CN111653404A - 一种钕铁硼磁体及其制备方法和应用 - Google Patents

一种钕铁硼磁体及其制备方法和应用 Download PDF

Info

Publication number
CN111653404A
CN111653404A CN202010464304.9A CN202010464304A CN111653404A CN 111653404 A CN111653404 A CN 111653404A CN 202010464304 A CN202010464304 A CN 202010464304A CN 111653404 A CN111653404 A CN 111653404A
Authority
CN
China
Prior art keywords
magnet
iron boron
neodymium iron
boron magnet
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010464304.9A
Other languages
English (en)
Other versions
CN111653404B (zh
Inventor
史丙强
刘磊
马丹
宿云婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Zhenghai Magnetic Material Co Ltd
Original Assignee
Yantai Zhenghai Magnetic Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Zhenghai Magnetic Material Co Ltd filed Critical Yantai Zhenghai Magnetic Material Co Ltd
Priority to CN202010464304.9A priority Critical patent/CN111653404B/zh
Publication of CN111653404A publication Critical patent/CN111653404A/zh
Priority to JP2022573291A priority patent/JP7443570B2/ja
Priority to EP21814433.5A priority patent/EP4156209A4/en
Priority to US17/999,989 priority patent/US20230207165A1/en
Priority to PCT/CN2021/095528 priority patent/WO2021238867A1/zh
Priority to KR1020227042249A priority patent/KR20230006556A/ko
Application granted granted Critical
Publication of CN111653404B publication Critical patent/CN111653404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions

Abstract

本发明提供一种钕铁硼磁体及其制备方法和应用。所述钕铁硼磁体以化学式R1‑R2‑Fe‑M‑B表示,所述钕铁硼磁体具有高矫顽力区域和高剩磁区域的复合结构;其中,R1为至少含有Nd的稀土元素,R2为至少含有Dy和/或Tb的重稀土元素,M为至少含有Co的过渡金属元素。该磁体可以采用少量的Dy/Tb,大幅提高磁体的高温耐减磁能力,且抑制磁体磁通的降低,可适用于嵌入式的高速电机。制备该磁体的方法还可以大幅提高材料的利用率以及生产效率,具备量产可行性。

