30-120分钟;
步骤(4)空穴传输层的制备
将配置好的spiro-OMeTAD溶液旋涂在钙钛矿光敏层上,然后在加热板上退火处理;
步骤(5)界面修饰层的制备
所述的界面所述的界面修饰层为高功函数的无机透明金属氧化物,所述的高功函数的无机透明金属氧化物为MoO3、WO3或者V2O5;
将上述制备好的基底放入真空蒸发镀膜设备中,真空度达到小于5×10-4将MoO3、WO3或者V2O5的粉体通过真空蒸镀的方式沉积到spiro-OMeTAD空穴传输层上;
步骤(6)金属反射电极的制备
沉积完上述金属氧化物的界面修饰层继续沉积50-300nm的Al、Ag或者Au作为金属反射电极,完成器件的制备。
CN201710108779.2A 2017-02-27 2017-02-27 一种新型钙钛矿光电探测器及其制备方法 Pending CN106898697A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710108779.2A CN106898697A (zh) 2017-02-27 2017-02-27 一种新型钙钛矿光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710108779.2A CN106898697A (zh) 2017-02-27 2017-02-27 一种新型钙钛矿光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN106898697A true CN106898697A (zh) 2017-06-27

Family

ID=59184955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710108779.2A Pending CN106898697A (zh) 2017-02-27 2017-02-27 一种新型钙钛矿光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN106898697A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107316943A (zh) * 2017-07-14 2017-11-03 合肥工业大学 基于碘铅铯甲脒薄膜的宽波带超高速光电探测器及其制备方法
CN107833971A (zh) * 2017-10-31 2018-03-23 南京旭羽睿材料科技有限公司 一种基于石墨烯的有机太阳能电池及其制备方法
CN109004049A (zh) * 2018-07-24 2018-12-14 上海集成电路研发中心有限公司 光电探测器及其制作方法
CN110190193A (zh) * 2019-06-06 2019-08-30 中节能万润股份有限公司 一种含保护层的钙钛矿太阳能电池及其制备方法
CN110911568A (zh) * 2019-12-03 2020-03-24 武汉大学 一种银铋硫薄膜光电探测器及其制备方法
CN111430480A (zh) * 2020-04-17 2020-07-17 南方科技大学 一种同质结钙钛矿光电探测器及其制备方法和用途
CN111490164A (zh) * 2020-04-24 2020-08-04 电子科技大学 基于dnt-ph复合空穴传输层的钙钛矿光电探测器及其制备方法
CN111599827A (zh) * 2020-04-28 2020-08-28 深圳市惠能材料科技研发中心(有限合伙) 一种新型的钙钛矿半导体型x射线探测器及其制备方法
CN111834487A (zh) * 2020-07-24 2020-10-27 西安电子科技大学 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法
JP2021077788A (ja) * 2019-11-11 2021-05-20 三菱ケミカル株式会社 光電変換素子
CN113517405A (zh) * 2021-07-09 2021-10-19 广西大学 基于CsI离子掺杂空穴传输层的高性能自供电钙钛矿型光电探测器及其制备方法
CN113745408A (zh) * 2021-08-27 2021-12-03 西交利物浦大学 一种钙钛矿太阳能电池及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409561A (zh) * 2014-10-27 2015-03-11 复旦大学 一种基于微球光学谐振增强的硅薄膜光探测器及其制备方法
WO2015187225A2 (en) * 2014-03-12 2015-12-10 The University Of Akron Ultrasensitive solution-processed perovskite hybrid photodetectors
CN105200522A (zh) * 2015-08-13 2015-12-30 陕西师范大学 一种大面积钙钛矿薄片及其制备和应用
CN105280827A (zh) * 2015-10-16 2016-01-27 湖北大学 钙钛矿型太阳能电池的制备方法
CN105575964A (zh) * 2015-12-22 2016-05-11 苏州大学 结合太阳能电池和光探测器的自驱动光电探测体系及其制备方法
CN106449978A (zh) * 2016-07-10 2017-02-22 上海大学 基于甲氨基氯化铅薄膜的可见光盲紫外探测器的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015187225A2 (en) * 2014-03-12 2015-12-10 The University Of Akron Ultrasensitive solution-processed perovskite hybrid photodetectors
CN106165137A (zh) * 2014-03-12 2016-11-23 阿克伦大学 超灵敏溶液处理的钙钛矿混合光电探测器
CN104409561A (zh) * 2014-10-27 2015-03-11 复旦大学 一种基于微球光学谐振增强的硅薄膜光探测器及其制备方法
CN105200522A (zh) * 2015-08-13 2015-12-30 陕西师范大学 一种大面积钙钛矿薄片及其制备和应用
CN105280827A (zh) * 2015-10-16 2016-01-27 湖北大学 钙钛矿型太阳能电池的制备方法
CN105575964A (zh) * 2015-12-22 2016-05-11 苏州大学 结合太阳能电池和光探测器的自驱动光电探测体系及其制备方法
CN106449978A (zh) * 2016-07-10 2017-02-22 上海大学 基于甲氨基氯化铅薄膜的可见光盲紫外探测器的制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107316943A (zh) * 2017-07-14 2017-11-03 合肥工业大学 基于碘铅铯甲脒薄膜的宽波带超高速光电探测器及其制备方法
CN107833971A (zh) * 2017-10-31 2018-03-23 南京旭羽睿材料科技有限公司 一种基于石墨烯的有机太阳能电池及其制备方法
CN109004049A (zh) * 2018-07-24 2018-12-14 上海集成电路研发中心有限公司 光电探测器及其制作方法
CN110190193A (zh) * 2019-06-06 2019-08-30 中节能万润股份有限公司 一种含保护层的钙钛矿太阳能电池及其制备方法
CN110190193B (zh) * 2019-06-06 2022-11-15 中节能万润股份有限公司 一种含保护层的钙钛矿太阳能电池及其制备方法
JP2021077788A (ja) * 2019-11-11 2021-05-20 三菱ケミカル株式会社 光電変換素子
CN110911568A (zh) * 2019-12-03 2020-03-24 武汉大学 一种银铋硫薄膜光电探测器及其制备方法
CN111430480A (zh) * 2020-04-17 2020-07-17 南方科技大学 一种同质结钙钛矿光电探测器及其制备方法和用途
CN111490164A (zh) * 2020-04-24 2020-08-04 电子科技大学 基于dnt-ph复合空穴传输层的钙钛矿光电探测器及其制备方法
CN111599827A (zh) * 2020-04-28 2020-08-28 深圳市惠能材料科技研发中心(有限合伙) 一种新型的钙钛矿半导体型x射线探测器及其制备方法
CN111834487A (zh) * 2020-07-24 2020-10-27 西安电子科技大学 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法
CN111834487B (zh) * 2020-07-24 2022-06-03 西安电子科技大学 全无机钙钛矿纳米线自供能-短波光电探测器及制备方法
CN113517405A (zh) * 2021-07-09 2021-10-19 广西大学 基于CsI离子掺杂空穴传输层的高性能自供电钙钛矿型光电探测器及其制备方法
CN113745408A (zh) * 2021-08-27 2021-12-03 西交利物浦大学 一种钙钛矿太阳能电池及其制备方法

