WO2020206962A1 - 一种光催化金属溶解方法 - Google Patents

一种光催化金属溶解方法 Download PDF

Info

Publication number
WO2020206962A1
WO2020206962A1 PCT/CN2019/110382 CN2019110382W WO2020206962A1 WO 2020206962 A1 WO2020206962 A1 WO 2020206962A1 CN 2019110382 W CN2019110382 W CN 2019110382W WO 2020206962 A1 WO2020206962 A1 WO 2020206962A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
photocatalytic
platinum
titanium dioxide
mixed solution
Prior art date
Application number
PCT/CN2019/110382
Other languages
English (en)
French (fr)
Inventor
卞振锋
陈瑶
徐梦娇
凌丽丽
闻洁雅
万瑜
刘丽
李和兴
Original Assignee
上海师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海师范大学 filed Critical 上海师范大学
Priority to EP19923873.4A priority Critical patent/EP3875617A4/en
Priority to US17/042,775 priority patent/US11920212B2/en
Priority to JP2021524243A priority patent/JP7016569B2/ja
Publication of WO2020206962A1 publication Critical patent/WO2020206962A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/16Extraction of metal compounds from ores or concentrates by wet processes by leaching in organic solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J27/045Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/003Catalysts comprising hydrides, coordination complexes or organic compounds containing enzymes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0252Nitrogen containing compounds with a metal-nitrogen link, e.g. metal amides, metal guanidides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/16Extraction of metal compounds from ores or concentrates by wet processes by leaching in organic solutions
    • C22B3/1608Leaching with acyclic or carbocyclic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of photocatalysis applications, and particularly relates to a photocatalytic metal dissolution method.
  • Metals are widespread in nature, and are extremely common in daily life. They are very important and most used in modern industry. In addition to the environmental impact of metal mining and smelting, it also occupies 7% to 8% of the global energy supply. Recycling consumes less energy than primary metal production, while reducing the overall impact on the mining area. However, due to the impact of process and recycling costs, the metal recovery rate is still maintained at a low level. In particular, the dissolution of precious metals usually requires treatment with aqua regia. These methods are harmful to the environment, the recovery cost is very high, and the pollution is serious. Therefore, there is an urgent need for green methods in metal refining and recycling processes. Photocatalysis has attracted the attention of scientific researchers due to its mild reaction conditions and the ability to directly convert solar energy into chemical energy. It has shown great application prospects in the fields of energy and environmental protection. Photocatalytic dissolution of metals brings a very important opportunity to environmental protection and energy utilization, and contributes to the transition to a low-carbon, resource-saving green economy.
  • Patent CN 107586966 A discloses a method for rapidly activating and dissolving insoluble precious metals.
  • the method uses aqua regia or acidic sodium chlorate as a solvent to rapidly dissolve insoluble precious metals such as iridium and rhodium under microwave radiation conditions.
  • insoluble precious metals such as iridium and rhodium under microwave radiation conditions.
  • its activation temperature reached 1200-1400°C, the conditions were very harsh, and the highly corrosive aqua regia was used in the process.
  • Patent CN 108658133 A discloses a method for rapidly dissolving insoluble metal iridium. In this method, iridium powder and hydrochloric acid are added to a reaction kettle while stirring and introducing chlorine gas for reaction, and then purging chlorine and separating liquid and solid. The steps are cumbersome, the process also needs to be heated and pressurized, and the chlorine gas is extremely toxic, which is harmful to the environment.
  • the purpose of the present invention is to overcome the above-mentioned defects in the prior art and provide a method for dissolving a photocatalytic metal under mild and environmentally friendly conditions.
  • a method for dissolving a photocatalytic metal comprises: dispersing a metal-containing material to be dissolved in a mixed solution of a photocatalyst-containing cyanide compound and an organic chloride, and dissolving the metal after light irradiation for a certain period of time.
  • the metal contained in the metal-containing material to be dissolved includes precious metal or common metal.
  • the precious metal includes one or more of titanium, ruthenium, rhodium, iridium, gold, silver, platinum or palladium
  • the common metal includes iron, manganese, chromium, zinc, tin, lead, aluminum, One or more of copper, nickel or cobalt.
  • the cyanide compound includes one or more of acrylonitrile, acetonitrile, benzylacetonitrile, cyanoacetic acid, malononitrile, benzyl cyanide or melamine;
  • the organic chloride includes dichloromethane, chloroform , Dichloroethylene, Trichloroethane, Trichloroethanol or One or more of tetrachloromethane.
  • the photocatalyst includes various organic (carbon nitride, biomimetic enzymes, porphyrin supramolecular organic polymers and metal organic complexes, etc.), inorganic (titanium dioxide, molybdenum disulfide, cadmium sulfide, bismuth oxybromide, Indium oxide, tungsten oxide, etc.), semiconductor photocatalytic materials, and their modified, surface modified, composite photocatalytic materials.
  • the organic photocatalytic materials include carbon nitride, porphyrin, PDI or biomimetic enzymes, etc.
  • the inorganic photocatalytic materials include titanium dioxide, zinc oxide, copper oxide, bismuth oxide, iron oxide, gallium oxide, two Molybdenum sulfide, cadmium sulfide, bismuth oxybromide, indium oxide, and tungsten oxide
  • the semiconductor photocatalytic materials and their modified, surface modified, and composite photocatalytic materials include titanium dioxide materials containing oxygen vacancies, and hydroxyl modified titanium dioxide materials , Two-dimensional titanium dioxide materials, nitrogen-doped titanium dioxide materials, porphyrin-sensitized titanium dioxide, porphyrin self-assembly materials, among which porphyrins include protoporphyrin, iron porphyrin, magnesium porphyrin or zinc porphyrin, etc., titanium dioxide composite amino modification Metal organic compound materials, molybdenum disulfide supported titanium dioxide, cadmium
  • photocatalysts are all commercially available catalysts or catalysts that have been publicly reported in the art.
  • the cyanide compound includes one or more of acrylonitrile, acetonitrile, benzylacetonitrile, cyanoacetic acid, malononitrile, benzyl cyanide or melamine;
  • the organic chloride includes dichloromethane, chloroform One or more of ethylene dichloride, trichloroethane or tetrachloromethane.
  • the mass of the cyanide compound and the organic chloride is (10-10000): (0-1000), preferably (30-5000): (0-500), more preferably (300- 500): (10-50).
  • the toxicity of these two substances is much lower than that of inorganic cyanide, which is more environmentally friendly and low cost.
  • the content of the photocatalyst in the mixed solution is (0.25-4) mg/mL, and the mass ratio of the metal-containing material to be dissolved to the photocatalyst is 1:(0.1-0.4).
  • the light wavelength of the light irradiation is 150-1500nm, covering deep ultraviolet light, ultraviolet light, visible light and near-infrared light; the illumination time is 4-8h.
  • an oxygen-containing gas or a chemical substance capable of generating oxygen is passed into the mixed solution so that the oxygen capacity in the mixed solution is 5% to 100%;
  • the chemical substances capable of generating oxygen include ozone, oxygen One or more of hydrogen oxide or sodium peroxide.
  • a large part of the insoluble metals are precious metals (such as platinum, palladium, etc.), which generally exist in the form of simple substances in the environment.
  • Photocatalytic technology can make the photocatalyst produce free radical species with oxidizing properties under light to oxidize the precious metals, thereby dissolving the precious metals , The same applies to ordinary metals;
  • the photocatalytic reaction conditions used are mild, and the reaction solution has low toxicity. This process has the advantages of mildness, energy saving, green, environmental protection, low cost, convenient operation, etc., and is suitable for large-scale industrial metal dissolution treatment;
  • Figure 1 is a physical diagram of the sample before the dissolution reaction in Example 1;
  • Example 2 is a physical diagram of the sample after the dissolution reaction in Example 1;
  • Example 3 is a graph of the dissolution ratio of the dissolution reaction in Example 1.
  • Figures 1 and 2 are divided into samples before and after the dissolution reaction. It can be seen from Figure 1 that the sample was gray-black before dissolution; it can be seen from Figure 2 that the sample became white after the dissolution reaction; the ICP test data in Figure 3 can also be It is obvious that the proportion of platinum in the liquid is increasing (take a small amount of the solution to evaporate the solvent and add the same amount of water to dilute the test).
  • the dissolution rate is 100%.
  • the dissolution rate of palladium was 88.4% after 5 hours of ultraviolet light irradiation.
  • the dissolution rate of iridium was 95.6% when irradiated with ultraviolet light for 5.5 hours.
  • the dissolution rate is 100%.
  • the dissolution rate is 100%.
  • the dissolution rate is 100%.
  • the dissolution rate is 100%.
  • the dissolution rate is 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种光催化金属溶解方法,将需要被溶解的含金属的材料分散到氰类化合物与有机氯化物的混合溶液中,再加入光催化剂,并通入含氧气体或加入能产生氧气的物质,光照射一定时间即可溶解金属。与现有技术相比,该技术方案具有过程温和、节能、绿色、环保、成本低、操作方便等优点,适合进行大规模工业化金属溶解处理。

Description

一种光催化金属溶解方法 技术领域
本发明属于光催化应用领域,尤其是涉及一种光催化金属溶解方法。
背景技术
金属在自然界中广泛存在,在生活中应用极为普遍,是在现代工业中非常重要和应用最多的一类物质。金属开采和冶炼除给环境带来影响外,还占用全球7%到8%的能源供应。回收比初级生产的金属消耗更少的能源,同时降低对矿产开采地的整体影响。然而,受到工艺和回收成本的影响,金属回收率仍维持在较低的水平。特别是贵金属溶解通常需要用王水处理,这些方法对环境有害,回收成本非常高,污染严重。因此,在金属精炼和再循环过程中迫切需要绿色方法。光催化以其反应条件温和、能直接利用太阳能转化为化学能的优势,备受科研人员的关注,在能源及环境保护领域中均显现出巨大的应用前景。光催化溶解金属给环境保护、能源利用带来了一个非常重要的机遇,并为向低碳、资源节约型的绿色经济过渡做出贡献。
专利CN 107586966 A公开了一种快速活化和溶解难溶贵金属的方法,该方法利用王水或酸性氯酸钠为溶剂,在微波辐射条件下快速溶解铱、铑等难溶贵金属。但其活化温度达到了1200-1400℃,条件十分苛刻,且在过程中用到了腐蚀性极强的王水。专利CN 108658133 A公开了一种难溶金属铱的快速溶解方法,该方法将铱粉和盐酸加入反应釜中边搅拌边通入氯气进行反应,然后进行赶氯以及液固分离。其步骤繁琐,过程也需要升温加压,且氯气毒性极强,对环境有所危害。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种可在温和环保的条件下一种光催化金属溶解方法。
本发明的目的可以通过以下技术方案来实现:
一种光催化金属溶解方法,该方法为:将待溶解的含金属的材料分散到含 光催化剂的氰类化合物与有机氯化物的混合溶液中,光照射一定时间即可溶解金属。
进一步地,所述的待溶解的含金属的材料中所含金属包括贵金属或普通金属。
进一步地,所述的贵金属包括钛、钌、铑、铱、金、银、铂或钯的一种或几种,所述的普通金属包括铁、锰、铬、锌、锡、铅、铝、铜、镍或钴的一种或几种。
进一步地,所述的氰类化合物包括丙烯腈、乙腈、苯乙腈、氰乙酸、丙二腈、氰苄或三聚氰胺的一种或几种;所述的有机氯化物包括二氯甲烷、三氯甲烷、二氯乙烯、三氯乙烷、三氯乙醇或四氯甲烷的一种或几种。
进一步地,所述的光催化剂包括各种有机(氮化碳、仿生酶、卟啉超分子有机聚合物及金属有机复合物等)、无机(二氧化钛、二硫化钼、硫化镉、溴氧铋、氧化铟及氧化钨等)、半导体光催化材料以及它们进行改性,表面修饰,相互复合的光催化材料。
进一步地,所述的有机光催化材料包括氮化碳、卟啉、PDI或仿生酶等,所述的无机光催化材料包括二氧化钛、氧化锌、氧化铜、氧化铋、氧化铁、氧化稼、二硫化钼、硫化镉、溴氧铋、氧化铟及氧化钨,所述的半导体光催化材料以及它们进行改性,表面修饰,相互复合的光催化材料包括含有氧空位的二氧化钛材料,羟基修饰二氧化钛材料,二维结构二氧化钛材料,氮掺杂二氧化钛材料,卟啉敏化二氧化钛,卟啉自组装材料,其中卟啉包括原卟啉,铁卟啉,镁卟啉或锌卟啉等,二氧化钛复合氨基修饰的金属有机化合物材料,二硫化钼负载二氧化钛、硫化镉等复合材料,硫化镉量子点材料,原位硫化氧化钨复合材料,磷掺杂氧化铟材料,氮缺陷的氮化碳复合材料,碳材料修饰氮化碳材料,其中碳材料包括碳点、石墨烯或碳纳米管,层状溴氧铋材料,含氧缺陷的溴氧铋材料,仿生催化酶材料及有机光系统与无机催化剂复合材料。
上述光催化剂均为市售催化剂或本领域已公开报道的催化剂。
进一步地,所述的氰类化合物包括丙烯腈、乙腈、苯乙腈、氰乙酸、丙二腈、氰苄或三聚氰胺的一种或几种;所述的有机氯化物包括二氯甲烷、三氯甲烷、二氯乙烯,三氯乙烷或四氯甲烷的一种或几种。
进一步地,其特征在于,所述的氰类化合物与有机氯化物的质量为(10-10000):(0-1000),优选(30-5000):(0-500),进一步优选(300-500):(10-50)。此两种物质毒性远低于无机氰化物,对环境较为友好且成本低廉。
进一步地,所述的混合溶液中光催化剂的含量为(0.25-4)mg/mL,所述的待溶解的含金属的材料与所述光催化剂的质量比为1:(0.1-0.4)。
进一步地,所述的光照射的光波长为150-1500nm,涵盖深紫外光、紫外光、可见光和近红外光;光照时间为4-8h。
进一步地,溶解过程中向混合溶液中通入含氧气体或能产生氧气的化学物质,使混合溶液中的氧容量为5%~100%;所述的能产生氧气的化学物质包括臭氧、过氧化氢或过氧化钠的一种或几种。
与现有技术相比,本发明:
(1)大分部难溶解金属为贵金属(如铂、钯等)在环境中一般以单质形式存在,光催化技术能够使光催化剂在光照下产生具有氧化性质的自由基物种氧化贵金属,从而溶解贵金属,对于普通金属同样适用;
(2)使用的光催化反应条件温和,且反应溶液毒性低,这个过程具有温和、节能、绿色、环保、成本低、操作方便等优点,适合于进行大规模工业化金属溶解处理;
(3)突破了对光催化过程的现有认识,对金属在环境中的演变以及金属开采或金属提纯处理有指导意义。
附图说明
图1为实施例1中溶解反应前的样品实物图;
图2为实施例1中溶解反应后的样品实物图;
图3为实施例1中溶解反应的溶解比例曲线图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶 液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为81.6%。
图1、2分为溶解反应前后的样品图,从图1中可以看出溶解前样品呈灰黑色;由图2可见,溶解反应后样品变为白色;在图3中的ICP测试数据也可以明显的看出液体中铂的比例不断增加(取少量溶液蒸干溶剂后加等溶剂量的水稀释检测)。
实施例2
将500mg含1%铂的材料分散到100ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为91.4%。
实施例3
将500mg含1%铂的材料分散到200ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例4
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(100:3)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为85.6%。
实施例5
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(200:3)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为75.2%。
实施例6
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品硫化镉催化剂,在空气中用可见光照射4h,铂的溶解率为87.9%。
实施例7
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品硫化镉催化剂,在空气中用可见光照射8h,铂的 溶解率为100%。
实施例8
将500mg含1%铂的材料分散到50ml乙腈与三氯乙醇(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为89%。
实施例9
将500mg含1%铂的材料分散到50ml乙腈与三氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为65.3%。
实施例10
将500mg含1%铂的材料分散到50ml乙腈与四氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为55%。
实施例11
将500mg含1%铂的材料分散到50ml苯乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为73.8%。
实施例12
将500mg含1%铂的材料分散到50ml苯乙腈与三氯乙醇(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为80%。
实施例13
将500mg含1%铂的材料分散到50ml苯乙腈与三氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为77.6%。
实施例14
将500mg含1%铂的材料分散到50ml苯乙腈与四氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为68.2%。
实施例15
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在氧气比例为25%的气氛中用紫外光照射4h,铂的溶解率为80%。
实施例16
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在氧气比例为50%的气氛中用紫外光照射4h,铂的溶解率为92.5%。
实施例17
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在氧气比例为75%的气氛中用紫外光照射4h,铂的溶解率为95.8%。
实施例18
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,在氧气比例为100%的气氛中用紫外光照射4h,铂的溶解率为100%。
实施例19
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入100mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为90.5%。
实施例20
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入200mg商品混相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例21
将500mg含1%钯的材料分散到50ml丙烯腈与三氯乙醇(1000:10)的混合溶液中,然后加入50mg商品混相二氧化钛催化剂,通入氧气比例为20%的气体,用波长为365nm的紫外光照射5h,钯的溶解率为88.4%。
实施例22
将500mg含1%铑的材料分散到70ml丙二腈与三氯甲烷(1000:900)的混合溶液中,然后加入80mg商品混相二氧化钛催化剂,通入氧气比例为30%的气体,用波长为150nm的深紫外光照射5h,铑的溶解率为84.2%。
实施例23
将500mg含1%铱的材料分散到90ml氰苄与二氯乙烯(2000:800)的混合溶液中,然后加入95mg商品混相二氧化钛催化剂,通入氧气比例为50%的气体,用波长为365nm的紫外光照射5.5h,铱的溶解率为95.6%。
实施例24
将500mg含1%金的材料分散到100ml氰乙酸与二氯乙烯(3000:700)的混合溶液中,然后加入150mg商品混相二氧化钛催化剂,通入氧气比例为30%的气体,用波长为365nm的紫外光照射3h,金的溶解率为100%。
实施例25
将500mg含1%银的材料分散到120ml三聚氰胺与二氯甲烷(4000:600)的混合溶液中,然后加入130mg商品硫化镉催化剂,通入氧气比例为40%的气体,用波长为420nm的可见光照射4h,银的溶解率为100%。
实施例26
将500mg含1%铜的材料分散到100ml丙烯腈与三氯甲烷(5000:500)的混合溶液中,然后加入150mg商品硫化镉催化剂,通入氧气比例为50%的气体,用波长为550nm的可见光照射7h,铜的溶解率为100%。
实施例27
将500mg含1%铁的材料分散到160ml丙烯腈与三氯甲烷(6000:400)的混合溶液中,然后加入150mg商品硫化镉催化剂,通入氧气比例为60%的气体,用波长为550nm的可见光照射7h,铁的溶解率为100%。
实施例28
将500mg含1%镍材料分散到199ml丙烯腈与三氯甲烷(10000:0)的混合溶液中,然后加入200mg商品硫化镉催化剂,通入臭氧,用波长为550nm的可见光照射7.9h,镍的溶解率为100%。
实施例29
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶 液中,然后加入50mg锌卟啉(Zn-porphyrin)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例30
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg卟啉基金属有机化合物(PCN-222)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例31
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg自组装卟啉纳米片(SA-TCPP)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例32
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg卟啉负载二氧化钛(TCPP-TiO 2)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例33
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg富含氧缺陷的二氧化钛(OV-TiO 2)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例34
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg羟基修饰的二氧化钛(OH-TiO 2)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例35
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg二维二氧化钛(2D-TiO 2)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例36
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg二氧化钛与氨基修饰的金属有机化合物 (TiO 2@NH 2-MIL-125)复合催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例37
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg氮掺杂的二氧化钛(N-TiO 2)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例38
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg富含三价钛离子的二氧化钛(H-TiO 2-x)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例39
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg锐钛矿相二氧化钛催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例40
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg二硫化钼负载的二氧化钛(MoS 2/TiO 2)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例41
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg二硫化钼与硫化镉(MoS 2/CdS)复合催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例42
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg硫化镉量子点(CdS QDs)液体催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例43
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg原位硫化的氧化物(W 2S/WO 3)催化剂,在空气中用可 见光照射4h,铂的溶解率为100%。
实施例44
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg磷掺杂的氧化铟(P-In 2O 3)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例45
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg含有氮缺陷的氮化碳(g-C 3N x)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例46
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg碳点修饰的氮化碳(CDots-C 3N 4)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例47
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg仿生酶(enzyme)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例48
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg有机光系统与无机化合物(PSⅡ/Ru 2S 3/CdS)复合催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例49
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,然后加入50mg(001)面暴露的溴氧铋纳米片(BiOBr nanosheets)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例50
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,Ⅱ然后加入50mg含有缺陷的溴氧铋(Bi 5O 7Br)催化剂,在空气中用可见光照射4h,铂的溶解率为100%。
实施例51
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,Ⅱ然后加入50mg氧化锌催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例52
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,Ⅱ然后加入50mg氧化铜催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例53
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,Ⅱ然后加入50mg氧化铋催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例54
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,Ⅱ然后加入50mg氧化铁催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
实施例55
将500mg含1%铂的材料分散到50ml乙腈与二氯甲烷(50:1)的混合溶液中,Ⅱ然后加入50mg氧化稼催化剂,在空气中用紫外光照射4h,铂的溶解率为100%。
以上实施例仅用于说明本发明技术方案,并非是对本发明的限制,本技术领域的普通技术人员在本发明的实质范围内所做的改变、替代、修饰、简化均为等效的变换,都不脱离本发明的宗旨,也应属于本发明的权利要求保护范围。

Claims (10)

  1. 一种光催化金属溶解方法,其特征在于,该方法为:将待溶解的含金属的材料分散到含光催化剂的氰类化合物与有机氯化物的混合溶液中,光照射一定时间即可溶解金属。
  2. 根据权利要求1所述的一种光催化金属溶解方法,其特征在于,所述的待溶解的含金属的材料中所含金属包括贵金属或普通金属。
  3. 根据权利要求2所述的一种光催化金属溶解方法,其特征在于,所述的贵金属包括钛、钌、铑、铱、金、银、铂或钯的一种或几种,所述的普通金属包括铁、锰、铬、锌、锡、铅、铝、铜、镍或钴的一种或几种。
  4. 根据权利要求1所述的一种光催化金属溶解方法,其特征在于,所述的光催化剂包括各种有机、无机、半导体光催化材料以及它们进行改性,表面修饰,相互复合的光催化材料。
  5. 根据权利要求4所述的一种光催化金属溶解方法,其特征在于,所述的有机光催化材料包括氮化碳、PDI,卟啉或仿生酶,所述的无机光催化材料包括二氧化钛、氧化锌、氧化铜、氧化铋、氧化铁、氧化稼、二硫化钼、硫化镉、溴氧铋、氧化铟或氧化钨,所述的半导体光催化材料以及它们进行改性,表面修饰,相互复合的光催化材料包括含有氧空位的二氧化钛材料,羟基修饰二氧化钛材料,二维结构二氧化钛材料,氮掺杂二氧化钛材料,卟啉敏化二氧化钛,卟啉自组装材料,其中卟啉包括原卟啉,铁卟啉,镁卟啉或锌卟啉,二氧化钛复合氨基修饰的金属有机化合物材料,二硫化钼负载二氧化钛、硫化镉,硫化镉量子点材料,原位硫化氧化钨复合材料,磷掺杂氧化铟材料,氮缺陷的氮化碳复合材料,碳材料修饰氮化碳材料,其中碳材料包括碳点、石墨烯或碳纳米管,层状溴氧铋材料,含氧缺陷的溴氧铋材料,仿生催化酶材料及有机光系统与无机催化剂复合材料。
  6. 根据权利要求1所述的一种光催化金属溶解方法,其特征在于,所述的氰类化合物包括丙烯腈、乙腈、苯乙腈、氰乙酸、丙二腈、氰苄或三聚氰胺的 一种或几种;所述的有机氯化物包括二氯甲烷、三氯甲烷、二氯乙烯、三氯乙烷、三氯乙醇或四氯甲烷的一种或几种。
  7. 根据权利要求1或6所述的一种光催化金属溶解方法,其特征在于,所述的氰类化合物与有机氯化物的质量为(10-10000):(0-1000)。
  8. 根据权利要求1所述的一种光催化金属溶解方法,其特征在于,所述的混合溶液中光催化剂的含量为(0.25-4)mg/mL,所述的待溶解的含金属的材料与所述光催化剂的质量比为1:(0.1-0.4)。
  9. 根据权利要求1所述的一种光催化金属溶解方法,其特征在于,所述的光照射的光波长为150-1500nm,涵盖深紫外光、紫外光、可见光和近红外光;光照时间为4-8h。
  10. 根据权利要求1所述的一种光催化金属溶解方法,其特征在于,溶解过程中向混合溶液中通入含氧气体或能产生氧气的化学物质,使混合溶液中的氧容量为5%~100%;所述的能产生氧气的化学物质包括臭氧、过氧化氢或过氧化钠的一种或几种。
PCT/CN2019/110382 2019-04-12 2019-10-10 一种光催化金属溶解方法 WO2020206962A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19923873.4A EP3875617A4 (en) 2019-04-12 2019-10-10 PHOTOCATALYTIC PROCESS FOR DISSOLVING METAL
US17/042,775 US11920212B2 (en) 2019-04-12 2019-10-10 Method for dissolving metals by photocatalysis
JP2021524243A JP7016569B2 (ja) 2019-04-12 2019-10-10 光触媒作用による金属溶解法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910294530.4 2019-04-12
CN201910294530.4A CN111809063B (zh) 2019-04-12 2019-04-12 一种光催化金属溶解方法

Publications (1)

Publication Number Publication Date
WO2020206962A1 true WO2020206962A1 (zh) 2020-10-15

Family

ID=72750845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110382 WO2020206962A1 (zh) 2019-04-12 2019-10-10 一种光催化金属溶解方法

Country Status (5)

Country Link
US (1) US11920212B2 (zh)
EP (1) EP3875617A4 (zh)
JP (1) JP7016569B2 (zh)
CN (1) CN111809063B (zh)
WO (1) WO2020206962A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088689A (zh) * 2021-03-24 2021-07-09 上海师范大学 一种水溶液中光催化选择性溶解贵金属的方法
CN113998734A (zh) * 2021-11-09 2022-02-01 淮阴师范学院 Bi5O7Br纳米片的制备方法
CN115814797A (zh) * 2022-12-28 2023-03-21 桂润环境科技股份有限公司 基于零价铁表面羟基化处理的臭氧催化氧化剂制备方法
CN117123274A (zh) * 2023-08-28 2023-11-28 广东省科学院中乌焊接研究所 一种卟啉基mof/氮化碳异质结光催化复合材料及其制备方法和应用

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111809063B (zh) * 2019-04-12 2021-10-22 上海师范大学 一种光催化金属溶解方法
CN110496612B (zh) * 2019-07-22 2022-05-06 陕西师范大学 一种二氯甲烷无氧催化燃烧构建金属氧化物氧空位的方法
CN111871437A (zh) * 2020-06-14 2020-11-03 盐城师范学院 一种碳氮掺杂氧化铟半导体光催化材料在制备氢气中的应用方法
CN113373307B (zh) * 2021-04-28 2022-12-16 上海师范大学 一种利用磷酸根修饰光催化剂进行光催化溶解金属的方法
CN113203859B (zh) * 2021-05-13 2022-08-26 桂林电子科技大学 一种基于H-rGO-Pt@Pd NPs纳米酶可视化检测GPC3的方法
CN113371902B (zh) * 2021-05-13 2022-09-16 西北矿冶研究院 一种降解cod的方法
CN114134326A (zh) * 2021-11-25 2022-03-04 上海师范大学 一种含金属混合物提纯分离系统
CN114053978A (zh) * 2021-11-25 2022-02-18 上海师范大学 一种含金属废料提纯装置
CN114685801B (zh) * 2022-03-08 2022-12-13 清华大学 一种贵金属回收有机聚合物及其制备方法和应用
CN114644320B (zh) * 2022-03-18 2023-05-23 浙江理工大学 一种光催化制氢体系及其应用
CN114540882B (zh) * 2022-03-25 2023-08-11 四川大学 具有丰富活性位点的金属铋纳米片及其制备方法和应用
CN115449643A (zh) * 2022-08-12 2022-12-09 上海师范大学 一种加快贵金属溶解的微波-光催化方法
CN116443856A (zh) * 2023-03-28 2023-07-18 上海大学 一种碳量子点/MoS2纳米片复合材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86106986A (zh) * 1985-09-10 1987-08-05 迪安·巴特勒 浸提法
JPS63171641A (ja) * 1986-01-22 1988-07-15 Hitachi Ltd 溶存物質の酸化又は還元方法及びその装置
CN1073984A (zh) * 1991-12-26 1993-07-07 中国科学院兰州化学物理研究所 回收低浓度金的方法
US20050044991A1 (en) * 2002-08-19 2005-03-03 Xuming Guo Photochemical transformation of metallic and non-metallic ions in an aqueous environment
JP2015159064A (ja) * 2014-02-25 2015-09-03 株式会社東芝 貴金属の回収方法および回収システム
CN107586966A (zh) 2016-07-08 2018-01-16 昆明冶金高等专科学校 一种快速活化和溶解难溶贵金属的方法
CN108658133A (zh) 2018-03-30 2018-10-16 西安瑞鑫科金属材料有限责任公司 一种难溶金属铱的快速溶解方法
CN108906102A (zh) * 2018-06-11 2018-11-30 中国科学院地质与地球物理研究所兰州油气资源研究中心 一种在可见光下利用光催化技术进行铀提取的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294830A (ja) * 1988-05-19 1989-11-28 Agency Of Ind Science & Technol 金属の溶解方法
JP3694862B2 (ja) * 2001-09-27 2005-09-14 福井県 光触媒担持有機高分子材料およびその製造法
CN102274740B (zh) * 2011-06-17 2013-02-06 浙江大学 一种制备金属氰化物纳米颗粒的方法
RU2475547C1 (ru) * 2011-06-22 2013-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет" (ФГБОУ ВПО "ЗабГУ") Способ извлечения золота из минерального сырья
JP2014105346A (ja) * 2012-11-26 2014-06-09 Toshiba Corp 有価金属の回収方法及び有価金属の回収システム
CN105603434B (zh) * 2016-03-20 2018-04-13 华南理工大学 一种光催化pcb酸性蚀刻液循环回收利用的方法
CN111809063B (zh) * 2019-04-12 2021-10-22 上海师范大学 一种光催化金属溶解方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86106986A (zh) * 1985-09-10 1987-08-05 迪安·巴特勒 浸提法
JPS63171641A (ja) * 1986-01-22 1988-07-15 Hitachi Ltd 溶存物質の酸化又は還元方法及びその装置
CN1073984A (zh) * 1991-12-26 1993-07-07 中国科学院兰州化学物理研究所 回收低浓度金的方法
US20050044991A1 (en) * 2002-08-19 2005-03-03 Xuming Guo Photochemical transformation of metallic and non-metallic ions in an aqueous environment
JP2015159064A (ja) * 2014-02-25 2015-09-03 株式会社東芝 貴金属の回収方法および回収システム
CN107586966A (zh) 2016-07-08 2018-01-16 昆明冶金高等专科学校 一种快速活化和溶解难溶贵金属的方法
CN108658133A (zh) 2018-03-30 2018-10-16 西安瑞鑫科金属材料有限责任公司 一种难溶金属铱的快速溶解方法
CN108906102A (zh) * 2018-06-11 2018-11-30 中国科学院地质与地球物理研究所兰州油气资源研究中心 一种在可见光下利用光催化技术进行铀提取的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088689A (zh) * 2021-03-24 2021-07-09 上海师范大学 一种水溶液中光催化选择性溶解贵金属的方法
CN113088689B (zh) * 2021-03-24 2023-03-24 上海师范大学 一种水溶液中光催化选择性溶解贵金属的方法
CN113998734A (zh) * 2021-11-09 2022-02-01 淮阴师范学院 Bi5O7Br纳米片的制备方法
CN113998734B (zh) * 2021-11-09 2024-01-26 淮阴师范学院 Bi5O7Br纳米片的制备方法
CN115814797A (zh) * 2022-12-28 2023-03-21 桂润环境科技股份有限公司 基于零价铁表面羟基化处理的臭氧催化氧化剂制备方法
CN115814797B (zh) * 2022-12-28 2024-04-19 桂润环境科技股份有限公司 基于零价铁表面羟基化处理的臭氧催化氧化剂制备方法
CN117123274A (zh) * 2023-08-28 2023-11-28 广东省科学院中乌焊接研究所 一种卟啉基mof/氮化碳异质结光催化复合材料及其制备方法和应用
CN117123274B (zh) * 2023-08-28 2024-04-19 广东省科学院中乌焊接研究所 一种卟啉基mof/氮化碳异质结光催化复合材料及其制备方法和应用

Also Published As

Publication number Publication date
JP2021536532A (ja) 2021-12-27
CN111809063A (zh) 2020-10-23
EP3875617A1 (en) 2021-09-08
EP3875617A4 (en) 2022-02-23
CN111809063B (zh) 2021-10-22
JP7016569B2 (ja) 2022-02-07
US20210371952A1 (en) 2021-12-02
US11920212B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2020206962A1 (zh) 一种光催化金属溶解方法
Liu et al. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects
Wang et al. Electrocatalytic reduction of nitrate to ammonia on low-cost ultrathin CoO x nanosheets
Wang et al. CuCo2O4/CF cathode with bifunctional and dual reaction centers exhibits high RhB degradation in electro-Fenton systems
Park et al. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO 2
Zhang et al. High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters
Chen et al. Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation
CN112553465B (zh) 一种光催化选择性金属溶解剂及溶解方法
Chen et al. Activating palladium nanoparticles via a Mott-Schottky heterojunction in electrocatalytic hydrodechlorination reaction
Cheng et al. Photoelectrocatalytic degradation of deoxynivalenol on CuO-Cu2O/WO3 ternary film: mechanism and reaction pathways
Wang et al. Preparation of Cu/GO/Ti electrode by electrodeposition and its enhanced electrochemical reduction for aqueous nitrate
CN113088689B (zh) 一种水溶液中光催化选择性溶解贵金属的方法
Li et al. Extraordinary catalysis induced by titanium foil cathode plasma for degradation of water pollutant
Li et al. Ammonia electrosynthesis on single-atom catalysts: Mechanistic understanding and recent progress
Wu et al. Synergistic effects boost electrocatalytic reduction of bromate on supported bimetallic Ru-Cu catalyst
Xin et al. Enhanced visible light photoelectrocatalytic degradation of o-chloronitrobenzene through surface plasmonic Au nanoparticles and g-C3N4 co-modified TiO2 nanotube arrays photoanode
Jin et al. Single atom catalysts for degradation of antibiotics from aqueous environments by advanced oxidation processes: A review
Wei et al. Effect and mechanism of cyanide degradation and Cu/Zn recovery by photoelectro-catalytic oxidation
Zhang et al. Through converting the surface complex on TiO2 nanorods to generate superoxide and singlet oxygen to remove CN−
Fan et al. Integrated hydrogen evolution and water-cleaning via a robust graphene supported noble-metal-free Fe 1− x Co x S 2 system
Zhang et al. Design and syntheses of Cu–Fe3O4@ Fe electrode with needle-like structure and electric field potential: Remediation of nitrate contamination and action in protein wastewater
Wang et al. Raney nickel coupled nascent hydrogen as a novel strategy for enhanced reduction of nitrate and nitrite
Liu et al. Anchoring plasmonic Ni on defective TiO2-x with oxygen vacancies towards synergistic boosted photocatalytic activity of tetracycline degradation and microbial sterilization
Chauhan et al. Advance reduction processes for denitrification of wastewater
Xue et al. Electrochemical reduction of wastewater by non-noble metal cathodes: From terminal purification to upcycling recovery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524243

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019923873

Country of ref document: EP

Effective date: 20210602

NENP Non-entry into the national phase

Ref country code: DE