Description

一种钕铁硼磁体及其制备方法和应用
技术领域
本发明属于钕铁硼磁体领域,具体涉及一种钕铁硼磁体及其制备方法和应用。
背景技术
烧结钕铁硼磁体作为第四代永磁材料,以其优良的磁性能被称为“磁王”,被广泛应用于汽车、风电、压缩机、电梯,以及工业自动化等众多领域。
高速电机在运转时,由于绕组和铁芯产生的热量,使得电机中的烧结钕铁硼磁体暴露于高温环境中,并且由于来自绕组的反方向磁场的作用而容易发生热减磁。这就需要高速电机用钕铁硼磁体具有一定的矫顽力来提供足够的耐热减磁能力,来保证磁体在高温下也能稳定输出磁场,确保电机的功率输出。
传统技术中,为了提高磁体的矫顽力,往往通过在钕铁硼磁体中添加Dy(镝)和/或Tb(铽)等重稀土元素来提高磁体的各向异性,达到提高磁体的矫顽力的目的。但是由于Dy和/或Tb的添加替代Nd(钕),形成Dy-Fe-B或Tb-Fe-B,两者的磁极化强度要明显低于Nd-Fe-B,导致磁体的剩磁降低,即,最终磁体可以提供的磁场强度减小,导致电机功率降低或者需要增加电机中磁钢的使用量来保证电机的功率输出;同时,重稀土由于储量及优良特性的关系,价格非常昂贵,磁体的成本也会随着重稀土的使用量的增加而大幅提升。
近年来,降低重稀土的使用量,提高磁体的矫顽力指标成为众多学者的研究热点之一。其中,细晶技术和扩散技术是目前公认的最有效的两种方法。细晶技术是将晶粒的尺寸降低,尽可能地形成单畴晶,降低单个磁体晶粒内部的磁畴数量,减少晶粒内部缺陷,达到提高磁体矫顽力的目的。但是通过细晶技术获得的矫顽力提升效果有限,且随着晶粒尺寸的降低,磁体不可避免的氧化活性提高,以及晶粒尺寸降低带来的不易充磁的问题,对目前的设备工装的精度及可靠性都提出更为苛刻的要求,工业化量产难度极大。扩散技术是将Dy和/或Tb等重稀土元素进行精准投放,使其由磁体表面扩散进入到磁体内部,并在晶界处进行富集,提高磁体的矫顽力。
晶界扩散技术因可以采用很少量的重稀土,使矫顽力得到大幅提升,而剩磁不会发生显著下降,得到了行业内的普遍认可及应用。晶界扩散技术,是经典的扩散理论在钕铁硼行业的再次创新发展,其主要原理为,在高温条件下,Dy和/或Tb等重稀土元素沿晶界相,由磁体表面向磁体中心扩散,在晶界相上富集存在,置换出主相晶粒外缘层的Nd,在主相晶粒外缘形成一层Dy或Tb富集的壳状结构,提高晶粒外缘处的各向异性场,从而达到大幅提高矫顽力的效果。晶界扩散技术因其扩散推动力为Dy和/或Tb的浓度差,因此其深入到磁体内部后,会在磁体表面到内部形成Dy和/或Tb的浓度差,进而导致其Hcj从磁体的表面到内部,也是呈现出梯度分布的现象。
高速运转电机嵌入式组装的磁钢,如汽车驱动电机用磁钢或空调压缩机电机用磁钢,在实际运用过程中因整个电机温度升高而发生的热减磁并不是整体均匀发生的,往往发生在边角部位,尤其是与电机硅钢片接触的4个棱边。而磁体其他区域反而不易发生退磁。晶界扩散技术因其独特的Hcj的分布规律,在高速运转的嵌入式装配电机中得到了普遍认可和应用。
文献《Anisotropic diffusion mechanism in grain boundary diffusionprocessed Nd-Fe-B sintered magnet》记载了钕铁硼磁体,不同方向上进行扩散处理,其扩散效果不一致,其中,沿充磁方向扩散其效果最佳,扩散材料可以向更深的磁体内部扩散;而非充磁方向,扩散材料的扩散深度有限,主要集中在材料的表层位置。这相应地也决定了磁体采用充磁方向扩散,其Hcj大幅增加的同时,其Br的降幅也会略大;而采用非充磁方向扩散时,由于扩散材料大部分集中在磁体的表层位置,磁体内部结构不均匀,方形度较差,进而影响磁体的耐减磁能力。
通常,行业内大部分企业或学者都是在研究充磁方向上的扩散,或者是磁体的六个面都进行扩散,这样通过保证至少充磁方向的扩散,以获得最优秀的扩散效果,达到Hcj的大幅提升。
专利文献CN 101939804A记载了在磁体表面涂覆与充磁方向平行的4个面,磁体可以获得较高的保磁力,特别在磁体的边缘处,即使是高温下也不易退磁,适用于永磁式旋转电机。该专利文献将电机实际运行状态和扩散磁体的特殊规律进行了有效结合,在保证了磁体耐减磁能力的基础上,有效保持了磁体的磁通。但是,在磁体的平行与充磁方向4个表面涂覆扩散材料,其磁体的内部结构不均匀,方形度差的问题仍未解决,其耐减磁能力虽有提升但是提升有限。涂覆平行于充磁方向的4个面,采用浸渍法时,需要隔绝两个垂直于充磁方向的对面,且扩散材料在磁体表面因重力作用会分布不均匀;采用磁控溅射则需要多次处理才能把4个面全部附着扩散材料,生产效率低,量产成本高。
发明内容
本发明为改善上述技术问题和实际量产的难点,提供了一种钕铁硼磁体及其制备方法和应用。
一种钕铁硼磁体,其以化学式R1-R2-Fe-M-B表示,所述钕铁硼磁体具有高矫顽力区域和高剩磁区域的复合结构;
其中,R1为至少含有Nd的稀土元素,R2为至少含有Dy和/或Tb的重稀土元素,M为至少含有Co的过渡金属元素。