Similar Documents

Publication Publication Date Title
CN106898697A (zh) 一种新型钙钛矿光电探测器及其制备方法
CN108288676A (zh) 一种有机无机杂化光电探测器
Lee et al. All‐solution‐processed silver nanowire window electrode‐based flexible perovskite solar cells enabled with amorphous metal oxide protection
CN106098949B (zh) 一种钙钛矿薄膜太阳能电池的制备方法
CN106025067B (zh) 一种溶液法生成钙钛矿薄膜的成膜方法及其器件应用
WO2018028244A1 (zh) 一种透明导电薄膜及其制备方法和应用
AU9714701A (en) Photoelectric conversion element
Yates et al. Flame Assisted Chemical Vapour Deposition of NiO hole transport layers for planar perovskite cells
CN106129257A (zh) 一种钙钛矿薄膜光电晶体管及其制备方法
CN105789467A (zh) 一种In掺杂MoO3薄膜的制备方法及其在QLED中的应用
CN105264685B (zh) 有机电子器件的制造方法
Suresh et al. Ag@ Nb 2 O 5 plasmonic blocking layer for higher efficiency dye-sensitized solar cells
KR20150100216A (ko) 페로브스카이트계 염료를 이용한 고체형 박막 태양전지 및 제조 방법
CN109841738A (zh) 一种具有钙钛矿能级修饰层的双体异质结有机太阳能电池及其制备方法
Kim et al. Ultrafast Flame Annealing of TiO2 Paste for Fabricating Dye‐Sensitized and Perovskite Solar Cells with Enhanced Efficiency
JP2016178167A (ja) 光電極の製造方法、光電極、太陽電池の製造方法および太陽電池
Lee et al. Indium− Tin− Oxide-Based Transparent Conducting Layers for Highly Efficient Photovoltaic Devices
Hammad Effect of annealing on electrical, structural, and optical properties of sol–gel ITO thin films
Liu et al. Reducing damage of sputtering and improving conductivity of transparent electrodes for efficient semi-transparent perovskite solar cells
CN110311041A (zh) 一种ZnO修饰的SnO2基钙钛矿太阳能电池及制备方法
CN205790075U (zh) 一种钙钛矿薄膜太阳能电池
CN109904317A (zh) 一种钙钛矿层的制备方法、应用及装置
JPWO2003038909A1 (ja) 光電変換素子の製造方法および光電変換素子
JP2004356281A (ja) 色素増感光電変換素子
CN107170886A (zh) 一种具备LiI修饰层的钙钛矿太阳能电池及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170627

RJ01 Rejection of invention patent application after publication