CN111564498A - 一种隧穿晶体管的漏端负交叠区自对准制备方法 - Google Patents

一种隧穿晶体管的漏端负交叠区自对准制备方法 Download PDF

Info

Publication number
CN111564498A
CN111564498A CN202010401204.1A CN202010401204A CN111564498A CN 111564498 A CN111564498 A CN 111564498A CN 202010401204 A CN202010401204 A CN 202010401204A CN 111564498 A CN111564498 A CN 111564498A
Authority
CN
China
Prior art keywords
side wall
drain
gate
thick
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010401204.1A
Other languages
English (en)
Inventor
黄芊芊
李一庆
杨勐譞
王志轩
叶乐
蔡一茂
黄如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202010401204.1A priority Critical patent/CN111564498A/zh
Publication of CN111564498A publication Critical patent/CN111564498A/zh
Priority to US17/636,980 priority patent/US20230058216A1/en
Priority to PCT/CN2020/132725 priority patent/WO2021227448A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • H01L29/66507Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide providing different silicide thicknesses on the gate and on source or drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823443MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes silicided or salicided gate conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66356Gated diodes, e.g. field controlled diodes [FCD], static induction thyristors [SITh], field controlled thyristors [FCTh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种隧穿场效应晶体管的自对准栅漏负交叠区自对准制备方法,属于CMOS超大集成电路(ULSI)中的场效应晶体管逻辑器件与电路领域。该方法在隧穿晶体管栅两侧设计不对称侧墙的结构,其中栅靠近源端的一侧为薄侧墙,栅靠近漏端的一侧为厚侧墙。本发明合理利用了标准CMOS工艺中存在的薄侧墙与厚侧墙,将源端薄侧墙作为晶体管源区注入的硬掩模,而漏端厚侧墙作为晶体管漏区注入的硬掩模,没有引入特殊材料与特殊工艺,实现了对隧穿场效应晶体管(TFET)双极效应的抑制,同时优化了器件涨落特性。可以保证TFET能与标准CMOS器件混片集成,实现更为复杂多元的电路功能。