优选地,R2在钕铁硼磁体中的含量≤1.0wt%,例如≤0.8wt%,优选≤0.5wt%。
根据本发明的实施方案,所述钕铁硼磁体具有R2含量高的高矫顽力的区域和具有R2含量低的高剩磁的区域。例如,所述高矫顽力的区域和高剩磁的区域的分布基本如图1所示。
其中,所述高剩磁区域的表层及磁体内部1mm处的R2浓度差△1≤0.1%,
其中,所述高矫顽力区域的表层及与所述钕铁硼磁体内部1mm处的R2浓度差△2≥0.15%。
其中,所述△2/△1≥1.5,优选△2/△1≥2,示例性△2/△1=5.5、6.33、7.4。
根据本发明的实施方案,所述高矫顽力区域的宽度为1-5mm,优选1.5-4mm,且中心区域具有高剩磁区域,可以有效避免磁体磁通的降低。其中,所述高矫顽力区域定义为自表层至磁体内部延伸,R2的浓度差值为1%时,即为高矫顽力区域的宽度。
根据本发明的实施方案,所述钕铁硼磁体具有基本如图1所示的结构。
根据本发明的实施方案,所述R1除含Nd元素外,还可以含有镧(La)、铈(Ce)、镨(Pr)、钷(Pm)、钐(Sm)、铕(Eu)和钪(Sc)中的至少一种。
根据本发明的实施方案,所述R1在钕铁硼磁体中的含量为28-32wt%,例如29-31wt%,示例性为28wt%、29wt%、30wt%、31wt%、32wt%。
根据本发明的实施方案,所述R2除含有Dy和/或Tb元素外,还可以含有钆(Gd)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)和钇(Y)中的至少一种。
根据本发明的实施方案,所述M除含有Co外,还可以含有Cu、Ga、Zr、Ti、Al、Mn、Zn和W等中的至少一种;例如,M为Co、Al、Cu和Ga中的至少一种。
根据本发明的实施方案,所述Co在钕铁硼磁体中的含量为1-3wt%,例如1.5-2.5wt%,示例性为1wt%、1.5wt%、2wt%、2.5wt%、3wt%。
根据本发明的实施方案,除Co之外的M中其余过渡金属元素在钕铁硼磁体中的含量≤2wt%,例如≤1.5wt%,又如≤1wt%,示例性为0.1wt%、0.15wt%、0.2wt%、0.3wt%、0.35wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1.0wt%。
根据本发明的实施方案,所述B在钕铁硼磁体中的含量为0.5-1.3wt%,例如0.8-1.05wt%,示例性为0.8wt%、0.9wt%、0.98wt%、1.0wt%、1.05wt%。
根据本发明的实施方案,所述钕铁硼磁体中还含有不可避免的杂质,如C、N等中的至少一种。
根据本发明的实施方案,所述钕铁硼磁体具有优异的耐减磁能力。例如,在磁钢的工作温度下,钕铁硼磁体的方形度≥0.9。磁体的耐减磁能力,主要取决于磁体自身的耐减磁能力和电机的工作负载点。磁体在工作温度下的方形度,决定了磁体的自身耐减磁能力和电机工作负载点的匹配关系,方形度越高,磁体的自身的耐减磁能力越高,受电机工作负载点的影响越小。
本发明还提供上述钕铁硼磁体的制备方法,包括如下步骤:
制备或准备R1-Fe-M-B基结构的基体磁体,使至少含有Dy和/或Tb的重稀土元素R2在所述基体磁体表面的2个对面上成膜,然后进行扩散处理,R2元素沿基体磁体晶界由磁体表面向内部扩散,并在晶界处富集,得到所述钕铁硼磁体;
其中,所述R1、R2、M和B具有如上文所述的含义和含量。
根据本发明的实施方案,所述基体磁体可以采用本领域已知方法制备得到,例如通过熔炼、制粉、压型和热处理等步骤制备得到。
例如,按照如上各元素含量配备原料粉体,原料粉体经加热(例如1400-1520℃)熔化为钢液,急冷降温后,成核、结晶,逐渐长大至形成合金鳞片。
例如,制粉时采用气流磨研磨方式,得到平均粒径为1-5μm、优选2-4μm的气流磨粉。
例如,压型前向所述气流磨粉中添加本领域已知润滑剂,充分混料后,在外磁场作用下,将粉体压制成型。
例如,热处理的温度为1050-1100℃,示例性为1070℃、1075℃;热处理保温的时间为200-400min,示例性为270min、300min。
根据本发明的实施方案,所述基体磁体为规则的六面体。
根据本发明的实施方案,所述2个对面为非垂直于磁体磁方向且非垂直于磁体成型时压制方向(即充磁方向)的2个对面。具体如图2所示。在这2个对面成膜,可以更有效地提高扩散重稀土元素的有效使用率,避免重稀土元素的浪费,且最大程度地避免磁体剩磁降低的影响。
根据本发明的实施方案,所述R2元素在磁体表面成膜的方式可以选用本领域已知方式,包括但不限于真空蒸镀、磁控溅射、涂覆等方法。例如,在磁体的2个对面上,真空蒸镀、磁控溅射或涂覆等量的R2元素。示例性地,每个面中,R2元素的用量为≤0.5wt%,比如为0.4wt%、0.2wt%。
根据本发明的实施方案,所述扩散处理的真空度<10-2Pa。
根据本发明的实施方案,所述扩散处理时先进行第一次升温后保温,然后急冷降温,再进行第二次升温和保温后,完成扩散处理。例如,所述第一次升温至的温度为850-950℃,例如880-930℃,示例性为900℃。例如,所述第一次保温的时间为500-700min,例如550-650min,示例性为600min。例如,所述急冷降温至的温度为15-40℃,例如20-35℃,示例性为25℃(室温)。例如,急冷降温的速率为5-30℃/min,比如10-20℃/min,示例性为5℃/min、10℃/min、15℃/min、20℃/min、25℃/min、30℃/min。例如,所述第二次升温至的温度为500-600℃,例如520-580℃,示例性为550℃。例如,所述第二次保温的时间为200-300min,例如220-270min,示例性为240min。
本发明还提供由上述方法制备得到的钕铁硼磁体。
本发明还提供上述钕铁硼磁体在嵌入式电机中的应用。
本发明还提供一种磁钢,所述磁钢中含有所述钕铁硼磁体。
本发明还提供一种嵌入式电机,其含有上述钕铁硼磁体和/或磁钢。优选地,所述钕铁硼磁体和/或磁钢以嵌入式装配于所述电机中。
本发明的有益效果:
该磁体可以采用少量的Dy/Tb,大幅提高磁体的高温耐减磁能力,且抑制磁体磁通的降低,可适用于嵌入式的高速电机。制备该磁体的方法还可以大幅提高材料的利用率以及生产效率,具备量产可行性。
发明人发现,当扩散方向与磁体C轴平行时,重稀土元素在沿平行于磁体充磁方向上的扩散深度是最大的,且扩散效果最佳,重稀土元素可以扩散至磁体内部,由磁体表面至磁体中心区域,形成矫顽力的梯度分布。但是在嵌入式电机中应用的磁体,其易发生退磁的区域仅在最表面的一层,内部几乎不发生退磁,如图3所示,即磁体内部扩散进去的重稀土元素是浪费的,且在扩散过程中不可避免地向主相晶粒内部的扩散,导致磁体的剩磁降低,影响了电机的输出功率大小。
发明人进一步发现,当在垂直于磁体的压制方向的表面上进行重稀土的成膜,扩散时,相比于充磁方向扩散,扩散深度很浅,矫顽力的增幅较低,且在磁体工作温度下的方形度极差<0.9,极大地影响了磁体在电机运行时的耐减磁能力。而在非垂直与磁体的压制方向,且非垂直与充磁方向的磁体的2个对面上进行重稀土的成膜、扩散时,虽然重稀土元素的扩散深度同样较小,但是磁体的矫顽力增幅介于磁体压制方向扩散和充磁方向扩散之间,且在工作温度下的方形度≥0.9。
熔炼工序鳞片冷却结晶生长时,主相晶粒由接触面向自由面生长时,是垂直与C轴生长的,表现为鳞片的截面上,主相的C轴垂直于相邻的两个晶界相。当鳞片进行HD破碎时,从晶界处断裂,即主相晶粒表面被C轴指向的前端和后端,均附带有部分的晶界相。经过气流磨粉碎为细小粉末,在充磁中进行压制时,主相晶粒在磁场作用下偏转,然后进行压制时,表现为在垂直于压制方向上的晶粒间无晶界相或有极细薄的晶界相,而平行与压制方向上的晶粒间的晶界相较厚。在固液烧结阶段,较厚的晶界相会熔融为液相,起到助熔作用促进主相晶粒的长大;或者通过毛细管张力原理向紧邻的两主相晶粒间填充形成晶界相;或者形成较大的三角晶界相或较为厚实的二元晶界相,由于RE元素的活泼属性,易在其中形成稀土氧化物等杂质化合物。因此,在平行于压制方向上的晶界相均匀性较差,杂质多,不易与发生置换扩散反应,导致沿压制方向扩散的磁体矫顽力增幅小,方形度低。而在垂直与压制方向上,由于无晶界相或晶界相较为细薄,在烧结时经由平行于压制方向上的晶界相的液化填充,晶界相得到了修复,形成了连续均匀细薄的晶界相,容易发生置换扩散反应,但与磁体C轴垂直,其扩散深度及效果要略差于取向方向扩散。因此同时垂直与压制方向和扩散方向的扩散,其扩散深度及扩散效果与磁体在电机运行时实际易退磁区域高度重合,达到重稀土的高效应用,且方形度可以确保≥0.9,保证磁体的耐减磁能力。
由于不在磁体的垂直与充磁方向的表面进行重稀土的成膜,在垂直与充磁方向的表面的大部分区域重稀土含量较低,其剩磁的降低得到了显著抑制,有效地保证了维持了磁体的磁通大小。相比于专利文献CN 101939804A在磁体的除了与磁化方向相垂直的表面之外的磁体块的4个表面进行成膜、扩散,本发明仅在磁体的两个对面进行成膜、扩散,不仅简化了生产工序,降低了重稀土的使用量,工业化生产的可行性大幅提升,而且适用于嵌入式高速电机应用领域,因嵌入式的高速电机在工作温度高速运转时,其易退磁区域即为磁体与电机硅钢片组件接触的棱边位置,棱边具有高矫顽力时,可有效抵御磁钢的高温热减磁现象发生。嵌入式电机中的磁钢发生退磁的表层区域范围较小;其扩散所获得的高矫顽力区域对应于磁体的易退磁区域(如图3所示)。图3所示的嵌入式装配方式,可有效提高磁体的耐减磁能力,且显著抑制磁体磁通的降低。
附图说明
图1为本发明钕铁硼磁体的高剩磁区域和高矫顽力区域示意图。
图2为本发明钕铁硼磁体扩散面示意图。
图3为嵌入式电机(a)及磁钢(b)的结构示意图。
图4为矫顽力与扩散深度的关系图。
具体实施方式
下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
实施例中重稀土元素的浓度差的测量方法为:
高剩磁区域:自磁体垂直于充磁方向的面的中心位置的表层及延伸入磁体内部,各加工1*1*1mm的小试片,酸浸泡整体熔融后,采用光谱法测试其R2含量及R2含量差△1。
高矫顽力区域:定义该区域远离高剩磁区域的一个侧面为表层,自表层及延伸入磁体内部,各加工1*1*1mm的小试片,酸浸泡整体熔融后,采用光谱法测试其R2含量及R2含量差△2。
本发明所涉及的方形度是以最终磁体作为样品标准尺寸,通过磁测仪测试。本发明所涉及的矫顽力的梯度分布是以磁体上加工1*1*1mm的试片,采用强脉冲PFM06设备测试。
实施例1
制备R1-Fe-M-B基磁体,依照如下组分配比制备原料合金,其中,R1为Nd,含量为30.5wt%;Co含量为1.5wt%;M为Al、Cu和Ga,含量分别为0.1wt%,0.1wt%和0.15wt%;B含量为0.95%,余量为Fe和不可避免的杂质,如C、N等。钕铁硼基材磁体具体制备过程如下:
a)熔炼:采用真空感应熔炼炉,将上述配备好的原材料放入坩埚中,加热至1480℃,原材料熔化为钢液,将溶解充分的钢液倾倒至急冷辊上,急速降温,在辊面上形核、结晶,并逐渐长大,形成合金鳞片。
b)制粉:所的合金鳞片进行HD破碎处理,然后进行气流磨研磨,获得平均粒径SMD为3.0μm的气流磨粉。
c)压型:向气流磨粉中添加0.3wt%的润滑剂,采用混料机混料120min后,倒入到压机的膜腔中,在2.5T的外加磁场作用下,压制成型。
d)烧结,将压制成的坯体放入到烧结炉中,在1075℃保温300min,然后按照20℃/min的冷却速度急冷达到室温,制成烧结钕铁硼基材磁体。
将基材磁体加工10-10-10mm的小片,采用磁控溅射法,按照表2进行基材磁体表面的Dy金属溅射涂布。
表1磁体表面Dy金属不同涂覆位置示意表
Figure BDA0002512070690000101
然后将采用表1方式处理的磁体分别放入至扩散炉设备中扩散处理,充真空度达到<10-2Pa,然后升温至900℃,保温600min,15℃/min的速率急冷至室温后再升温至550℃,保温240min,得到磁体成品。测试其成品磁性能和成分,测试结果如表2。
表2磁体成品的性能和成分汇总表
Figure BDA0002512070690000102
对比上述实验,实验1、2、3、4相比,综合比较矫顽力和方形度及磁矩指标,实验4综合性能最高,且高矫顽力区域的宽度为2.4mm,可以覆盖电机高速运转时易退磁区域。进一步的,按照扩散方向加工试片,测试矫顽力与扩散深度的关系,如图4所示。可以看出,实验2沿充磁方向扩散,其矫顽力平均值最高,且沿扩散深度的波动变化最小;实验3沿压制方向扩散,其矫顽力在扩散表面形成尖锐峰值,进入到磁体内部1mm处,其矫顽力存在急剧下降现象,且中心位置的矫顽力几近与未扩散磁体相当;实验4,其矫顽力在磁体表层0-3mm处性能阶梯状下降,最外层的矫顽力要由于实验2充磁方向扩散,即其最表层的耐减磁能力要优于实验2,在>3mm处逐渐趋于平缓,且矫顽力较未扩散磁体高约250kA/m,其耐减磁能力也有一定的提升。
实施例2
制备R1-Fe-M-B基磁体,依照如下组分配比制备原料合金,其中,R1为Nd,含量为31wt%;Dy含量0.5wt%,Co含量为2.0wt%;M为Al、Cu和Ga,含量分别为0.15wt%,0.15wt%和0.1wt%;B含量为0.98%,余量为Fe和不可避免的杂质,如C、N等。钕铁硼基材磁体具体制备过程如下:
a)熔炼:采用真空感应熔炼炉,将上述配备好的原材料放入坩埚中,加热至1460℃,原材料熔化为钢液,将溶解充分的钢液倾倒至急冷辊上,急速降温,在辊面上形核、结晶,并逐渐长大,形成合金鳞片。
b)制粉:所的合金鳞片进行HD破碎处理,然后进行气流磨研磨,获得平均粒径SMD为2.8μm的气流磨粉。
c)压型:向气流磨粉中添加0.2wt%的润滑剂,采用混料机混料180min后,倒入到压机的膜腔中,在2.5T的外加磁场作用下,压制成型。
d)烧结,将压制成的坯体放入到烧结炉中,在1070℃保温270min,然后按照10℃/min的冷却速度急冷达到室温,制成烧结钕铁硼基材磁体。
将基材磁体分别加工为40-8-20和40-8-2.5的方片(20和2.5方向为充磁方向厚度),按照表3在基材磁体表面的按照涂覆法涂覆Tb金属。
表3磁体表面Tb金属的不同位置处理示意表
Figure BDA0002512070690000111
然后将按照表3处理后的磁体放入扩散炉设备中扩散处理,充真空度达到<10- 2Pa,然后升温至900℃,保温600min,15℃/min的速率急冷至室温后再升温至550℃保温240min,得到磁体成品。将实验6扩散处理后的40-8-20的方片加工为40-8-2.5的试片,与实验5和实验7的试片一同测试磁性能和成分。测试结果如表4。
表4磁体成品的性能和成分汇总表
Figure BDA0002512070690000121
实验6相比较与实验7,其3mm处矫顽力略低,但是最表层的矫顽力较试验7高156kA/m,可以有效抵御外加磁场对磁体的退磁作用;同时磁矩较高了约0.6%,有效避免了磁矩的降低,保证了磁体磁场的高效输出。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种钕铁硼磁体,其特征在于,所述钕铁硼磁体以化学式R1-R2-Fe-M-B表示,所述钕铁硼磁体具有高矫顽力区域和高剩磁区域的复合结构;
其中,R1为至少含有Nd的稀土元素,R2为至少含有Dy和/或Tb的重稀土元素,M为至少含有Co的过渡金属元素。
2.根据权利要求1所述的钕铁硼磁体,其特征在于,R2在钕铁硼磁体中的含量≤1.0wt%,例如≤0.8wt%,优选≤0.5wt%。
3.根据权利要求1或2所述的钕铁硼磁体,其特征在于,所述钕铁硼磁体具有R2含量高的高矫顽力的区域和具有R2含量低的高剩磁的区域;优选地,所述高矫顽力的区域和高剩磁的区域的分布基本如图1所示。
优选地,所述高剩磁区域的表层及磁体内部1mm处的R2浓度差△1≤0.1%,
优选地,所述高矫顽力区域的表层及与所述钕铁硼磁体内部1mm处的R2浓度差△2≥0.15%。
优选地,所述△2/△1≥1.5,优选△2/△1≥2。
优选地,所述高矫顽力区域的宽度为1-5mm,优选1.5-4mm,且中心区域具有高剩磁区域;其中,所述高矫顽力区域定义为自表层至磁体内部延伸,R2的浓度差值为1%时,即为高矫顽力区域的宽度。
4.根据权利要求1-3任一项所述的钕铁硼磁体,其特征在于,所述R1除含Nd元素外,还含有镧(La)、铈(Ce)、镨(Pr)、钷(Pm)、钐(Sm)、铕(Eu)和钪(Sc)中的至少一种。
优选地,所述R1在钕铁硼磁体中的含量为28-32wt%。
5.根据权利要求1-4任一项所述的钕铁硼磁体,其特征在于,所述R2除含有Dy和/或Tb元素外,还含有钆(Gd)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)和钇(Y)中的至少一种。
优选地,所述M除含有Co外,还含有Cu、Ga、Zr、Ti、Al、Mn、Zn和W中的至少一种。
优选地,所述Co在钕铁硼磁体中的含量为1-3wt%。
优选地,除Co之外的M中其余过渡金属元素在钕铁硼磁体中的含量≤2wt%。
优选地,所述B在钕铁硼磁体中的含量为0.5-1.3wt%。
优选地,所述钕铁硼磁体中还含有不可避免的杂质。
6.权利要求1-5任一项所述钕铁硼磁体的制备方法,其特征在于,包括如下步骤:
制备或准备R1-Fe-M-B基结构的基体磁体,使至少含有Dy和/或Tb的重稀土元素R2在所述基体磁体表面的2个对面上成膜,然后进行扩散处理,R2元素沿基体磁体晶界由磁体表面向内部扩散,并在晶界处富集,得到所述钕铁硼磁体。
7.根据权利要求6所述钕铁硼磁体的制备方法,其特征在于,所述基体磁体为规则的六面体。
优选地,所述2个对面为非垂直于磁体充磁方向且非垂直于磁体成型时压制方向-的2个对面。
优选地,所述R2元素在磁体表面成膜的方式包括但不限于真空蒸镀、磁控溅射或涂覆方法。优选地,在磁体的2个对面上,真空蒸镀、磁控溅射或涂覆等量的R2元素。
优选地,所述扩散处理的真空度<10-2Pa。
优选地,所述扩散处理时先进行第一次升温后保温,然后急冷降温,再进行第二次升温和保温后,完成扩散处理。
8.权利要求1-5任一项所述钕铁硼磁体在嵌入式电机中的应用。
9.一种磁钢,其特征在于,所述磁钢中含有权利要求1-5任一项所述钕铁硼磁体。
10.一种嵌入式电机,其特征在于,所述电机含有权利要求1-5任一项钕铁硼磁体和/或权利要求9所述的磁钢。
CN202010464304.9A 2020-05-27 2020-05-27 一种钕铁硼磁体及其制备方法和应用 Active CN111653404B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202010464304.9A CN111653404B (zh) 2020-05-27 2020-05-27 一种钕铁硼磁体及其制备方法和应用
JP2022573291A JP7443570B2 (ja) 2020-05-27 2021-05-24 ネオジム鉄ボロン磁石及びその製造方法並びに応用
EP21814433.5A EP4156209A4 (en) 2020-05-27 2021-05-24 NDFEB MAGNET, PRODUCTION METHOD THEREOF AND APPLICATION THEREOF
US17/999,989 US20230207165A1 (en) 2020-05-27 2021-05-24 Neodymium-iron-boron magnet, preparation method and use thereof
PCT/CN2021/095528 WO2021238867A1 (zh) 2020-05-27 2021-05-24 一种钕铁硼磁体及其制备方法和应用
KR1020227042249A KR20230006556A (ko) 2020-05-27 2021-05-24 NdFeB 자석 및 이의 제조 방법 및 응용

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010464304.9A CN111653404B (zh) 2020-05-27 2020-05-27 一种钕铁硼磁体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111653404A true CN111653404A (zh) 2020-09-11
CN111653404B CN111653404B (zh) 2022-11-15

Family

ID=72348707

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010464304.9A Active CN111653404B (zh) 2020-05-27 2020-05-27 一种钕铁硼磁体及其制备方法和应用

Country Status (6)

Country Link
US (1) US20230207165A1 (zh)
EP (1) EP4156209A4 (zh)
JP (1) JP7443570B2 (zh)
KR (1) KR20230006556A (zh)
CN (1) CN111653404B (zh)
WO (1) WO2021238867A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112908601A (zh) * 2020-01-21 2021-06-04 福建省长汀金龙稀土有限公司 一种R-Fe-B系烧结磁体及其晶界扩散处理方法
CN113035556A (zh) * 2021-03-04 2021-06-25 江西金力永磁科技股份有限公司 一种磁体性能梯度分布的r-t-b磁体的制备方法
CN113096910A (zh) * 2021-04-06 2021-07-09 江西金力永磁科技股份有限公司 一种性能呈梯度分布的片状磁体及其制备方法
CN113224862A (zh) * 2021-06-11 2021-08-06 华域汽车电动系统有限公司 局部扩散电机磁钢
WO2021238867A1 (zh) * 2020-05-27 2021-12-02 烟台正海磁性材料股份有限公司 一种钕铁硼磁体及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114823025B (zh) * 2022-05-10 2024-02-02 江西金力永磁科技股份有限公司 一种低涡流损耗钕铁硼磁体
CN117275928A (zh) * 2023-11-23 2023-12-22 中科三环(赣州)新材料有限公司 一种多次增重多次扩散的晶界扩散方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224413A (ja) * 2008-03-13 2009-10-01 Inter Metallics Kk NdFeB焼結磁石の製造方法
CN101939804A (zh) * 2008-12-04 2011-01-05 信越化学工业株式会社 Nd基烧结磁体及其制造方法
CN106463223A (zh) * 2014-06-02 2017-02-22 因太金属株式会社 RFeB系磁体及RFeB系磁体的制造方法
CN108831655A (zh) * 2018-07-20 2018-11-16 烟台首钢磁性材料股份有限公司 一种提高钕铁硼烧结永磁体矫顽力的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031781A (ja) * 2002-06-27 2004-01-29 Nissan Motor Co Ltd 希土類磁石およびその製造方法、ならびに希土類磁石を用いてなるモータ
TWI413136B (zh) 2005-03-23 2013-10-21 Shinetsu Chemical Co 稀土族永久磁體
JP4702546B2 (ja) 2005-03-23 2011-06-15 信越化学工業株式会社 希土類永久磁石
JP2009088206A (ja) 2007-09-28 2009-04-23 Tdk Corp 希土類磁石の製造方法
JP2010119190A (ja) 2008-11-12 2010-05-27 Toyota Motor Corp 磁石埋め込み型モータ用ロータと磁石埋め込み型モータ
CN105374486A (zh) * 2015-12-08 2016-03-02 宁波韵升股份有限公司 一种高性能烧结钕铁硼磁体
CN105489369A (zh) * 2015-12-29 2016-04-13 浙江东阳东磁稀土有限公司 一种提高钕铁硼磁体矫顽力的方法
JP2019508879A (ja) 2016-01-25 2019-03-28 ユーティー−バッテル・エルエルシー 選択的な表面改質を有するネオジム−鉄−ボロン磁石およびその製造方法
CN106205992B (zh) * 2016-06-28 2019-05-07 上海交通大学 高矫顽力及低剩磁温度敏感性的烧结钕铁硼磁体及制备
CN106328367B (zh) 2016-08-31 2017-11-24 烟台正海磁性材料股份有限公司 一种R‑Fe‑B系烧结磁体的制备方法
JP2018056188A (ja) 2016-09-26 2018-04-05 信越化学工業株式会社 R−Fe−B系焼結磁石
JP7251917B2 (ja) 2016-12-06 2023-04-04 Tdk株式会社 R-t-b系永久磁石
US10672544B2 (en) 2016-12-06 2020-06-02 Tdk Corporation R-T-B based permanent magnet
JP2018107928A (ja) 2016-12-27 2018-07-05 トヨタ自動車株式会社 Ipmモータ用ロータ
US11152142B2 (en) * 2018-03-29 2021-10-19 Tdk Corporation R-T-B based permanent magnet
US11527340B2 (en) * 2018-07-09 2022-12-13 Daido Steel Co., Ltd. RFeB-based sintered magnet
CN111653404B (zh) * 2020-05-27 2022-11-15 烟台正海磁性材料股份有限公司 一种钕铁硼磁体及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224413A (ja) * 2008-03-13 2009-10-01 Inter Metallics Kk NdFeB焼結磁石の製造方法
CN101939804A (zh) * 2008-12-04 2011-01-05 信越化学工业株式会社 Nd基烧结磁体及其制造方法
CN106463223A (zh) * 2014-06-02 2017-02-22 因太金属株式会社 RFeB系磁体及RFeB系磁体的制造方法
CN108831655A (zh) * 2018-07-20 2018-11-16 烟台首钢磁性材料股份有限公司 一种提高钕铁硼烧结永磁体矫顽力的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112908601A (zh) * 2020-01-21 2021-06-04 福建省长汀金龙稀土有限公司 一种R-Fe-B系烧结磁体及其晶界扩散处理方法
WO2021147908A1 (zh) * 2020-01-21 2021-07-29 厦门钨业股份有限公司 一种R-Fe-B系烧结磁体及其晶界扩散处理方法
CN112908601B (zh) * 2020-01-21 2024-03-19 福建省金龙稀土股份有限公司 一种R-Fe-B系烧结磁体及其晶界扩散处理方法
WO2021238867A1 (zh) * 2020-05-27 2021-12-02 烟台正海磁性材料股份有限公司 一种钕铁硼磁体及其制备方法和应用
CN113035556A (zh) * 2021-03-04 2021-06-25 江西金力永磁科技股份有限公司 一种磁体性能梯度分布的r-t-b磁体的制备方法
CN113096910A (zh) * 2021-04-06 2021-07-09 江西金力永磁科技股份有限公司 一种性能呈梯度分布的片状磁体及其制备方法
CN113224862A (zh) * 2021-06-11 2021-08-06 华域汽车电动系统有限公司 局部扩散电机磁钢

Also Published As

Publication number Publication date
KR20230006556A (ko) 2023-01-10
JP2023527854A (ja) 2023-06-30
WO2021238867A1 (zh) 2021-12-02
JP7443570B2 (ja) 2024-03-05
CN111653404B (zh) 2022-11-15
US20230207165A1 (en) 2023-06-29
EP4156209A1 (en) 2023-03-29
EP4156209A4 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
CN111653404B (zh) 一种钕铁硼磁体及其制备方法和应用
JP7220330B2 (ja) R-t-b系永久磁石材料、製造方法、並びに応用
US20220285059A1 (en) Neodymium-iron-boron magnet material, raw material composition, preparation method therefor and use thereof
CN106601407B (zh) 提高钕铁硼磁体矫顽力的方法
TWI755152B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
KR102589802B1 (ko) 네오디뮴철붕소 자성체재료, 원료조성물과 제조방법 및 응용
JP7253071B2 (ja) R-t-b系永久磁石材料、製造方法、並びに応用
CN111613410B (zh) 钕铁硼磁体材料、原料组合物、制备方法、应用
CN111180191A (zh) 一种制备高性能烧结钕铁硼磁体的方法
EP3667685A1 (en) Heat-resistant neodymium iron boron magnet and preparation method therefor
CN111613403A (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2023001189A1 (zh) 一种高性能烧结钕铁硼磁体及其制备方法
CN111243811B (zh) 一种钕铁硼材料及其制备方法和应用
WO2023280259A1 (zh) 一种耐腐蚀、高性能钕铁硼烧结磁体及其制备方法和用途
CN111312463A (zh) 一种稀土永磁材料及其制备方法和应用
CN113921218B (zh) 一种高剩磁钕铁硼磁体及其制备方法和应用
CN109243746A (zh) 一种低温延时烧结而成的超细晶烧结永磁体及其制备方法
CN114284018A (zh) 钕铁硼磁体及其制备方法和应用
CN114927302A (zh) 稀土磁体及其制备方法
CN113936879A (zh) 一种含La的R-T-B稀土永磁体
CN113539600A (zh) 一种高磁能积和高矫顽力的含Dy稀土永磁体及制备方法
CN111613404A (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN111210961A (zh) 一种铈铁铝合金、含铈稀土永磁体及其制备方法
CN110289161A (zh) 一种低稀土含量的钕铁硼磁体的制备方法
US20210241948A1 (en) Rare-earth cobalt permanent magnet, manufacturing method therefor, and device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant