CN111762821B - 一种空心微纳结构二硫化镍材料及其制备方法、铝离子电池正极及铝离子电池 - Google Patents

一种空心微纳结构二硫化镍材料及其制备方法、铝离子电池正极及铝离子电池 Download PDF

Info

Publication number
CN111762821B
CN111762821B CN202010514657.5A CN202010514657A CN111762821B CN 111762821 B CN111762821 B CN 111762821B CN 202010514657 A CN202010514657 A CN 202010514657A CN 111762821 B CN111762821 B CN 111762821B
Authority
CN
China
Prior art keywords
nano
ion battery
aluminum ion
nickel
hollow micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010514657.5A
Other languages
English (en)
Other versions
CN111762821A (zh
Inventor
刘金云
张敏
蒋铭熙
邓琳
韩阗俐
黄家锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Normal University
Original Assignee
Anhui Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Normal University filed Critical Anhui Normal University
Priority to CN202010514657.5A priority Critical patent/CN111762821B/zh
Publication of CN111762821A publication Critical patent/CN111762821A/zh
Application granted granted Critical
Publication of CN111762821B publication Critical patent/CN111762821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/11Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种空心微纳结构二硫化镍材料及其制备方法、铝离子电池正极及铝离子电池,通过水热法在纳米硫颗粒外层包裹上羟基氧化镍,最后在适当的温度下进行煅烧形成空心微纳结构二硫化镍材料,并以空心微纳结构二硫化镍材料为正极活性材料制备铝离子电池正极,进而组装成铝离子电池;空心微纳结构二硫化镍材料的微纳结构内部空隙不仅有利于充放电过程中的离子流动,并且大大提高了活性物质的含有量,减少了放电/充电过程中的活性质量损失,从而提高了铝离子电池的电化学性能。

