CN111809063A - 一种光催化金属溶解方法 - Google Patents

一种光催化金属溶解方法 Download PDF

Info

Publication number
CN111809063A
CN111809063A CN201910294530.4A CN201910294530A CN111809063A CN 111809063 A CN111809063 A CN 111809063A CN 201910294530 A CN201910294530 A CN 201910294530A CN 111809063 A CN111809063 A CN 111809063A
Authority
CN
China
Prior art keywords
metal
platinum
titanium dioxide
mixed solution
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910294530.4A
Other languages
English (en)
Other versions
CN111809063B (zh
Inventor
卞振锋
陈瑶
徐梦娇
凌丽丽
闻洁雅
万瑜
刘丽
李和兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Normal University
University of Shanghai for Science and Technology
Original Assignee
Shanghai Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Normal University filed Critical Shanghai Normal University
Priority to CN201910294530.4A priority Critical patent/CN111809063B/zh
Priority to PCT/CN2019/110382 priority patent/WO2020206962A1/zh
Priority to EP19923873.4A priority patent/EP3875617A4/en
Priority to US17/042,775 priority patent/US11920212B2/en
Priority to JP2021524243A priority patent/JP7016569B2/ja
Publication of CN111809063A publication Critical patent/CN111809063A/zh
Application granted granted Critical
Publication of CN111809063B publication Critical patent/CN111809063B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/16Extraction of metal compounds from ores or concentrates by wet processes by leaching in organic solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J27/045Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/003Catalysts comprising hydrides, coordination complexes or organic compounds containing enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0252Nitrogen containing compounds with a metal-nitrogen link, e.g. metal amides, metal guanidides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/16Extraction of metal compounds from ores or concentrates by wet processes by leaching in organic solutions
    • C22B3/1608Leaching with acyclic or carbocyclic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明涉及一种光催化金属溶解方法,将需要被溶解的含金属的材料分散到氰类化合物与有机氯化物的混合溶液中,再加入光催化剂,并通入含氧气体或加入能产生氧气的物质,光照射一定时间即可溶解金属。与现有技术相比,本发明具有过程温和、节能、绿色、环保、成本低、操作方便等优点,适合进行大规模工业化金属溶解处理。

Description

一种光催化金属溶解方法
技术领域
本发明属于光催化应用领域,尤其是涉及一种光催化金属溶解方法。
背景技术
金属在自然界中广泛存在,在生活中应用极为普遍,是在现代工业中非常重要和应用最多的一类物质。金属开采和冶炼除给环境带来影响外,还占用全球7%到8%的能源供应。回收比初级生产的金属消耗更少的能源,同时降低对矿产开采地的整体影响。然而,受到工艺和回收成本的影响,金属回收率仍维持在较低的水平。特别是贵金属溶解通常需要用王水处理,这些方法对环境有害,回收成本非常高,污染严重。因此,在金属精炼和再循环过程中迫切需要绿色方法。光催化以其反应条件温和、能直接利用太阳能转化为化学能的优势,备受科研人员的关注,在能源及环境保护领域中均显现出巨大的应用前景。光催化溶解金属给环境保护、能源利用带来了一个非常重要的机遇,并为向低碳、资源节约型的绿色经济过渡做出贡献。
专利CN 107586966 A公开了一种快速活化和溶解难溶贵金属的方法,该方法利用王水或酸性氯酸钠为溶剂,在微波辐射条件下快速溶解铱、铑等难溶贵金属。但其活化温度达到了1200-1400℃,条件十分苛刻,且在过程中用到了腐蚀性极强的王水。专利CN108658133 A公开了一种难溶金属铱的快速溶解方法,该方法将铱粉和盐酸加入反应釜中边搅拌边通入氯气进行反应,然后进行赶氯以及液固分离。其步骤繁琐,过程也需要升温加压,且氯气毒性极强,对环境有所危害。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种可在温和环保的条件下一种光催化金属溶解方法。
本发明的目的可以通过以下技术方案来实现:
一种光催化金属溶解方法,该方法为:将待溶解的含金属的材料分散到含光催化剂的氰类化合物与有机氯化物的混合溶液中,光照射一定时间即可溶解金属。
进一步地,所述的待溶解的含金属的材料中所含金属包括贵金属或普通金属。
进一步地,所述的贵金属包括钛、钌、铑、铱、金、银、铂或钯的一种或几种,所述的普通金属包括铁、锰、铬、锌、锡、铅、铝、铜、镍或钴的一种或几种。
进一步地,所述的氰类化合物包括丙烯腈、乙腈、苯乙腈、氰乙酸、丙二腈、氰苄或三聚氰胺的一种或几种;所述的有机氯化物包括二氯甲烷、三氯甲烷、二氯乙烯、三氯乙烷、三氯乙醇或四氯甲烷的一种或几种。
进一步地,所述的光催化剂包括各种有机(氮化碳、仿生酶、卟啉超分子有机聚合物及金属有机复合物等)、无机(二氧化钛、二硫化钼、硫化镉、溴氧铋、氧化铟及氧化钨等)、半导体光催化材料以及它们进行改性,表面修饰,相互复合的光催化材料。
进一步地,所述的有机光催化材料包括氮化碳、卟啉、PDI或仿生酶等,所述的无机光催化材料包括二氧化钛、氧化锌、氧化铜、氧化铋、氧化铁、氧化稼、二硫化钼、硫化镉、溴氧铋、氧化铟及氧化钨,所述的半导体光催化材料以及它们进行改性,表面修饰,相互复合的光催化材料包括含有氧空位的二氧化钛材料,羟基修饰二氧化钛材料,二维结构二氧化钛材料,氮掺杂二氧化钛材料,卟啉敏化二氧化钛,卟啉自组装材料,其中卟啉包括原卟啉,铁卟啉,镁卟啉或锌卟啉等,二氧化钛复合氨基修饰的金属有机化合物材料,二硫化钼负载二氧化钛、硫化镉等复合材料,硫化镉量子点材料,原位硫化氧化钨复合材料,磷掺杂氧化铟材料,氮缺陷的氮化碳复合材料,碳材料修饰氮化碳材料,其中碳材料包括碳点、石墨烯或碳纳米管,层状溴氧铋材料,含氧缺陷的溴氧铋材料,仿生催化酶材料及有机光系统与无机催化剂复合材料。
上述光催化剂均为市售催化剂或本领域已公开报道的催化剂。
进一步地,所述的氰类化合物包括丙烯腈、乙腈、苯乙腈、氰乙酸、丙二腈、氰苄或三聚氰胺的一种或几种;所述的有机氯化物包括二氯甲烷、三氯甲烷、二氯乙烯,三氯乙烷或四氯甲烷的一种或几种。
进一步地,其特征在于,所述的氰类化合物与有机氯化物的质量为(10-10000):(0-1000),优选(30-5000):(0-500),进一步优选(300-500):(10-50)。此两种物质毒性远低于无机氰化物,对环境较为友好且成本低廉。
进一步地,所述的混合溶液中光催化剂的含量为(0.25-4)mg/mL,所述的待溶解的含金属的材料与所述光催化剂的质量比为1:(0.1-0.4)。
进一步地,所述的光照射的光波长为150-1500nm,涵盖深紫外光、紫外光、可见光和近红外光;光照时间为4-8h。
进一步地,溶解过程中向混合溶液中通入含氧气体或能产生氧气的化学物质,使混合溶液中的氧容量为5%~100%;所述的能产生氧气的化学物质包括臭氧、过氧化氢或过氧化钠的一种或几种。
与现有技术相比,本发明:
(1)大分部难溶解金属为贵金属(如铂、钯等)在环境中一般以单质形式存在,光催化技术能够使光催化剂在光照下产生具有氧化性质的自由基物种氧化贵金属,从而溶解贵金属,对于普通金属同样适用;
(2)使用的光催化反应条件温和,且反应溶液毒性低,这个过程具有温和、节能、绿色、环保、成本低、操作方便等优点,适合于进行大规模工业化金属溶解处理;
(3)突破了对光催化过程的现有认识,对金属在环境中的演变以及金属开采或金属提纯处理有指导意义。
附图说明
图1为实施例1中溶解反应前的样品实物图;
图2为实施例1中溶解反应后的样品实物图;
图3为实施例1中溶解反应的溶解比例曲线图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为81.6%。
图1、2分为溶解反应前后的样品图,从图1中可以看出溶解前样品呈灰黑色;由图2可见,溶解反应后样品变为白色;在图3中的ICP测试数据也可以明显的看出液体中铂的比例不断增加(取少量溶液蒸干溶剂后加等溶剂量的水稀释检测)。
实施例2
将500mg含1%铂的材料分散到100ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为91.4%。
实施例3
将500mg含1%铂的材料分散到200ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例4
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(100:3)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为85.6%。
实施例5
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(200:3)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为75.2%。
实施例6
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品硫化镉催化剂,在空气中用可见光照射4h,铂的溶解率为87.9%。
实施例7
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品硫化镉催化剂,在空气中用可见光照射8h,铂的溶解率为100%。
实施例8
将500mg含1%铂的材料分散到50ml乙腈与三氯乙醇(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为89%。
实施例9
将500mg含1%铂的材料分散到50ml乙腈与三氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为65.3%。
实施例10
将500mg含1%铂的材料分散到50ml乙腈与四氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为55%。
实施例11
将500mg含1%铂的材料分散到50ml苯乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为73.8%。
实施例12
将500mg含1%铂的材料分散到50ml苯乙腈与三氯乙醇(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为80%。
实施例13
将500mg含1%铂的材料分散到50ml苯乙腈与三氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为77.6%。
实施例14
将500mg含1%铂的材料分散到50ml苯乙腈与四氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为68.2%。
实施例15
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在氧气比例为25%的气氛中用紫外光照射4h,铂的溶解率为80%。
实施例16
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在氧气比例为50%的气氛中用紫外光照射4h,铂的溶解率为92.5%。
实施例17
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在氧气比例为75%的气氛中用紫外光照射4h,铂的溶解率为95.8%。
实施例18
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在氧气比例为100%的气氛中用紫外光照射4h,铂的溶解率为100%。
实施例19
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入100mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为90.5%。
实施例20
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入200mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例21
将500mg含1%钯的材料分散到50ml丙烯腈与三氯乙醇(1000:10)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,通入氧气比例为20%的气体,用波长为365nm的紫外光照射5h,钯的溶解率为88.4%。
实施例22
将500mg含1%铑的材料分散到70ml丙二腈与三氯甲烷(1000:900)的混合溶液中,然后加入80mg商品混相二氧化钛催化剂,通入氧气比例为30%的气体,用波长为150nm的深紫外光照射5h,铑的溶解率为84.2%。
实施例23
将500mg含1%铱的材料分散到90ml氰苄与二氯乙烯(2000:800)的混合溶液中,然后加入95mg商品混相二氧化钛催化剂,通入氧气比例为50%的气体,用波长为365nm的紫外光照射5.5h,铱的溶解率为95.6%。
实施例24
将500mg含1%金的材料分散到100ml氰乙酸与二氯乙烯(3000:700)的混合溶液中,然后加入150mg商品混相二氧化钛催化剂,通入氧气比例为30%的气体,用波长为365nm的紫外光照射3h,金的溶解率为100%。
实施例25
将500mg含1%银的材料分散到120ml三聚氰胺与二氯甲烷(4000:600)的混合溶液中,然后加入130mg商品硫化镉催化剂,通入氧气比例为40%的气体,用波长为420nm的可见光照射4h,银的溶解率为100%。
实施例26
将500mg含1%铜的材料分散到100ml丙烯腈与三氯甲烷(5000:500)的混合溶液中,然后加入150mg商品硫化镉催化剂,通入氧气比例为50%的气体,用波长为550nm的可见光照射7h,铜的溶解率为100%。
实施例27
将500mg含1%铁的材料分散到160ml丙烯腈与三氯甲烷(6000:400)的混合溶液中,然后加入150mg商品硫化镉催化剂,通入氧气比例为60%的气体,用波长为550nm的可见光照射7h,铁的溶解率为100%。
实施例28
将500mg含1%镍材料分散到199ml丙烯腈与三氯甲烷(10000:0)的混合溶液中,然后加入200mg商品硫化镉催化剂,通入臭氧,用波长为550nm的可见光照射7.9h,镍的溶解率为100%。
实施例29
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg锌卟啉(Zn-porphyrin)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例30
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg卟啉基金属有机化合物(PCN-222)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例31
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg自组装卟啉纳米片(SA-TCPP)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例32
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg卟啉负载二氧化钛(TCPP-TiO2)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例33
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg富含氧缺陷的二氧化钛(OV-TiO2)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例34
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg羟基修饰的二氧化钛(OH-TiO2)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例35
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg二维二氧化钛(2D-TiO2)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例36
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg二氧化钛与氨基修饰的金属有机化合物(TiO2@NH2-MIL-125)复合催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例37
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg氮掺杂的二氧化钛(N-TiO2)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例38
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg富含三价钛离子的二氧化钛(H-TiO2-x)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例39
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg锐钛矿相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例40
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg二硫化钼负载的二氧化钛(MoS2/TiO2)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例41
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg二硫化钼与硫化镉(MoS2/CdS)复合催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例42
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg硫化镉量子点(CdS QDs)液体催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例43
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg原位硫化的氧化物(W2S/WO3)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例44
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg磷掺杂的氧化铟(P-In2O3)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例45
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg含有氮缺陷的氮化碳(g-C3Nx)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例46
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg碳点修饰的氮化碳(CDots-C3N4)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例47
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg仿生酶(enzyme)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例48
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg有机光系统与无机化合物(PSⅡ/Ru2S3/CdS)复合催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例49
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg(001)面暴露的溴氧铋纳米片(BiOBr nanosheets)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例50
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,Ⅱ然后加入50mg含有缺陷的溴氧铋(Bi5O7Br)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例51
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,Ⅱ然后加入50mg氧化锌催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例52
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,Ⅱ然后加入50mg氧化铜催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例53
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,Ⅱ然后加入50mg氧化铋催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例54
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,Ⅱ然后加入50mg氧化铁催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例55
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,Ⅱ然后加入50mg氧化稼催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。以上实施例仅用于说明本发明技术方案,并非是对本发明的限制,本技术领域的普通技术人员在本发明的实质范围内所做的改变、替代、修饰、简化均为等效的变换,都不脱离本发明的宗旨,也应属于本发明的权利要求保护范围。

Claims (10)

1.一种光催化金属溶解方法,其特征在于,该方法为:将待溶解的含金属的材料分散到含光催化剂的氰类化合物与有机氯化物的混合溶液中,光照射一定时间即可溶解金属。
2.根据权利要求1所述的一种光催化金属溶解方法,其特征在于,所述的待溶解的含金属的材料中所含金属包括贵金属或普通金属。
3.根据权利要求2所述的一种光催化金属溶解方法,其特征在于,所述的贵金属包括钛、钌、铑、铱、金、银、铂或钯的一种或几种,所述的普通金属包括铁、锰、铬、锌、锡、铅、铝、铜、镍或钴的一种或几种。
4.根据权利要求1所述的一种光催化金属溶解方法,其特征在于,所述的光催化剂包括各种有机、无机、半导体光催化材料以及它们进行改性,表面修饰,相互复合的光催化材料。
5.根据权利要求4所述的一种光催化金属溶解方法,其特征在于,所述的有机光催化材料包括氮化碳、PDI,卟啉或仿生酶,所述的无机光催化材料包括二氧化钛、氧化锌、氧化铜、氧化铋、氧化铁、氧化稼、二硫化钼、硫化镉、溴氧铋、氧化铟或氧化钨,所述的半导体光催化材料以及它们进行改性,表面修饰,相互复合的光催化材料包括含有氧空位的二氧化钛材料,羟基修饰二氧化钛材料,二维结构二氧化钛材料,氮掺杂二氧化钛材料,卟啉敏化二氧化钛,卟啉自组装材料,其中卟啉包括原卟啉,铁卟啉,镁卟啉或锌卟啉,二氧化钛复合氨基修饰的金属有机化合物材料,二硫化钼负载二氧化钛、硫化镉,硫化镉量子点材料,原位硫化氧化钨复合材料,磷掺杂氧化铟材料,氮缺陷的氮化碳复合材料,碳材料修饰氮化碳材料,其中碳材料包括碳点、石墨烯或碳纳米管,层状溴氧铋材料,含氧缺陷的溴氧铋材料,仿生催化酶材料及有机光系统与无机催化剂复合材料。
6.根据权利要求1所述的一种光催化金属溶解方法,其特征在于,所述的氰类化合物包括丙烯腈、乙腈、苯乙腈、氰乙酸、丙二腈、氰苄或三聚氰胺的一种或几种;所述的有机氯化物包括二氯甲烷、三氯甲烷、二氯乙烯、三氯乙烷、三氯乙醇或四氯甲烷的一种或几种。
7.根据权利要求1或6所述的一种光催化金属溶解方法,其特征在于,所述的氰类化合物与有机氯化物的质量为(10-10000):(0-1000)。
8.根据权利要求1所述的一种光催化金属溶解方法,其特征在于,所述的混合溶液中光催化剂的含量为(0.25-4)mg/mL,所述的待溶解的含金属的材料与所述光催化剂的质量比为1:(0.1-0.4)。
9.根据权利要求1所述的一种光催化金属溶解方法,其特征在于,所述的光照射的光波长为150-1500nm,涵盖深紫外光、紫外光、可见光和近红外光;光照时间为4-8h。
10.根据权利要求1所述的一种光催化金属溶解方法,其特征在于,溶解过程中向混合溶液中通入含氧气体或能产生氧气的化学物质,使混合溶液中的氧容量为5%~100%;所述的能产生氧气的化学物质包括臭氧、过氧化氢或过氧化钠的一种或几种。
CN201910294530.4A 2019-04-12 2019-04-12 一种光催化金属溶解方法 Active CN111809063B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201910294530.4A CN111809063B (zh) 2019-04-12 2019-04-12 一种光催化金属溶解方法
PCT/CN2019/110382 WO2020206962A1 (zh) 2019-04-12 2019-10-10 一种光催化金属溶解方法
EP19923873.4A EP3875617A4 (en) 2019-04-12 2019-10-10 PHOTOCATALYTIC PROCESS FOR DISSOLVING METAL
US17/042,775 US11920212B2 (en) 2019-04-12 2019-10-10 Method for dissolving metals by photocatalysis
JP2021524243A JP7016569B2 (ja) 2019-04-12 2019-10-10 光触媒作用による金属溶解法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910294530.4A CN111809063B (zh) 2019-04-12 2019-04-12 一种光催化金属溶解方法

Publications (2)

Publication Number Publication Date
CN111809063A true CN111809063A (zh) 2020-10-23
CN111809063B CN111809063B (zh) 2021-10-22

Family

ID=72750845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910294530.4A Active CN111809063B (zh) 2019-04-12 2019-04-12 一种光催化金属溶解方法

Country Status (5)

Country Link
US (1) US11920212B2 (zh)
EP (1) EP3875617A4 (zh)
JP (1) JP7016569B2 (zh)
CN (1) CN111809063B (zh)
WO (1) WO2020206962A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110496612A (zh) * 2019-07-22 2019-11-26 陕西师范大学 一种二氯甲烷无氧催化燃烧构建金属氧化物氧空位的方法
CN113088689A (zh) * 2021-03-24 2021-07-09 上海师范大学 一种水溶液中光催化选择性溶解贵金属的方法
CN113203859A (zh) * 2021-05-13 2021-08-03 桂林电子科技大学 一种基于H-rGO-Pt@Pd NPs纳米酶可视化检测GPC3的方法
CN113373307A (zh) * 2021-04-28 2021-09-10 上海师范大学 一种利用磷酸根修饰光催化剂进行光催化溶解金属的方法
CN113371902A (zh) * 2021-05-13 2021-09-10 西北矿冶研究院 一种降解cod的方法
CN114053978A (zh) * 2021-11-25 2022-02-18 上海师范大学 一种含金属废料提纯装置
CN114134326A (zh) * 2021-11-25 2022-03-04 上海师范大学 一种含金属混合物提纯分离系统
CN114685801A (zh) * 2022-03-08 2022-07-01 清华大学 一种贵金属回收有机聚合物及其制备方法和应用
CN115449643A (zh) * 2022-08-12 2022-12-09 上海师范大学 一种加快贵金属溶解的微波-光催化方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111809063B (zh) * 2019-04-12 2021-10-22 上海师范大学 一种光催化金属溶解方法
CN111871437A (zh) * 2020-06-14 2020-11-03 盐城师范学院 一种碳氮掺杂氧化铟半导体光催化材料在制备氢气中的应用方法
CN113998734B (zh) * 2021-11-09 2024-01-26 淮阴师范学院 Bi5O7Br纳米片的制备方法
CN114644320B (zh) * 2022-03-18 2023-05-23 浙江理工大学 一种光催化制氢体系及其应用
CN114540882B (zh) * 2022-03-25 2023-08-11 四川大学 具有丰富活性位点的金属铋纳米片及其制备方法和应用
CN115814797B (zh) * 2022-12-28 2024-04-19 桂润环境科技股份有限公司 基于零价铁表面羟基化处理的臭氧催化氧化剂制备方法
CN116443856A (zh) * 2023-03-28 2023-07-18 上海大学 一种碳量子点/MoS2纳米片复合材料及其制备方法
CN117123274B (zh) * 2023-08-28 2024-04-19 广东省科学院中乌焊接研究所 一种卟啉基mof/氮化碳异质结光催化复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102274740A (zh) * 2011-06-17 2011-12-14 浙江大学 一种制备金属氰化物纳米颗粒的新方法
RU2011125701A (ru) * 2011-06-22 2012-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет"(ФГБОУ ВПО "ЗабГУ") Способ выщелачивания золота из минерального сырья
CN105603434A (zh) * 2016-03-20 2016-05-25 华南理工大学 一种光催化pcb酸性蚀刻液循环回收利用的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2181452B (en) 1985-09-10 1989-06-07 Dean Butler Leaching process
JPH06102148B2 (ja) 1986-01-22 1994-12-14 株式会社日立製作所 溶存物質の酸化又は還元方法及びその装置
JPH01294830A (ja) * 1988-05-19 1989-11-28 Agency Of Ind Science & Technol 金属の溶解方法
CN1032597C (zh) 1991-12-26 1996-08-21 中国科学院兰州化学物理研究所 回收低浓度金的方法
JP3694862B2 (ja) * 2001-09-27 2005-09-14 福井県 光触媒担持有機高分子材料およびその製造法
US20050044991A1 (en) * 2002-08-19 2005-03-03 Xuming Guo Photochemical transformation of metallic and non-metallic ions in an aqueous environment
JP2014105346A (ja) * 2012-11-26 2014-06-09 Toshiba Corp 有価金属の回収方法及び有価金属の回収システム
JP6076925B2 (ja) 2014-02-25 2017-02-08 株式会社東芝 貴金属の回収方法および回収システム
CN107586966B (zh) 2016-07-08 2020-09-15 昆明冶金高等专科学校 一种快速活化和溶解难溶贵金属的方法
CN108658133B (zh) 2018-03-30 2020-08-07 西安瑞鑫科金属材料有限责任公司 一种难溶金属铱的快速溶解方法
CN108906102A (zh) 2018-06-11 2018-11-30 中国科学院地质与地球物理研究所兰州油气资源研究中心 一种在可见光下利用光催化技术进行铀提取的方法
CN111809063B (zh) * 2019-04-12 2021-10-22 上海师范大学 一种光催化金属溶解方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102274740A (zh) * 2011-06-17 2011-12-14 浙江大学 一种制备金属氰化物纳米颗粒的新方法
RU2011125701A (ru) * 2011-06-22 2012-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет"(ФГБОУ ВПО "ЗабГУ") Способ выщелачивания золота из минерального сырья
CN105603434A (zh) * 2016-03-20 2016-05-25 华南理工大学 一种光催化pcb酸性蚀刻液循环回收利用的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
王惠中等著: "《垃圾渗滤液处理技术及工程示范》", 31 January 2009, 江苏:河海大学出版社 *
路静,唐谋生,李丕学编著: "《港口环境污染治理技术》", 30 November 2007, 北京:海洋出版社 *
陈永编著: "《纳米材料制备与改性》", 31 July 2008, 辽宁:万卷出版公司 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110496612A (zh) * 2019-07-22 2019-11-26 陕西师范大学 一种二氯甲烷无氧催化燃烧构建金属氧化物氧空位的方法
CN110496612B (zh) * 2019-07-22 2022-05-06 陕西师范大学 一种二氯甲烷无氧催化燃烧构建金属氧化物氧空位的方法
CN113088689A (zh) * 2021-03-24 2021-07-09 上海师范大学 一种水溶液中光催化选择性溶解贵金属的方法
CN113373307A (zh) * 2021-04-28 2021-09-10 上海师范大学 一种利用磷酸根修饰光催化剂进行光催化溶解金属的方法
CN113373307B (zh) * 2021-04-28 2022-12-16 上海师范大学 一种利用磷酸根修饰光催化剂进行光催化溶解金属的方法
CN113203859A (zh) * 2021-05-13 2021-08-03 桂林电子科技大学 一种基于H-rGO-Pt@Pd NPs纳米酶可视化检测GPC3的方法
CN113371902A (zh) * 2021-05-13 2021-09-10 西北矿冶研究院 一种降解cod的方法
CN113203859B (zh) * 2021-05-13 2022-08-26 桂林电子科技大学 一种基于H-rGO-Pt@Pd NPs纳米酶可视化检测GPC3的方法
CN114053978A (zh) * 2021-11-25 2022-02-18 上海师范大学 一种含金属废料提纯装置
CN114134326A (zh) * 2021-11-25 2022-03-04 上海师范大学 一种含金属混合物提纯分离系统
CN114685801A (zh) * 2022-03-08 2022-07-01 清华大学 一种贵金属回收有机聚合物及其制备方法和应用
CN115449643A (zh) * 2022-08-12 2022-12-09 上海师范大学 一种加快贵金属溶解的微波-光催化方法

Also Published As

Publication number Publication date
WO2020206962A1 (zh) 2020-10-15
JP2021536532A (ja) 2021-12-27
EP3875617A1 (en) 2021-09-08
EP3875617A4 (en) 2022-02-23
CN111809063B (zh) 2021-10-22
JP7016569B2 (ja) 2022-02-07
US20210371952A1 (en) 2021-12-02
US11920212B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
CN111809063B (zh) 一种光催化金属溶解方法
Liu et al. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects
CN112553465B (zh) 一种光催化选择性金属溶解剂及溶解方法
Chen et al. Precious metal recovery
CN113088689B (zh) 一种水溶液中光催化选择性溶解贵金属的方法
Zhang et al. Preparation of Fenton reagent with H2O2 generated by solar light-illuminated nano-Cu2O/MWNTs composites
Castilla-Acevedo et al. Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes
Wang et al. Preparation of Cu/GO/Ti electrode by electrodeposition and its enhanced electrochemical reduction for aqueous nitrate
Yang et al. Reaction mechanism and selectivity regulation of photocatalytic nitrate reduction for wastewater purification: progress and challenges
CN113373307B (zh) 一种利用磷酸根修饰光催化剂进行光催化溶解金属的方法
CN104630466A (zh) 一种超声强化氯化氧化协同浸出难浸金矿中金的方法
Yao et al. Catalytic activity comparison of typical iron-bearing particle electrodes in heterogeneous electro-Fenton oxidation processes
Wei et al. Effect and mechanism of cyanide degradation and Cu/Zn recovery by photoelectro-catalytic oxidation
Xu et al. Bio-FeMnOx integrated carbonaceous gas-diffusion cathode for the efficient degradation of ofloxacin by heterogeneous electro-Fenton process
Yashas et al. Catalytic recovery of metals from end-of-life polycrystalline silicon photovoltaic cells: Experimental insights into silver recovery
CN103143368B (zh) 一种处理化工有机废水催化剂及其制备方法
Chen et al. A review of environmental functional materials for cyanide removal by adsorption and catalysis
CN104556150B (zh) 一种由Fenton试剂合成金属氰化物的方法
CN107537522B (zh) 银-卤化银负载铁纳米矿物的复合材料及其制备方法
van Grieken et al. Photocatalytic gold recovery from spent cyanide plating bath solutions
CN115449643A (zh) 一种加快贵金属溶解的微波-光催化方法
Cao et al. Gambling of homogeneous and heterogeneous Fenton in wastewater treatment
CN115449630A (zh) 一种光催化含腈-胺溶液体系选择性金属浸出的方法
CN115896456A (zh) 一种臭氧加速溶解金属的方法
CN1266052C (zh) 一种铝镁系合金铁粉,其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20201023

Assignee: Zhejiang Chuangwei New Material Co.,Ltd.

Assignor: SHANGHAI NORMAL University

Contract record no.: X2022310000027

Denomination of invention: A method of photocatalytic metal dissolution

Granted publication date: 20211022

License type: Common License

Record date: 20220628