Description

一种隧穿晶体管的漏端负交叠区自对准制备方法
技术领域
本发明属于CMOS超大集成电路(ULSI)中的场效应晶体管逻辑器件与电路领域,具体涉及一种隧穿晶体管的漏端负交叠区的设计与制备。
背景技术
随着集成电路的不断发展,器件特征尺寸不断减小,芯片功耗密度不断增加,电路功耗逐渐成为限制集成电路等比例缩小的重要因素。为了降低电路功耗,较好的方法是降低电源电压。然而MOSFET的亚阈值斜率受限于热电势,在室温下不能低于60mV/dec,在维持一定驱动能力的情况下,进一步降低电源电压会导致器件泄漏电流指数上升,带来额外的功耗代价,在器件进入纳米尺度后影响尤其严重。而隧穿场效应晶体管(TFET)利用带带隧穿机制,摆脱了热电势的限制,能实现超陡的亚阈值斜率,能在低压下实现高的电流开关比,被认为是未来有可能取代MOSFET的低功耗器件。
TFET是一个受栅控制的反偏P-I-N结,它有着低关态电流,陡亚阈值斜率等特点,且能与传统CMOS工艺兼容。然而考虑到TFET独特的器件结构与电学特性,TFET的工艺制备需要在传统CMOS工艺上加以改进。其中对TFET器件电学性能影响较大的一种特性是双极效应。它是指当器件施加反偏栅电压时器件会在漏端发生额外的隧穿,引入额外的双极电流。这有可能会带来器件的泄漏电流提升,开关比下降等问题。传统抑制双极效应的方法是将漏端注入框平移,使沟道与漏端之间保留一部分的本征区,称之为栅漏负交叠区(underlap区)。然而这种方法会使器件掺杂严重依赖于光刻精度,会引入额外的涨落源,不利于器件一致性,影响TFET器件的大规模集成应用。并且使用这种方法后续不利于对器件进行金属硅化物处理,从而影响器件接触,也不利于杂质分凝等技术的使用。因此,如何自对准地实现栅漏underlap区,优化双极效应的同时维护器件一致性,成为常规TFET器件设计上一个急需解决的问题。
发明内容
本发明的目的在于提出一种隧穿场效应晶体管的自对准栅漏负交叠区自对准制备方法。该方法有效利用了标准CMOS IC工艺中现有的工艺,能有效抑制器件双极效应并维持器件一致性,还有利于金属硅化物等先进工艺的引入使用。
一种隧穿晶体管的漏端负交叠区自对准结构制备方法,其特征是,包括以下步骤:
(1)衬底准备,有源区的隔离,阱掺杂与衬底预注入;
(2)生长栅介质材料,继而生长栅材料;
(3)通过光刻与刻蚀,形成栅图形;
(4)在栅图形边缘生长薄侧墙;
(5)在栅图形边缘继续生长厚侧墙;
(6)去除靠近源端的栅厚侧墙,保留源端栅薄侧墙;
(7)以光刻胶与漏端栅厚侧墙为掩模,离子注入形成器件的漏;
(8)以光刻胶与源端栅薄侧墙为掩模,离子注入另一种掺杂类型的杂质,形成器件的源;
(9)高温退火激活杂质,然后进入同CMOS一致的后道工序,包括淀积钝化层、开接触孔以及金属化,即可制得所述的具有漏端负交叠区自对准结构的隧穿场效应晶体管。
上述制备方法中,所述步骤(1)中的半导体衬底材料选自Si、Ge、SiGe、GaAs或其他II-VI,III-V和IV-IV族的二元或三元化合物半导体、绝缘体上的硅或绝缘体上的锗。
上述制备方法中,所述步骤(2)中的栅介质层材料选自SiO2、Si3N4和高K栅介质材料。
上述制备方法中,所述步骤(2)中的生长栅介质层的方法选自下列方法之一:常规热氧化、掺氮热氧化、化学气相淀积和物理气相淀积。
上述制备方法中,所述步骤(2)中的栅材料选自掺杂多晶硅、金属钴,镍以及其他金属或金属硅化物。
上述制备方法中,所述步骤(4)中的薄侧墙与步骤(5)中的厚侧墙采用相同或不同的侧墙材料。
上述制备方法中,侧墙材料选自氧化硅、氮化硅、碳化硅中的一种或多种叠层组合。
上述制备方法中,所述步骤(4)中的薄侧墙厚度约为5-10nm。
上述制备方法中,所述步骤(5)中的厚侧墙厚度约为40-60nm。
上述制备方法中,所述步骤(6)中的厚侧墙与薄侧墙间如果没有刻蚀终止层,可完全去除侧墙后再次生长薄侧墙。
与现有技术相比,本发明的技术效果:
本发明提出了在隧穿晶体管栅两侧设计不对称侧墙的结构。其中栅靠近源端的一侧为薄侧墙,栅靠近漏端的一侧为厚侧墙。本发明合理利用了标准CMOS工艺中存在的薄侧墙与厚侧墙,将源端薄侧墙作为晶体管源区注入的硬掩模,而漏端厚侧墙作为晶体管漏区注入的硬掩模,没有引入特殊材料与特殊工艺,可以保证TFET能与标准CMOS器件混片集成,实现更为复杂多元的电路功能。
本发明能有效地抑制双极效应,且不会因为金属硅化物等工艺引入新的非理想效应,可以伴随先进工艺进行等比例缩小。
本发明所使用的侧墙厚度能通过控制侧墙材料的生长与刻蚀时间与速率来控制,无需考虑光刻过程中的套刻偏差,且在片与片之间,die与die之间,器件与器件之间都有着较好的一致性。因此使用本发明进行自对准的源漏注入能极大地优化器件涨落特性,保证器件具有较好的一致性,有利于TFET的大规模集成设计应用。
附图说明
图1是本发明经过后道工序后的完整结构剖面示意图;
图2是在半导体衬底上形成STI隔离后的剖面示意图;
图3是生长完栅介质与栅材料并完成栅的图形化后的剖面示意图;
图4是生长完薄侧墙后的剖面示意图;
图5是生长完厚侧墙后的剖面示意图;
图6是去除源端厚侧墙后的剖面示意图;
图7是完成源漏离子注入后的剖面示意图;
图中:
1——半导体衬底; 2——STI隔离;
3——栅介质层; 4——栅;
5——薄侧墙; 6——厚侧墙;
7——源注入区; 8——漏注入区;
9——后道工序的钝化层; 10——后道工序的金属。
具体实施方式
下面通过实例对本发明做进一步说明。需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。
本发明制备方法的一具体实例包括图1至图7所示的工艺步骤:
1、在衬底掺杂浓度为轻掺杂、晶向为<100>的体硅衬底1上初始热氧化一层二氧化硅,厚度约10nm,并淀积一层氮化硅,厚度约100nm,之后STI刻蚀,并淀积隔离材料填充深孔后CMP,采用浅槽隔离技术制作有源区STI隔离2,然后湿法腐蚀去除氮化硅,如图2所示。
2、进行阱注入,掺杂元素为磷,掺杂剂量为1e13cm-2,掺杂能量为340keV。
3、漂去表面初始生长的二氧化硅,然后热生长一层栅介质层3,栅介质层为SiO2,厚度约为1.8nm;淀积栅材料4,栅材料为掺杂多晶硅层,厚度为100nm。进行多晶硅预注入,注入元素为磷,注入剂量为4e15cm-2,注入能量为6keV。光刻出栅图形,刻蚀栅材料4与栅介质层3直到体硅衬底1,如图3所示。
4、各向同性淀积生长8.5nm厚的氮化硅,然后各向异性刻蚀8.5nm厚的氮化硅。形成薄侧墙5。并进行30分钟800摄氏度热退火。如图4所示。
5、各向同性淀积生长9nm厚的二氧化硅,接着各向同性淀积生长42nm厚的氮化硅。各向异性刻蚀42nm厚的氮化硅,继而各向异性刻蚀9nm厚的二氧化硅,形成厚侧墙6,如图5所示。
6、淀积15nm厚的二氧化硅,光刻暴露源区,靠近漏端的栅区和厚侧墙受到光刻胶保护。各向同性过刻蚀15nm厚未受光刻胶保护的二氧化硅。去除光刻胶。各向同性过刻蚀42nm厚的氮化硅。各向同性过刻蚀9nm厚的二氧化硅。此时已去除源区厚侧墙,如图6所示。
7、分别进行源漏注入,注入掩膜版的一条边界位于栅的中线上。源区7注入离子为BF2 +,注入剂量为2e15cm-2,注入能量为5keV。漏区8注入元素为As,注入剂量为2e15cm-2,注入能量为5keV。进行一次快速热退火激活杂质。如图7所示。
8、依照CMOS后道工序生长后道的钝化层9和后道工序的金属10。如图1所示。
虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (10)

1.一种隧穿晶体管的漏端负交叠区自对准制备方法,其特征是,包括以下步骤:
(1)衬底准备,有源区的隔离,阱掺杂与衬底预注入;
(2)生长栅介质材料,继而生长栅材料;
(3)通过光刻与刻蚀,形成栅图形;
(4)在栅图形边缘生长薄侧墙;
(5)在栅图形边缘继续生长厚侧墙;
(6)去除靠近源端的栅厚侧墙,保留源端栅薄侧墙;
(7)以光刻胶与漏端栅厚侧墙为掩模,离子注入形成器件的漏;
(8)以光刻胶与源端栅薄侧墙为掩模,离子注入另一种掺杂类型的杂质,形成器件的源;
(9)高温退火激活杂质,然后进入同CMOS一致的后道工序,包括淀积钝化层、开接触孔以及金属化,即可制得具有漏端负交叠区自对准结构的隧穿场效应晶体管。
2.如权利要求1所述的隧穿晶体管的漏端负交叠区自对准制备方法,其特征是,所述步骤(1)中的半导体衬底材料选自Si、Ge、SiGe、GaAs或其他II-VI,III-V和IV-IV族的二元或三元化合物半导体、绝缘体上的硅或绝缘体上的锗。
3.如权利要求1所述的隧穿晶体管的漏端负交叠区自对准制备方法,其特征是,所述步骤(2)中的栅介质层材料选自SiO2、Si3N4和高K栅介质材料。
4.如权利要求1所述的隧穿晶体管的漏端负交叠区自对准制备方法,其特征是,所述步骤(2)中的生长栅介质层的方法选自下列方法之一:常规热氧化、掺氮热氧化、化学气相淀积和物理气相淀积。
5.如权利要求1所述的隧穿晶体管的漏端负交叠区自对准制备方法,其特征是,所述步骤(2)中的栅材料选自掺杂多晶硅、金属钴,镍以及其他金属或金属硅化物。
6.如权利要求1所述的隧穿晶体管的漏端负交叠区自对准制备方法,其特征是,所述步骤(4)的薄侧墙与步骤(5)中的厚侧墙采用相同或不同的侧墙材料。
7.如权利要求6所述的隧穿晶体管的漏端负交叠区自对准制备方法,其特征是,所述侧墙材料选自氧化硅、氮化硅、碳化硅中的一种或多种叠层组合。
8.如权利要求1所述的隧穿晶体管的漏端负交叠区自对准制备方法,其特征是,所述步骤(4)中的薄侧墙厚度为5-10nm。
9.如权利要求1所述的制备方法,其特征是,所述步骤(5)中的厚侧墙厚度为40-60nm 。
10.如权利要求1所述的隧穿晶体管的漏端负交叠区自对准制备方法,其特征是,所述步骤(6)中的厚侧墙与薄侧墙间没有刻蚀终止层,首先去除侧墙后再次生长薄侧墙。
CN202010401204.1A 2020-05-13 2020-05-13 一种隧穿晶体管的漏端负交叠区自对准制备方法 Pending CN111564498A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010401204.1A CN111564498A (zh) 2020-05-13 2020-05-13 一种隧穿晶体管的漏端负交叠区自对准制备方法
US17/636,980 US20230058216A1 (en) 2020-05-13 2020-11-30 A self-aligning preparation method for a drain end underlap region of tunnel field effect transistor
PCT/CN2020/132725 WO2021227448A1 (zh) 2020-05-13 2020-11-30 一种隧穿场效应晶体管的漏端负交叠区自对准制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010401204.1A CN111564498A (zh) 2020-05-13 2020-05-13 一种隧穿晶体管的漏端负交叠区自对准制备方法

Publications (1)

Publication Number Publication Date
CN111564498A true CN111564498A (zh) 2020-08-21

Family

ID=72070957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010401204.1A Pending CN111564498A (zh) 2020-05-13 2020-05-13 一种隧穿晶体管的漏端负交叠区自对准制备方法

Country Status (3)

Country Link
US (1) US20230058216A1 (zh)
CN (1) CN111564498A (zh)
WO (1) WO2021227448A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021227448A1 (zh) * 2020-05-13 2021-11-18 北京大学 一种隧穿场效应晶体管的漏端负交叠区自对准制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169900A (zh) * 2011-03-01 2011-08-31 清华大学 基于异质栅极功函数的隧穿场效应晶体管及其形成方法
WO2012152762A1 (en) * 2011-05-06 2012-11-15 Imec Tunnel field effect transistor device
CN103560153A (zh) * 2013-11-15 2014-02-05 中国科学院上海微系统与信息技术研究所 一种隧穿场效应晶体管及其制备方法
WO2018000133A1 (zh) * 2016-06-27 2018-01-04 华为技术有限公司 一种隧穿场效应晶体管及其制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005009023B4 (de) * 2005-02-28 2011-01-27 Advanced Micro Devices, Inc., Sunnyvale Verfahren zum Herstellen einer Gateelektrodenstruktur mit asymmetrischen Abstandselementen und Gateestruktur
CN102629627B (zh) * 2012-04-16 2014-08-06 清华大学 异质栅隧穿晶体管的形成方法
US8993425B2 (en) * 2012-12-18 2015-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Tunneling field effect transistor (TFET) formed by asymmetric ion implantation and method of making same
CN103560144B (zh) * 2013-11-13 2016-02-17 北京大学 抑制隧穿晶体管泄漏电流的方法及相应的器件和制备方法
CN104362095B (zh) * 2014-11-05 2017-12-01 北京大学 一种隧穿场效应晶体管的制备方法
CN110828563B (zh) * 2018-08-13 2023-07-18 中芯国际集成电路制造(上海)有限公司 隧穿场效应晶体管及其形成方法
CN110729355B (zh) * 2019-10-23 2021-04-27 电子科技大学 一种改善亚阈值摆幅的纵向隧穿场效应晶体管
CN111564498A (zh) * 2020-05-13 2020-08-21 北京大学 一种隧穿晶体管的漏端负交叠区自对准制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169900A (zh) * 2011-03-01 2011-08-31 清华大学 基于异质栅极功函数的隧穿场效应晶体管及其形成方法
WO2012152762A1 (en) * 2011-05-06 2012-11-15 Imec Tunnel field effect transistor device
CN103560153A (zh) * 2013-11-15 2014-02-05 中国科学院上海微系统与信息技术研究所 一种隧穿场效应晶体管及其制备方法
WO2018000133A1 (zh) * 2016-06-27 2018-01-04 华为技术有限公司 一种隧穿场效应晶体管及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.WAN ET AL: "Novel Bipolar-Enhanced Tunneling FET With Simulated High On-current", 《IEEE ELECTRON DEVICE LETTERS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021227448A1 (zh) * 2020-05-13 2021-11-18 北京大学 一种隧穿场效应晶体管的漏端负交叠区自对准制备方法

Also Published As

Publication number Publication date
WO2021227448A1 (zh) 2021-11-18
US20230058216A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
JP6211673B2 (ja) トリゲート・デバイス及び製造方法
US9793373B2 (en) Field effect transistor structure with abrupt source/drain junctions
US7687834B2 (en) Integrated circuit using complementary junction field effect transistor and MOS transistor in silicon and silicon alloys
TWI241718B (en) Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
US7474125B2 (en) Method of producing and operating a low power junction field effect transistor
US20010033000A1 (en) Field effect transistor structure with self-aligned raised source/drain extensions
JP3510924B2 (ja) Mosトランジスタの製造方法
US9018739B2 (en) Semiconductor device and method of fabricating the same
US8710557B2 (en) MOS transistor having combined-source structure with low power consumption and method for fabricating the same
JP2013545315A (ja) 高K/金属ゲートMOSFETを有するVt調整及び短チャネル制御のための構造体及び方法。
WO2014079218A1 (zh) 条形栅调制型隧穿场效应晶体管及其制备方法
EP1147552A1 (en) Field effect transistor structure with abrupt source/drain junctions
WO2023125894A1 (zh) 冷源肖特基晶体管及其制备工艺
WO2021227448A1 (zh) 一种隧穿场效应晶体管的漏端负交叠区自对准制备方法
CN102364690B (zh) 一种隧穿场效应晶体管及其制备方法
KR100586178B1 (ko) 쇼트키 장벽 관통 트랜지스터 및 그 제조방법
JPH05198804A (ja) 半導体装置及びその製造方法
WO2024138687A1 (zh) 混合导通机制围栅晶体管及其制作方法
WO2024138688A1 (zh) 混合导通机制鳍型栅场效应晶体管器件
CN111697052A (zh) 半导体结构及其形成方法
KR20010065174A (ko) 듀얼 게이트 구조의 반도체 메모리 소자 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200821

WD01 Invention patent application deemed withdrawn after publication