Description

一种空心微纳结构二硫化镍材料及其制备方法、铝离子电池正极及铝离子电池
技术领域
本发明属于新能源材料技术领域,具体涉及一种空心微纳结构二硫化镍材料及其制备方法、铝离子电池正极及铝离子电池。
背景技术
在科技日新月异的发展中,便携式储能材料方向的研究,愈发受到重视。目前在新能源材料技术领域中,主要为锂离子电池和锂硫电池的应用,但由于锂的成本高,储能容量不够高,以及安全性的问题,科研人员仍需探索其他材料。铝元素在地壳中的含量位居第三位,是地壳中含量最丰富的金属元素,可以克服资源匮乏的问题;并且铝离子电池使用了安全性高的离子液体电解液,易于使用存放;铝电池原理,是高可逆反应,大大增强了电池的循环的稳定性。除此之外,铝离子电池该有着极高的理论容量(理论值为2980mAh g-1,8063mAh cm-3)。因此,铝离子电池拥有成本低、易取得、易操作、高容量,安全性好等优点,让其在储能方面有着巨大的应用潜能。
然而,如今已有的铝离子电池正极材料中,存在缺乏具有所需容量和长期稳定性材料的问题,由于缺乏合理的电极结构,电池表现出较差的循环性能。
发明内容
本发明的目的在于提供一种空心微纳结构二硫化镍材料及其制备方法,通过水热法在纳米硫颗粒外层包裹上羟基氧化镍,最后在适当的温度下进行煅烧形成空心微纳结构二硫化镍材料,制备工艺简单,成本低廉。
本发明的目的在于提供一种铝离子电池正极及铝离子电池。以空心微纳结构二硫化镍材料为正极活性材料制备铝离子电池正极,进而组装成铝离子电池,空心微纳结构二硫化镍材料的微纳结构内部空隙,不仅有利于充放电过程中的离子流动,并且大大提升了活性物质的含有量,减少了放电/充电过程中的活性质量损失,从而提高了铝离子电池的电化学性能。
本发明采取的技术方案为:
一种空心微纳结构二硫化镍材料的制备方法,所述制备方法包括以下步骤:
(1)制备纳米硫颗粒;
(2)将镍盐、尿素溶解于去离子水中,向其中加入纳米硫颗粒,超声分散均匀,然后转移至聚四氟乙烯内胆中,进行水热反应,反应结束后经离心、洗涤、干燥,所得产物为硫颗粒/羟基氧化镍复合纳米材料;
(3)将步骤(2)得到的产物在惰性气体气氛中进行煅烧,即可得到所述空心微纳结构二硫化镍。
进一步地,步骤(1)中,所述纳米硫颗粒的制备方法为:将硫代硫酸钠溶解于去离子水中,加入十二烷基硫酸钠搅拌混合均匀,然后加入浓盐酸,于25~40℃搅拌反应1.5~3.5h,反应结束后经过滤、洗涤、干燥,即可得到所述纳米硫颗粒。
所述硫代硫酸钠、去离子水、十二烷基硫酸钠、浓盐酸的用量之比为(1.5~4.5)g:(150~750)mL:(0.25~0.65)g:(1~4)mL。
所述浓盐酸为市售浓盐酸;所述干燥为25~55℃干燥5~18h,优选为30~45℃干燥6~10h。
步骤(2)中,所述纳米硫颗粒、镍盐、去离子水、尿素的用量之比为(0.03~0.35)g:(0.075~0.3)g:(10~60)mL:(0.03~0.3)g。
步骤(2)中,所述水热反应的条件为70~180℃反应200~500min,优选75~150℃反应289~442min。
步骤(2)中,所述镍盐选自硝酸镍、氯化镍、硫酸镍中的一种。
步骤(2)中,所述洗涤次数在2~8次,优选3~5次。
步骤(2)中,所述干燥为45~80℃干燥5~12h,所述干燥温度优选为50~65℃。
步骤(3)中,所述惰性气体为氮气或氩气,优选氮气。
步骤(3)中,所述煅烧的条件为200~600℃煅烧0.5~3h,优选为280~500℃煅烧0.5~2.5h。
本发明还提供了所述的制备方法制备得到的空心微纳结构二硫化镍材料。
本发明还提供了一种铝离子电池正极,以所述的空心微纳结构二硫化镍材料为活性材料制备得到。
本发明还提供了一种铝离子电池,以所述的铝离子电池正极为正极制成。
本发明首先通过化学合成法合成纳米硫颗粒,再通过在硫颗粒上复合上羟基氧化镍,得到了硫颗粒/羟基氧化镍的复合材料,最后在200~600℃的温度下进行煅烧得到空心微纳结构二硫化镍。纳米硫颗粒从112℃开始就逐渐熔化升华,升华的过程中会与表面的羟基氧化镍进行化学反应,伴随着温度不断上升及反应的进行,内部的硫颗粒会不断缩小,直至全部与羟基氧化镍发生反应,最后获得纯净的微纳空心结构二硫化镍材料。
本发明只要使用简单的合成以及煅烧的方法,就可以获得这种具有创新性的空心结构的材料。这种空心结构有助于铝离子电池在充放电过程中的离子流动,使电池拥有更高的容量,以及稳定性,有效的增加了电池的使用次数。因此以该材料作为铝离子电池的正极,具有容量较高,循环性能稳定的特点。
本发明与现有技术相比具有以下优点:
(1)新颖的空心结构有助于电池充放电;
(2)所制得的材料性能稳定,在空气中不易变性,容易存放;
(3)制备工艺简单。
附图说明
图1为实施例1制备的空心微纳结构二硫化镍的SEM图;
图2为实施例1制备的空心微纳结构二硫化镍物理锤击破坏后的SEM图;
图3为实施例2制备的空心微纳结构二硫化镍的SEM图;
图4为实施例2制备的空心微纳结构二硫化镍物理锤击破坏后的SEM图;
图5为实施例3制备的空心微纳结构二硫化镍的SEM图;
图6为实施例3制备的空心微纳结构二硫化镍物理锤击破坏后的SEM图;
图7为实施例4步骤1)制备的硫颗粒材料的SEM图;
图8为实施例4步骤2)制备的硫颗粒/羟基氧化镍复合材料的SEM图;
图9为实施例4制备的空心微纳结构二硫化镍物理锤击破坏后的SEM图;
图10为实施例4步骤3)制备的空心微纳结构二硫化镍的SEM图(a)及Ni元素(b)、S元素(c)的Mapping图;
图11为实施例4步骤2)制备的硫颗粒/羟基氧化镍复合材料的XRD图;
图12为实施例4制备的空心微纳结构二硫化镍的XRD图;
图13为实施例5制备的空心微纳结构二硫化镍物理锤击破坏后的SEM图;
图14为实施例6制备的空心微纳结构二硫化镍作为铝离子电池正极在100mA/g电流密度下的循环稳定性测试图;
图15为实施例6制备的空心微纳结构二硫化镍作为铝离子电池正极在100mA/g电流密度下的充放电曲线图。
具体实施方式
下面结合实施例和说明书附图对本发明进行详细说明。
实施例1
一种空心微纳结构二硫化镍材料的制备方法,包括以下步骤:
1)将1.5g硫代硫酸钠加入150mL去离子水中,搅拌混合均匀,再加入0.25g十二烷基硫酸钠,搅拌混合至均匀,然后加入1mL浓盐酸在25℃下均匀搅拌3h,再将得到的产物滤纸过滤洗涤30次,洗后放入30℃的烘箱,干燥5h,制得纳米硫颗粒;
2)将0.08g硝酸镍、0.05g尿素、20mL去离子水磁力搅拌均匀,再在混合溶液中加入步骤1)得到的纳米硫颗粒0.1g,超声至分散,将混合后的悬浊液转移至聚四氟乙烯内胆中,在70℃烘箱中反应300min,待反应结束后,冷却至室温,离心洗涤2次,在55℃干燥12h,即可得到硫颗粒/羟基氧化镍复合纳米材料;
3)将步骤2)中得到的硫颗粒/羟基氧化镍复合纳米材料,在氮气中,280℃煅烧1h,冷却后获得二硫化镍微纳材料。其SEM图如图1所示,从图中可以看出二硫化镍的类椭圆形形状,说明羟基氧化镍生长在硫颗粒上,煅烧后形成了二硫化镍材料;在研钵中,使用重物物理锤击破坏后SEM图如图2所示,破碎后清晰看出二硫化镍的空心结构;其经XRD测试后,产物中也只有NiS2
实施例2
一种空心微纳结构二硫化镍的制备方法,包括以下步骤:
1)将1.75g硫代硫酸钠加入200mL去离子水中,搅拌混合均匀,再加入0.37g十二烷基硫酸钠,搅拌混合至均匀,然后加入1mL浓盐酸在35℃下均匀搅拌1.5h,再将得到的产物滤纸过滤洗涤20次,洗后放入35℃的烘箱,干燥5h,制得纳米硫颗粒;
2)将0.12g硝酸镍、0.1g尿素、25mL去离子水磁力搅拌均匀,再在混合溶液中加入步骤1)得到的纳米硫颗粒0.12g,超声至分散,将混合后的悬浊液转移至聚四氟乙烯内胆中,在85℃烘箱中反应320min,待反应结束后,冷却至室温,离心洗涤2次,在75℃干燥12h,即可得到硫颗粒/羟基氧化镍复合纳米材料;
3)将步骤2)中得到的硫颗粒/羟基氧化镍复合纳米材料,在氮气中,320℃煅烧1.5h,冷却后获得二硫化镍纳米材料。其SEM图如图3所示,从图中可以看出二硫化镍的类椭圆形形状,说明羟基氧化镍生长在硫颗粒上,煅烧后形成了二硫化镍材料;在研钵中,使用重物物理锤击破坏后SEM图如图4所示,破碎后清晰看出二硫化镍的空心结构;其经XRD测试后,产物中也只有NiS2
实施例3
一种空心微纳结构二硫化镍的制备方法,包括以下步骤:
1)将1.85g硫代硫酸钠加入300mL去离子水中,搅拌混合均匀,再加入0.47g十二烷基硫酸钠,搅拌混合至均匀,然后加入1.5mL浓盐酸在30℃下均匀搅拌2h,再将得到的产物滤纸过滤洗涤20次,洗后放入45℃的烘箱,干燥6h,制得纳米硫颗粒;
2)将0.12g硝酸镍、0.08g尿素、25mL去离子水磁力搅拌均匀,再在混合溶液中加入步骤1)得到的纳米硫颗粒0.12g,超声至分散,将混合后的悬浊液转移至聚四氟乙烯内胆中,在95℃烘箱中反应320min,待反应结束后,冷却至室温,离心洗涤2次,在75℃干燥12h,即可得到硫颗粒/羟基氧化镍复合纳米材料;
3)将步骤2)中得到的硫颗粒/羟基氧化镍复合纳米材料,在氮气中,420℃煅烧1.5h,冷却后获得二硫化镍纳米材料。其SEM图如图5所示,从图中可以看出二硫化镍的类椭圆形形状,说明羟基氧化镍生长在硫颗粒上,煅烧后形成了二硫化镍材料;在研钵中,使用重物物理锤击破坏后SEM图如图6所示其经XRD测试后,产物中也只有NiS2
实施例4
一种空心微纳结构二硫化镍的制备方法,包括以下步骤:
1)将1.88g硫代硫酸钠加入300mL去离子水中,搅拌混合均匀,再加入0.40g十二烷基硫酸钠,搅拌混合至均匀,然后加入2mL浓盐酸在30℃下均匀搅拌3.5h,再将得到的产物滤纸过滤洗涤28次,洗后放入55℃的烘箱,干燥6h,制得纳米硫颗粒;
2)将0.18g硝酸镍、0.16g尿素、30mL去离子水磁力搅拌均匀,再在混合溶液中加入步骤1)得到的纳米硫颗粒0.25g,超声至分散。将混合后的悬浊液转移至聚四氟乙烯内胆中,在95℃烘箱中反应350min,待反应结束后,冷却至室温,离心洗涤2次,在65℃干燥12h,即可得到硫颗粒/羟基氧化镍复合纳米材料;
3)将步骤2)中得到的硫颗粒/羟基氧化镍复合纳米材料,在氮气中,350℃煅烧1.5h,冷却后获得二硫化镍纳米材料。
图7为本实施例步骤1)的硫颗粒材料的SEM图,可以从图中看出八面体的硫颗粒形貌。图8为本实施例步骤2)制备的硫颗粒/羟基氧化镍复合材料的SEM图,可以看出羟基氧化镍生长在硫颗粒上的片层状结构,在研钵中,使用重物物理锤击破坏后SEM图如图9所示,破碎后清晰看出二硫化镍的空心结构;图10为本实施例步骤3)制备的二硫化镍材料的SEM图及元素Ni和S的Mapping图,可以证明煅烧后得到了纯净的二硫化镍。图11为本实施例步骤2)制备的硫颗粒/羟基氧化镍复合材料的XRD图,证明了硫颗粒与羟基氧化镍的存在。图12为本实施例步骤3)制备的二硫化镍材料的XRD图,从图中可以看出产物为纯度很高的二硫化镍。
实施例5
一种空心微纳结构二硫化镍的制备方法,包括以下步骤:
1)将1.90g硫代硫酸钠加入250mL去离子水中,搅拌混合均匀,再加入0.45g十二烷基硫酸钠,搅拌混合至均匀,然后加入2.5mL浓盐酸在40℃下均匀搅拌3.5h,再将得到的产物滤纸过滤洗涤28次,洗后放入65℃的烘箱,干燥6h,制得纳米硫颗粒;
2)将0.18g硝酸镍、0.16g尿素、30mL去离子水磁力搅拌均匀,再在混合溶液中加入步骤1)得到的纳米硫颗粒0.25g,超声至分散。将混合后的悬浊液转移至聚四氟乙烯内胆中,在95℃烘箱中反应350min,待反应结束后,冷却至室温,离心洗涤2次,在65℃干燥12h,即可得到硫颗粒/羟基氧化镍复合纳米材料;
3)将步骤2)中得到的硫颗粒/羟基氧化镍复合纳米材料,在氮气中,550℃煅烧1.5h,冷却后获得二硫化镍纳米材料。图13为本实施例步骤3)制备的二硫化镍材料的SEM图,是在研钵中,经过重物物理锤击小球可以看出二硫化镍的微纳空心结构。
实施例6
将实施例4所得最终产物二硫化镍作为铝离子电池的正极活性材料,将二硫化镍纳米材料与超导碳、PVDF以7:2:1的比例混合,以N-甲基吡咯烷酮(NMP)溶剂调制成均匀浆状,涂覆在碳纸上,并用刮刀将其均匀涂布成膜片状,均匀地附着于碳纸表面。之后将制成的涂层放于烘箱中,以60℃烘干12小时;烘干完成后移入真空干燥箱中,以60℃真空干燥10小时;再将干燥后的复合材料涂层采用对辊机或者压片机等进行压片处理;采用机械裁片机裁剪电极片,以铝片作为对电极,市售铝电电解液LX-121为电解液,组装成铝离子电池。
利用电池测试仪进行铝离子电池的充放电性能测试,所得产物作为铝离子电池正极材料在100mA/g电流密度下的循环稳定性测试结果如附图14、15所示。由图14可见,电池在充放电过程中有稳定的充放电平台。从图15中可见,电池的循环稳定性优越,循环300次后电池容量仍稳定在75mAh g-1,几乎不发生衰减。
上述参照实施例对一种空心微纳结构二硫化镍及其制备方法、铝离子电池正极及铝离子电池进行的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。

Claims (8)

1.一种空心微纳结构二硫化镍材料的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)制备纳米硫颗粒;
(2)将镍盐、尿素溶解于去离子水中,向其中加入纳米硫颗粒,超声分散均匀,然后转移至聚四氟乙烯内胆中,进行水热反应在硫颗粒上复合上羟基氧化镍,反应结束后经离心、洗涤、干燥;
(3)将步骤(2)得到的产物在惰性气体气氛中进行煅烧,即可得到所述空心微纳结构二硫化镍;
步骤(2)中,所述纳米硫颗粒、镍盐、去离子水、尿素的用量之比为(0.03~0.35)g:(0.075~0.3)g:(10~60)mL:(0.03~0.3)g;
步骤(2)中,所述水热反应的条件为70~95℃反应200~500 min。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述纳米硫颗粒的制备方法为:将硫代硫酸钠溶解于去离子水中,加入十二烷基硫酸钠搅拌混合均匀,然后加入浓盐酸,于25~40℃搅拌反应1.5~3.5h,反应结束后经过滤、洗涤、干燥,即可得到所述纳米硫颗粒。
3.根据权利要求2所述的制备方法,其特征在于,所述硫代硫酸钠、去离子水、十二烷基硫酸钠、浓盐酸的用量之比为(1.5~4.5)g:(150~750)mL:(0.25~0.65)g:(1~4)mL。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述惰性气体为氮气或氩气。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述煅烧的条件为200~600 ℃煅烧0.5~3 h。
6.如权利要求1-5任意一项所述的制备方法制备得到的空心微纳结构二硫化镍材料。
7.一种铝离子电池正极,其特征在于,以权利要求6所述的空心微纳结构二硫化镍材料为活性材料制备得到。
8.一种铝离子电池,其特征在于,以权利要求7所述的铝离子电池正极为正极制成。
CN202010514657.5A 2020-06-08 2020-06-08 一种空心微纳结构二硫化镍材料及其制备方法、铝离子电池正极及铝离子电池 Active CN111762821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010514657.5A CN111762821B (zh) 2020-06-08 2020-06-08 一种空心微纳结构二硫化镍材料及其制备方法、铝离子电池正极及铝离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010514657.5A CN111762821B (zh) 2020-06-08 2020-06-08 一种空心微纳结构二硫化镍材料及其制备方法、铝离子电池正极及铝离子电池

Publications (2)

Publication Number Publication Date
CN111762821A CN111762821A (zh) 2020-10-13
CN111762821B true CN111762821B (zh) 2023-04-25

Family

ID=72720174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010514657.5A Active CN111762821B (zh) 2020-06-08 2020-06-08 一种空心微纳结构二硫化镍材料及其制备方法、铝离子电池正极及铝离子电池

Country Status (1)

Country Link
CN (1) CN111762821B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113618272B (zh) * 2021-09-23 2024-04-30 重庆大学 花状核壳结构复合含能材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311135A (zh) * 2019-06-19 2019-10-08 东北大学 一种能装载硫的金属硫化物空心球、制备方法及应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104261490B (zh) * 2014-09-22 2016-07-06 江苏师范大学 两步法制备硫化镍的方法
US10446329B2 (en) * 2015-09-23 2019-10-15 University Of Virginia Patent Foundation Process of forming electrodes and products thereof from biomass
CN106277078B (zh) * 2016-08-16 2018-03-20 中南大学 一种具有多层硫化镍外壳的空心微米球及其制备方法和应用
CN106654262B (zh) * 2016-12-26 2019-03-22 常州大学 一种空心球硫化镍正极材料的制备方法及应用
CN107799769B (zh) * 2017-02-20 2019-11-15 湖南大学 一种纳米二硫化镍材料及其制备方法和应用
CN108658119B (zh) * 2018-05-21 2020-07-31 南京工业大学 一种低温硫化技术用于制备硫化铜纳米片及其复合物的方法和应用
CN108808023B (zh) * 2018-06-14 2021-04-16 北京航空航天大学 一种复合碳材料及其制备方法和应用
CN110148745B (zh) * 2019-06-14 2020-12-29 陕西科技大学 一种中空球状硫化亚铁纳米材料及其制备方法和应用
CN110504425A (zh) * 2019-08-16 2019-11-26 安徽师范大学 一种蛋黄壳结构硫颗粒/聚吡咯导电水凝胶复合材料及其制备方法以及锂硫电池正极及电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311135A (zh) * 2019-06-19 2019-10-08 东北大学 一种能装载硫的金属硫化物空心球、制备方法及应用

Also Published As

Publication number Publication date
CN111762821A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
CN113258060B (zh) 一种钠离子电池高镍层状氧化物材料及其制备方法和应用
CN109244427B (zh) 碳包覆硫化锌负载石墨烯作为钾离子电池负极的制备方法
CN111362254A (zh) 一种氮掺杂碳纳米管负载磷掺杂四氧化三钴复合材料的制备方法及应用
CN111180689B (zh) 微米空心多孔复合球状钠离子电池正极材料及其制备方法
CN111244448A (zh) 一种原位碳包覆的高倍率大尺寸普鲁士蓝类钠离子正极材料及其制备方法
CN110518213A (zh) 一种多孔硅-碳纳米管复合材料及其制备方法和应用
CN115043440A (zh) 锂离子电池正极材料前驱体及其制备方法和应用、锂离子电池正极材料及其制备方法和应用
CN108807964B (zh) 一种镍钴铝三元正极材料的包覆方法及应用
CN110880589B (zh) 一种纳米碳管@二氧化钛纳米晶@碳的复合材料及其制备方法和应用
CN110299510B (zh) 一种以导电碳布为基底的双金属硫化物的制备及其在锂离子电池负极方面的应用
CN111490241A (zh) 一种磷酸锂原位包覆的富锂锰基正极材料及其制备方法
CN109980215A (zh) 一种核壳结构富锂锰基正极材料及其制备方法
TWI651272B (zh) 一種富鋰-鋰鎳錳氧化物陰極複合材料的製備方法及其用途
CN111082042A (zh) 锂离子电池用三元正极材料微米单晶结构及其制备方法
CN112186148A (zh) 一种锌离子电池用NiO/Mn2O3复合正极材料及其制备方法
CN112142069A (zh) 一种普鲁士蓝类似物及其形貌控制方法和应用
CN116014104A (zh) 富锂镍系正极材料及其制备方法、正极片与二次电池
CN113753963B (zh) 一种二硫化锡钴纳米颗粒及其制备方法和应用
CN113871589B (zh) 一种熔盐辅助钛酸锂包覆的富锂锰基正极材料及其制备方法
CN111762821B (zh) 一种空心微纳结构二硫化镍材料及其制备方法、铝离子电池正极及铝离子电池
CN112952056B (zh) 一种富锂锰基复合正极材料及其制备方法和应用
CN108400299B (zh) 一种用于钠离子电池的CuFe2O4/C复合负极材料的制备方法
CN113488620A (zh) 三元正极前驱体及其制备方法、三元正极材料及其制备方法、锂离子电池
CN105742619B (zh) 一种无定型锰氧化物包覆铁氧化物锂/钠离子电池负极材料及其制备方法
WO2023216453A1 (zh) 一种核壳梯度三元前驱体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant