CN111511688B - 化合物 - Google Patents

化合物 Download PDF

Info

Publication number
CN111511688B
CN111511688B CN201880081264.0A CN201880081264A CN111511688B CN 111511688 B CN111511688 B CN 111511688B CN 201880081264 A CN201880081264 A CN 201880081264A CN 111511688 B CN111511688 B CN 111511688B
Authority
CN
China
Prior art keywords
equal
less
cobalt
electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880081264.0A
Other languages
English (en)
Other versions
CN111511688A (zh
Inventor
M.罗伯茨
P.布鲁斯
N.格里尼
郝嵘
F.金扬朱伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dyson Technology Ltd
Original Assignee
Dyson Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyson Technology Ltd filed Critical Dyson Technology Ltd
Publication of CN111511688A publication Critical patent/CN111511688A/zh
Application granted granted Critical
Publication of CN111511688B publication Critical patent/CN111511688B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种通式化合物,其中x等于或大于0.175且等于或小于0.325,并且y等于或大于0.05且等于或小于0.35。在另一个实施方式中,x等于零,并且y大于0.12且等于或小于0.4。所述化合物还被配制成在电化学电池中使用的正极。
Figure DDA0002541372130000011

Description

化合物
本发明涉及一组电活性正极化合物。更具体地,本发明涉及一组高容量富锂MC化合物。
常规的锂离子电池(battery)因用于制成正极(positive electrode,cathode)的材料的容量而在性能方面受限。包含镍锰钴氧化物的共混物的正极材料的富锂共混物在安全性和能量密度之间存在折衷。认识到,电荷储存在这样的正极材料内的过渡金属阳离子中。已经建议,如果电荷可储存在阴离子(例如氧)上,则能显著地提升正极材料的容量和由此的能量密度,减少对这样大量的过渡金属重离子的需要。然而,提供如下材料的挑战依旧存在:其可依赖于阴离子和阳离子两者的氧化还原化学性来储存电荷,并且经受住充电/放电循环,而不损害该材料的安全性或造成会使该材料分解的不期望的氧化还原反应。
在第一方面中,本发明提供如下通式的化合物:
Figure BDA0002541372110000011
其中x具有等于或大于0.175且等于或小于0.325的值;和,y具有等于或大于0.05且等于或小于0.35的值。
在第二方面中,本发明提供如下通式的化合物:
Figure BDA0002541372110000012
其中y具有等于或大于0.12且等于或小于0.4的值。
已经发现,可通过如下实现容量改善的化合物:减少过量的锂量,并且增加钴和/或镍的量。如上定义的特定化合物因钴和/或镍的氧化程度并还因晶格内氧根离子(oxideion)的氧化而展现在容量方面的大幅增加。在不希望局限于理论的情况下,认识到,特定量的钴和/或镍取代(替换)的存在实现氧的氧化还原活性,并且因此改善该材料的电化学容量。
另外,当与现有技术的过渡金属取代的NMC富锂材料相比时,本发明的化合物在电化学循环期间展现改善的稳定性。分子氧的放出(evolution)普遍存在于如下的富锂材料第三行过渡金属氧化物(Li1+xM1-xO2,其中M为Ti、V、Cr、Mn、Fe、Co、Ni、Cu或Zn):其中锂已经被过渡金属离子的一些所交换。这些材料通常依赖于氧的氧化还原来改善它们的电荷容量(charge capacity)性质。均质材料可遭受分子氧在循环期间因氧根阴离子的氧化还原而从晶体结构逃逸。进而,这使该材料的容量和可用寿命缩减。
认识到,当由锂离子的移出(removal)导致的电荷不平衡因电子从氧阴离子移出而平衡时,所得的氧阴离子是不稳定的,这导致在充电循环期间不期望的氧化还原反应和分子氧气的放出。在不希望局限于理论的情况下,认识到,所述材料中相对于锂含量特定的钴和/或镍含量避免晶格内的欠键合(under-bonding),使得各氧阴离子仍键合到~3个阳离子。本发明的化学途径使用特定量的过渡金属调节晶格结构,其改善所述材料的容量并且提高所述材料的经过若干充电/放电循环的稳定性。
在实例中,x为0。也就是说,所述化合物的镍含量实际上为零。y(即钴含量)大于0.12。在一种甚至更具体的实例中,y可等于或大于0.2。已经证明,当y为等于或大于0.2时,显著改善所述材料的容量。另外,y可等于或小于0.4。认识到,高于该阈值,所述材料的容量下降到预期值。已经证明,当y为0.3时实现改善的容量。更特别地,y的值可以说是大于0.2且等于或小于0.4。更特别地,y的值可以说是大于0.2且等于或小于0.3。在两个具体实例中,y可等于0.2或0.3。当x为零时,x+y的值(即,y的值)可以说是0.2或0.3。
在替代性实例中,x具有大于0的值。也就是说,所述化合物包含镍级分。已经表明,镍的加入使在充电和放电循环期间从所述材料逃逸的分子氧的量减少。可以说,掺杂(doing)到富锂材料中的镍和钴的值与总量有关。这意味着,镍和钴掺杂的总量在这两种金属之间分配(即,x+y的函数值)。x可具有等于或大于0.175且等于或小于0.275的值;和,y具有等于或大于0.1且等于或小于0.35的值。x+y的值可等于或大于0.3。x值和y值两者均可大于0.13。更特别地,当x为0.175时,y具有等于或大于0.2且等于或小于0.35的值;当x为0.2时,y具有等于或大于0.15且等于或小于0.3的值;当x为0.225时,y具有等于或大于0.1且等于或小于0.25的值;当x为0.25时,y具有等于或大于0.05且等于或小于0.2的值,更特别地y具有等于或大于0.1且等于或小于0.2的值;当x为0.275时,y具有等于或大于0.05且等于或小于0.15的值,优选地y具有等于0.15的值;当x为0.3时,y具有等于或大于0.05且等于或小于0.1的值;和,当x为0.325时,y具有等于0.05的值。替代地,当y为0.05时,x具有等于或大于0.25且等于或小于0.325的值;当y为0.1时,x具有等于或大于0.225且等于或小于0.3的值,更特别地x具有等于或大于0.225且等于或小于0.25的值;当y为0.15时,x具有等于或大于0.2且等于或小于0.275的值;当y为0.2时,x具有等于或大于0.175且等于或小于0.25的值;当y为0.25时,x具有等于或大于0.175且等于或小于0.225的值;当y为0.3时,x具有等于或大于0.175且等于或小于0.2的值;和,当y为0.35时,x具有等于0.175的值。
本发明化合物可被限定为具有层状结构。典型地,层状结构已经显示出具有最高的能量密度。当以层状形式时,仅经钴掺杂的材料可进一步使用如下通式定义:aLi2MnO3·(1-a)LiCoO2,使得a可小于0.88。更优选地,a等于或大于0.7且等于或小于0.8。具体地,所述材料可为0.8Li2MnO3·0.2LiCoO2,或者所述材料可为0.7Li2MnO3·0.3LiCoO2。这些特定的层状结构展现改善的容量和提高的经过若干次充电循环的稳定性。
当以层状形式时,经镍-钴掺杂的材料可进一步使用如下通式定义:(1-a-b)Li2MnO3·aLiCoO2·bLiNi0.5Mn0.5O2(其中a=y;和b=2x),使得a等于或大于0.15且等于或小于0.2;且b为0.4。所关注的两种具体化合物为a=0.2b=0.4;和a=0.15b=0.4。特别地,所述材料可为0.45Li2MnO3·0.15LiCoO2·0.4LiNi0.5Mn0.5O2,或所述材料可为0.4Li2MnO3·0.2LiCoO2·0.4LiNi0.5Mn0.5O2。这些特定的层状结构呈现改善的容量和提高的在经过若干次充电循环的稳定性。
在第二方面中,本发明提供包括第一方面的化合物的电极。在一种具体实例中,所述电极包括3种级分(fraction)。第一种为如前面所述的本发明化合物(质量百分数在60-98%不等,然而,典型地为70%、75%、80%、90%和95%)。电极的第二种级分包括电活性添加剂例如碳(例如Super P(RTM))和炭黑,其占除第一种级分外的其余质量分数的60-80%。第三种级分典型地为聚合物粘合剂例如PVDF、PTFE、NaCMC和海藻酸钠。在某种情形中,可包括另外的级分并且总百分数可变化。通过引入电活性添加剂可改善正极材料的总体电化学性能,并且通过加入改善正极材料的内聚力和该材料对特定基底的粘附力的材料还可改善所得正极的结构性质。
在第三方面中,本发明提供包括根据以上描述的正极、电解质和负极的电化学电池(electrochemical cell)。
为了使本发明可更容易地被理解,现将通过示例的方式参考附图描述本发明的一种实施方式,在图中:
图1显示按照实施例1的合成材料的粉末X-射线衍射图案;
图2显示按照实施例1的合成材料的第一次循环的恒电流负荷曲线;
图3显示按照实施例1的两种替代性合成材料的另外的粉末X-射线衍射图案;
图4显示按照实施例1的两种替代性合成材料的第一次循环的恒电流负荷曲线、和经过若干循环的容量测量;
图5显示按照实施例1的对比性材料的第一次循环的恒电流负荷曲线;
图6显示绘制了本发明材料以30℃、C/10、相对于Li/Li+为2-4.8V时在放电期间的容量和能量图的三元等高线(ternary contour);
图7显示绘制了本发明材料以55℃、C/10、相对于Li/Li+为2-4.8V时在放电期间的容量和能量图的三元等高线;和
图8显示绘制了本发明材料以30℃、C/10、相对于Li/Li+为2-4.8V时在放电期间气体漏失(gas loss)的三元等高线。
现将参考以下实施例对本发明进行说明。
实施例1–经钴和钴-镍取代的富锂材料的合成
对于仅用钴掺杂的材料(即,x=0),使用甲醛-间苯二酚溶胶凝胶合成途径合成具有通式
Figure BDA0002541372110000041
的材料,其中y=0,0.06,0.12,0.2和0.3;为了获得0.01mol的最终产物,计算所有的试剂比率。
将按化学计量的量的CH3COOLi·2H2O(98.0%,Sigma Aldrich(RTM))、(CH3COO)2Mn·4H2O(>99.0%,Sigma Aldrich(RTM))和(CH3COO)2Co·4H2O(99.0%Sigma Aldrich(RTM))溶解在50mL水中,其中0.25mmol的CH3COOLi·2H2O(99.0%,Sigma Aldrich(RTM))对应于相对于0.01摩尔所合成的材料5摩尔%的锂。同时,将0.1mol的间苯二酚(99.0%,Sigma Aldrich(RTM))溶解在0.15mol甲醛(36.5%w/w水溶液,Fluka(RTM))中。所有试剂在它们各自的溶剂中一旦完全溶解,就将这两种溶液混合并将混合物剧烈搅拌一小时。随后,将包含5%摩尔过量的锂的所得溶液在油浴中在80℃下加热直至形成均匀的白色凝胶。
最后,将凝胶在90℃干燥过夜并且然后在500℃以15小时和在800℃以20小时进行热处理。
对于用钴-镍掺杂的材料,使用甲醛-间苯二酚溶胶凝胶合成途径合成具有通式
Figure BDA0002541372110000051
的材料,其中在整个范围内,x具有等于或大于0.175且等于或小于0.275的值;和,y具有等于或大于0.1且等于或小于0.35的值。具体化合物以其中x=0.2y=0.2;和x=0.2y=0.15为代表。另外,为了对比,合成其中组成为x=0.275y=0.05的对比性实例。为了获得0.01mol的最终产物,计算所有的试剂比率。
将按化学计量的量的CH3COOLi·2H2O(98.0%,Sigma Aldrich(RTM)),(CH3COO)2Mn·4H2O(>99.0%,Sigma Aldrich(RTM))(CH3COO)2Ni·4H2O(99.0%Sigma Aldrich(RTM)和(CH3COO)2Co·4H2O(99.0%Sigma Aldrich(RTM))溶解在50mL水中,其中0.25mmolCH3COOLi·2H2O(99.0%,Sigma Aldrich(RTM))对应于相对于0.01摩尔合成材料5摩尔%的锂。同时,将0.1mol的间苯二酚(99.0%,Sigma Aldrich(RTM))溶解在0.15mol甲醛(36.5%w/w水溶液,Fluka(RTM))中。所有试剂在它们各自的溶剂中一旦完全溶解,就将这两种溶液混合并将混合物剧烈搅拌一小时。随后,将包含5%摩尔过量的锂的所得溶液在油浴中在80℃下加热直至形成均匀的白色凝胶。
最后,将凝胶在90℃干燥过夜并且然后在500℃以15小时和在800℃以20小时进行热处理。
实施例2–经钴和钴-镍取代的富锂材料的结构分析和表征
通过粉末X-射线衍射(PXRD)考察根据实施例1的材料,粉末X-射线衍射(PXRD)采用装备有9kW Cu旋转阳极的Rigaku SmartLab(RTM)实施。
图1(掺杂钴的)以及图3a和图3b(分别为掺杂镍-钴的组成1和2)显示所合成的材料的粉末X-射线衍射图案。它们以在过渡层中具有一定的阳离子排序的层状材料为特征。所有图案似乎显示与具有R-3m空间群的密堆积层状结构例如LiTMO2一致的主峰。在范围为20-30的2θ角度下观察到另外峰,其无法被归属为R-3m空间。该排序源于在Li+
Figure BDA0002541372110000052
Ni+2
Figure BDA0002541372110000053
和Mn4+
Figure BDA0002541372110000054
之间的原子半径和电荷密度的差异并且在低镍掺杂的氧化物的结构中似乎最强。所述峰不及在完美排序存在于其中的材料中(如在Li2MnO3中)那么强。观察不到由于杂质引起的多余峰的存在。
实施例3–经钴和钴-镍取代的富锂材料的电化学分析
通过用BioLogic VMP3和Maccor 4600系列的恒电位仪进行的恒电流循环对根据实施例1的所有材料进行电化学表征。将所有样品组装到相对于金属锂的不锈钢纽扣电池中,并且在相对于Li+/Li为2V和4.8V之间以100次循环在50mAg-1电流比率(current rate)下循环。所使用的电解质为LP30(LiPF6在1:1重量比的EC:DMC中的1M溶液)。
图2(掺杂钴的)和图4(分别为掺杂镍-钴的组成1和2)显示根据实施例1的材料在第一次循环的充电和随后的放电期间的电位曲线。两个样品均呈现不同长度的以相对于Li+/Li0的4.5V为中心的高电压平台、和在充电开始时的倾斜区域。该区域的长度可归因于镍从Ni+2向Ni+4和Co+3向Co+4的氧化并且似乎与仅对过渡金属的氧化还原活性负责的将被提取的锂(即电荷)的量良好一致。
在第一次放电期间,所述材料均未显示可逆平台的存在,表明在锂离子从各样品的晶格中提取(充电)和插入到其中(放电)期间所遵循的热力学途径的不同。
对于实施例1的材料,第一次循环呈现由于不可逆的高电位平台的存在引起的最低库伦效率值。库伦效率似乎在前五次循环内从第一次循环值(大约60-80%)快速地提升至高于98%的值。
下面详述按照实施例和本发明的展现技术效果的组成。
Figure BDA0002541372110000061
Figure BDA0002541372110000071
下面详述按照实施例和本发明的展现技术效果的组成。
组成 Li Mn Co Ni O
1 1.15 0.525 0.1 0.225 2
2 1.15 0.5 0.15 0.2 2
3 1.15 0.475 0.2 0.175 2
4 1.133333 0.516667 0.1 0.25 2
5 1.133333 0.491667 0.15 0.225 2
6 1.133333 0.466667 0.2 0.2 2
7 1.133333 0.441667 0.25 0.175 2
8 1.116667 0.483333 0.15 0.25 2
9 1.116667 0.458333 0.2 0.225 2
10 1.116667 0.433333 0.25 0.2 2
11 1.116667 0.408333 0.3 0.175 2
12 1.1 0.475 0.15 0.275 2
13 1.1 0.45 0.2 0.25 2
14 1.1 0.425 0.25 0.225 2
15 1.1 0.4 0.3 0.2 2
16 1.1 0.375 0.35 0.175 2
按照上述方法测试这些材料,并且结果作为绘制了本发明材料以30℃和55℃、C/10、相对于Li/Li+为2-4.8V在放电期间的容量和能量图的三元等高线显示在图6和图7中。
实施例4–在经镍-钴取代的富锂材料的第一次循环期间的气体放出
将根据本发明的各材料的一个圆片组装到EL-Cell PAT-Cell-Press(RTM)单个单元电池中。将所有样品相对于金属锂组装并且从OCV循环至相对于Li+/Li为4.8V并且然后以50mAg-1的电流比率放电到2V。所使用的电解质为LP30(LiPF6在1:1重量比的EC:DMC中的1M溶液)。该单元电池专门设计用于记录顶部空间内的压力变化,其于是可与从正极放出的气体的摩尔数关联。该电池中的压力传感器经由控制器箱连接,该控制器箱经由USB接口连接到计算机。然后,其经由由EL-Cell(RTM)提供的数据记录仪和EC-Link软件进行记录。该数据作为电压、电流、时间和压力记录。这些值可通过理想气体定律组合以计算循环时所放出的气体摩尔数,其可用于计算在环境条件下放出的气体体积。计算各材料在充电期间的总气体漏失并且制作作为图8的等高线图,其显示作为三元空间内的组成的函数的气体漏失。

Claims (6)

1.化合物,其为具有层状结构的正极材料,其中所述材料为0.45Li2MnO3·0.15LiCoO2·0.4LiNi0.5Mn0.5O2或者0.4Li2MnO3·0.2LiCoO2·0.4LiNi0.5Mn0.5O2
2.电极,其包含根据前述权利要求1所述的化合物。
3.根据权利要求2所述的电极,其中所述电极包含电活性添加剂和/或聚合物粘合剂。
4.根据权利要求3所述的电极,其中所述电活性添加剂选自碳或炭黑的至少一种。
5.根据权利要求3或权利要求4所述的电极,其中所述聚合物粘合剂选自PVDF、PTFE、NaCMC或海藻酸钠的至少一种。
6.电化学单元电池,其包括根据权利要求2-5任一项所述的电极作为正极、电解质和负极。
CN201880081264.0A 2017-12-18 2018-12-18 化合物 Active CN111511688B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1721173.1 2017-12-18
GB1721173.1A GB2569388B (en) 2017-12-18 2017-12-18 Compound
PCT/GB2018/053655 WO2019122843A1 (en) 2017-12-18 2018-12-18 A compound

Publications (2)

Publication Number Publication Date
CN111511688A CN111511688A (zh) 2020-08-07
CN111511688B true CN111511688B (zh) 2023-04-25

Family

ID=61009164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880081264.0A Active CN111511688B (zh) 2017-12-18 2018-12-18 化合物

Country Status (7)

Country Link
US (1) US11967711B2 (zh)
EP (1) EP3728127A1 (zh)
JP (1) JP7101802B2 (zh)
KR (1) KR102401394B1 (zh)
CN (1) CN111511688B (zh)
GB (1) GB2569388B (zh)
WO (1) WO2019122843A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2566473B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
GB2566472B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
GB2569392B (en) 2017-12-18 2022-01-26 Dyson Technology Ltd Use of aluminium in a cathode material
GB2569387B (en) * 2017-12-18 2022-02-02 Dyson Technology Ltd Electrode
GB2569390A (en) 2017-12-18 2019-06-19 Dyson Technology Ltd Compound
KR20220014395A (ko) 2020-07-24 2022-02-07 주식회사 엘지화학 광변조 디바이스

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404635A (zh) * 2000-11-20 2003-03-19 中央电气工业株式会社 非水电解质二次电池及其正极活性材料
CN1458706A (zh) * 2002-05-15 2003-11-26 中国科学院成都有机化学研究所 锂离子蓄电池正极材料及合成方法
CN1464573A (zh) * 2002-06-27 2003-12-31 中国科学院成都有机化学研究所 一种锂离子蓄电池正极材料LixNi1-yMyO2及其制备方法
WO2011052607A1 (ja) * 2009-10-29 2011-05-05 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極材料の製造方法
CN102074700A (zh) * 2010-12-09 2011-05-25 深圳市贝特瑞新能源材料股份有限公司 层状三元正极材料及其制备方法
CN103887562A (zh) * 2012-12-21 2014-06-25 三星Sdi株式会社 电解质添加剂和含其的电解质及可再充电锂电池

Family Cites Families (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761500A (en) 1970-05-26 1973-09-25 Owens Illinois Inc Liquid double alkoxides
BE785737A (fr) 1971-07-05 1973-01-02 Ici Ltd Fibres d'oxydes metalliques
US4047289A (en) 1974-10-15 1977-09-13 Polaroid Corporation Method for forming a slurry battery cell
US3993508A (en) 1975-06-20 1976-11-23 Polaroid Corporation Method for manufacturing flat batteries
US4299986A (en) 1978-11-15 1981-11-10 Anic, S.P.A. Method of reducing organic compounds with mixed hydride alkoxy derivatives of aluminum and alkaline earth metals
IT1112971B (it) 1979-04-04 1986-01-20 Anic Spa Processo per la sintesi di alcossialanati di metalli alcalino-terrosi
JPS5796472A (en) 1980-12-06 1982-06-15 Hitachi Maxell Ltd Manufacture of solid electrolytic cell
GB2128604A (en) 1982-10-19 1984-05-02 Harold Garton Emblem Aluminium alkoxide derivates
JPS6421870A (en) 1987-07-15 1989-01-25 Matsushita Electric Ind Co Ltd Manufacture of solid electrolyte cell
FR2657552B1 (fr) 1990-01-30 1994-10-21 Elf Aquitaine Procede et dispositif de decoupe d'un ensemble multicouche constitue d'une pluralite de couches minces.
US5136046A (en) 1990-09-28 1992-08-04 Ethyl Corporation Preparation of amine alanes
JPH04269721A (ja) 1991-02-26 1992-09-25 Sekisui Fine Chem Kk 表面が改質されたポリマービーズ及びその製造方法
DE4227720C2 (de) 1991-09-18 1998-05-20 Fraunhofer Ges Forschung Verfahren zur Herstellung von Beschichtungen aus Spinell sowie Verwendung der danach hergestellten Träger
US5411592A (en) 1994-06-06 1995-05-02 Ovonic Battery Company, Inc. Apparatus for deposition of thin-film, solid state batteries
DE4425067A1 (de) 1994-07-15 1996-01-18 Degussa Verfahren zur Herstellung optisch aktiver, 4-substituierter (S)-2-Oxazolidinone, neue (S)-2-Oxazolidinone, neue optisch aktive (S)-Aminoalkohole sowie Verwendung dieser Verbindungen
US5718989A (en) 1995-12-29 1998-02-17 Japan Storage Battery Co., Ltd. Positive electrode active material for lithium secondary battery
JP3897387B2 (ja) 1995-12-29 2007-03-22 株式会社ジーエス・ユアサコーポレーション リチウム二次電池用正極活物質の製造方法
US6616714B1 (en) 1998-09-14 2003-09-09 Hydro-Quebec Process for cutting polymer electrolyte multi-layer batteries and batteries obtained thereby
JP4701463B2 (ja) 1998-11-05 2011-06-15 パナソニック株式会社 電池用電極板の活物質除去方法
US20020110733A1 (en) 2000-08-07 2002-08-15 Johnson Lonnie G. Systems and methods for producing multilayer thin film energy storage devices
US6660432B2 (en) 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
JP2002343342A (ja) 2001-05-22 2002-11-29 Matsushita Electric Ind Co Ltd 二次電池電極とその製造方法
JP2003226955A (ja) 2002-02-05 2003-08-15 Yaskawa Electric Corp 表面改質方法及びその装置
US6923837B2 (en) 2002-02-26 2005-08-02 Lithium Power Technologies, Inc. Consecutively wound or stacked battery cells
US7205072B2 (en) 2002-11-01 2007-04-17 The University Of Chicago Layered cathode materials for lithium ion rechargeable batteries
KR100564744B1 (ko) 2003-05-07 2006-03-27 한국전자통신연구원 리튬 이차전지용 리튬-코발트-망간계 산화물 및 그 제조방법
WO2004107480A2 (en) 2003-05-28 2004-12-09 National Research Council Of Canada Lithium metal oxide electrodes for lithium cells and batteries
KR100560540B1 (ko) 2003-07-18 2006-03-15 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
JP2005100947A (ja) 2003-08-21 2005-04-14 Mitsubishi Materials Corp 非水二次電池用正極材料質及びその製造方法並びにこれを用いた非水二次電池
FR2860922B1 (fr) 2003-10-10 2009-07-31 Cit Alcatel Matiere electrochimiquement active pour electrode positive de generateur electrochimique rechargeable au lithium
JP4168402B2 (ja) 2003-10-24 2008-10-22 日立金属株式会社 リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
FR2874128B1 (fr) 2004-08-03 2006-10-13 Commissariat Energie Atomique Microbatterie comportant des connexions traversantes et procede de realisation d'une telle microbatterie
JP4923397B2 (ja) 2004-09-06 2012-04-25 日産自動車株式会社 非水電解質リチウムイオン二次電池用正極材料およびその製造方法
US7276724B2 (en) 2005-01-20 2007-10-02 Nanosolar, Inc. Series interconnected optoelectronic device module assembly
DE602005018543D1 (de) 2004-12-28 2010-02-04 Boston Power Inc Lithiumionen-sekundärbatterie
JP5072242B2 (ja) 2005-03-17 2012-11-14 パナソニック株式会社 非水電解液二次電池
FR2890241B1 (fr) 2005-08-25 2009-05-22 Commissariat Energie Atomique Materiau d'electrode positive haute tension de structure spinelle a base de nickel et de manganese pour accumulateurs au lithium
EP2434567A3 (en) 2006-07-18 2012-07-25 Cymbet Corporation Method and apparatus for solid-state microbattery photolithographic manufacture, singulation and passivation
WO2008086041A1 (en) 2007-01-10 2008-07-17 Nanoexa, Inc. Lithium batteries with nano-composite positive electrode material
KR20080079058A (ko) 2007-02-26 2008-08-29 엘지전자 주식회사 박막형 태양전지 모듈과 그의 제조방법
US7862627B2 (en) 2007-04-27 2011-01-04 Front Edge Technology, Inc. Thin film battery substrate cutting and fabrication process
KR100927244B1 (ko) 2007-10-13 2009-11-16 주식회사 엘지화학 리튬 이차전지용 양극 활물질
KR101587954B1 (ko) 2007-10-25 2016-01-22 어플라이드 머티어리얼스, 인코포레이티드 박막 배터리들의 대량 생산을 위한 방법
CN101855755B (zh) 2007-11-12 2015-04-15 户田工业株式会社 非水电解液二次电池用Li-Ni类复合氧化物颗粒粉末及其制造方法,和非水电解质二次电池
EP2278642B1 (en) 2007-11-12 2013-01-16 GS Yuasa International Ltd. Method for producing an active material for lithium secondary battery and a lithium secondary battery
JP5007677B2 (ja) 2008-01-31 2012-08-22 日本ケミコン株式会社 固体電解コンデンサ及びその製造方法
JP5120026B2 (ja) 2008-03-31 2013-01-16 日本ケミコン株式会社 固体電解コンデンサ及びその製造方法
US8153301B2 (en) 2008-07-21 2012-04-10 3M Innovative Properties Company Cathode compositions for lithium-ion electrochemical cells
US20110291043A1 (en) 2008-09-24 2011-12-01 The Regents Of The University Of California Aluminum Substituted Mixed Transition Metal Oxide Cathode Materials for Lithium Ion Batteries
FR2937633B1 (fr) 2008-10-24 2010-11-19 Saft Groupe Sa Materiau d'electrode positive pour accumulateur lithium-ion
FR2943181B1 (fr) 2009-03-16 2011-05-13 Commissariat Energie Atomique Microbatterie au lithium et son procede de fabrication
JP5247570B2 (ja) 2009-04-14 2013-07-24 株式会社アルバック 薄膜リチウム二次電池製造装置及び薄膜リチウム二次電池製造方法
CN101562245B (zh) 2009-05-22 2011-01-19 北京工业大学 一种高倍率富锂正极材料的改性方法
KR20110019574A (ko) 2009-08-20 2011-02-28 삼성에스디아이 주식회사 양극활물질, 이를 채용한 양극과 리튬 전지 및 이의 제조방법
US8464419B2 (en) 2009-09-22 2013-06-18 Applied Materials, Inc. Methods of and factories for thin-film battery manufacturing
US8580332B2 (en) 2009-09-22 2013-11-12 Applied Materials, Inc. Thin-film battery methods for complexity reduction
WO2011039132A1 (en) 2009-09-30 2011-04-07 Solvay Sa Positive active electrode material for lithium secondary battery, process for preparing the same and lithium secondary battery
CN101694876A (zh) 2009-10-22 2010-04-14 江西江特锂电池材料有限公司 富锂锰基正极材料及其制备方法
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
JP2011108603A (ja) 2009-11-20 2011-06-02 Ulvac Japan Ltd 薄膜リチウム二次電池及び薄膜リチウム二次電池の形成方法
US8956761B2 (en) 2009-11-30 2015-02-17 Oerlikon Advanced Technologies Ag Lithium ion battery and method for manufacturing of such battery
US20120225199A1 (en) * 2010-02-05 2012-09-06 International Battery, Inc. Current collector coating for li-ion battery cells using aqueous binder
KR101390533B1 (ko) 2010-02-09 2014-04-30 도요타지도샤가부시키가이샤 비수계 전해질 이차 전지용 정극 활성 물질, 그의 제조 방법, 및 상기 정극 활성 물질을 이용한 비수계 전해질 이차 전지
WO2011109457A2 (en) 2010-03-03 2011-09-09 Board Of Regents, The University Of Texas System High capacity layered oxide cathodes with enhanced rate capability
JP5574195B2 (ja) * 2010-03-19 2014-08-20 トヨタ自動車株式会社 リチウム二次電池および該リチウム二次電池用正極活物質
DE102010029282A1 (de) 2010-05-25 2011-12-01 Robert Bosch Gmbh Verfahren und Vorrichtung zur Herstellung einer Dünnschichtbatterie
TWI550938B (zh) 2010-06-14 2016-09-21 鴻海精密工業股份有限公司 鋰離子電池正極材料及其製備方法
US9385395B2 (en) 2010-10-18 2016-07-05 Microvast, Inc. Continuous prismatic cell stacking system and method
CN102054986B (zh) 2010-11-16 2013-04-10 中国科学院宁波材料技术与工程研究所 微波法制备的超高容量锂离子电池正极材料及其方法
EP2641289B1 (en) 2010-11-17 2020-03-18 Uchicago Argonne, LLC, Operator Of Argonne National Laboratory Electrode structures and surfaces for li batteries
DE102010044080A1 (de) 2010-11-17 2012-05-24 Varta Microbattery Gmbh Herstellungsverfahren für Elektroden
JP5662132B2 (ja) 2010-12-17 2015-01-28 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウムイオン二次電池
US9130238B2 (en) 2011-06-10 2015-09-08 Applied Materials, Inc. Methods of and hybrid factories for thin-film battery manufacturing
EP2721689B1 (en) 2011-06-17 2018-05-09 Applied Materials, Inc. Thin film battery fabrication with mask-less electrolyte deposition
US20140007418A1 (en) 2011-06-17 2014-01-09 Applied Materials, Inc. Mask-Less Fabrication of Thin Film Batteries
EP2741354B1 (en) 2011-08-05 2016-11-16 Asahi Glass Company, Limited Cathode active material for lithium-ion secondary battery
WO2013035519A1 (ja) 2011-09-09 2013-03-14 株式会社 村田製作所 全固体電池およびその製造方法
WO2013044114A1 (en) 2011-09-21 2013-03-28 Itn Energy Systems, Inc. Architectures for solid state batteries
KR101414955B1 (ko) 2011-09-26 2014-07-07 주식회사 엘지화학 안전성 및 수명특성이 향상된 양극활물질 및 이를 포함하는 리튬 이차전지
KR101920485B1 (ko) 2011-09-26 2018-11-21 전자부품연구원 리튬 이차전지용 양극 활물질의 전구체, 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
KR101920484B1 (ko) 2011-09-26 2019-02-11 전자부품연구원 리튬 이차전지용 양극 활물질의 전구체 및 그의 제조방법, 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20130033154A (ko) 2011-09-26 2013-04-03 전자부품연구원 리튬 이차전지용 양극 활물질, 그의 제조방법 및 그를 포함하는 리튬이차전지
CN103035900A (zh) 2011-10-10 2013-04-10 北大先行科技产业有限公司 一种高容量富锂正极材料及其制备方法
WO2013118659A1 (ja) 2012-02-06 2013-08-15 日本電気株式会社 リチウムイオン電池およびその製造方法
CN104221192B (zh) 2012-03-27 2017-01-18 Tdk株式会社 锂离子二次电池用活性物质和锂离子二次电池
JP5601337B2 (ja) 2012-03-27 2014-10-08 Tdk株式会社 活物質及びリチウムイオン二次電池
DE102012208010A1 (de) 2012-05-14 2013-11-14 Robert Bosch Gmbh Verfahren zur Herstellung einer Energiezelle und Vorrichtung zum Durchführen desselben
JP5825436B2 (ja) 2012-05-30 2015-12-02 エルジー・ケム・リミテッド 電極タブ接合性に優れた電極組立体、これを含む電池セル、デバイス及びその製造方法
TWI549336B (zh) 2012-06-01 2016-09-11 輔仁大學學校財團法人輔仁大學 鋰鎳鈷錳正極材料粉體
CN103490094B (zh) 2012-06-11 2016-02-10 丰田自动车株式会社 用于镁电池的电解液及含有该电解液的镁电池
FR2993101B1 (fr) 2012-07-06 2015-07-17 Commissariat Energie Atomique Procede d'assemblage et d'encapsulation de microbatteries au lithium et microbatteries ainsi obtenue
US9325030B2 (en) 2012-09-28 2016-04-26 Savannah River Nuclear Solutions, Llc High energy density battery based on complex hydrides
JP5861606B2 (ja) 2012-09-28 2016-02-16 ソニー株式会社 電解液、電解液の製造方法および電気化学デバイス
CN102881873B (zh) 2012-09-28 2015-05-13 广东中科信泰新能源有限公司 层状富锂材料的制备方法
JP2014112476A (ja) 2012-12-05 2014-06-19 Sony Corp 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR20150096756A (ko) 2012-12-19 2015-08-25 어플라이드 머티어리얼스, 인코포레이티드 수직 박막 배터리들의 마스크-리스 제조
CN103066274B (zh) 2013-01-23 2015-02-25 上海电力学院 一种富锂的多元复合锂离子电池正极材料及其制备方法
JP2014146458A (ja) 2013-01-28 2014-08-14 Toyota Motor Corp 全固体電池および電池システム
FR3002695B1 (fr) 2013-02-28 2021-04-02 I Ten Procede de fabrication d'une batterie monolithique entierement solide
US9437863B2 (en) * 2013-03-05 2016-09-06 GM Global Technologies Operations LLC Surface coating method and a method for reducing irreversible capacity loss of a lithium rich transitional oxide electrode
CN103311513B (zh) 2013-06-03 2017-04-05 青岛乾运高科新材料股份有限公司 一种高性能层状固溶体锂电正极材料及其制备方法
KR101794097B1 (ko) 2013-07-03 2017-11-06 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 그리고 이를 포함하는 리튬 이차 전지용 양극 및 리튬 이차 전지
US20150010872A1 (en) 2013-07-03 2015-01-08 Edmund S. Schindler Hot Surface Igniter With Fuel Assist
DE112014003191T5 (de) * 2013-07-10 2016-03-24 Gs Yuasa International Ltd. Gemischtes Aktivmaterial für einen Lithiumakkumulator, Lithiumakkumulator-Elektrode, Lithiumakkumulator und Energiespeichervorrichtung
WO2015007586A1 (en) 2013-07-19 2015-01-22 Basf Se Use of lithium alkoxyborates and lithium alkoxyaluminates as conducting salts in electrolytes of lithium sulphur batteries
CN103545519B (zh) 2013-07-19 2015-09-09 北京科技大学 一种碳包覆富锂正极材料及其制备方法
EP2827430A1 (en) 2013-07-19 2015-01-21 Basf Se Use of lithium alkoxyborates and lithium alkoxyaluminates as conducting salts in electrolytes of lithium ion batteries
FR3009134B1 (fr) 2013-07-29 2017-09-15 Commissariat Energie Atomique Materiaux d'electrode positive de batterie au lithium a base d'un oxyde lamellaire surlithie
US20150050522A1 (en) 2013-08-14 2015-02-19 Arumugam Manthiram Lithium-rich layered oxide cathodes and rechargeable batteries containing lithium-rich layered oxides
EP3036196A1 (en) 2013-08-19 2016-06-29 Dow Global Technologies LLC Improved lithium metal oxide rich cathode materials and method to make them
JP5883999B2 (ja) 2013-09-13 2016-03-15 三井金属鉱業株式会社 リチウムイオン電池用正極材料
KR101619604B1 (ko) 2013-09-26 2016-05-10 주식회사 엘지화학 전극조립체 및 이차전지의 제조방법
KR101738734B1 (ko) 2013-09-26 2017-06-08 주식회사 엘지화학 파우치형 이차전지
KR101613862B1 (ko) 2013-10-10 2016-04-20 미쓰이금속광업주식회사 리튬 과잉형 층상 리튬 금속 복합 산화물의 제조 방법
US20150180031A1 (en) 2013-12-23 2015-06-25 Uchicago Argonne, Llc Lithium metal oxide electrodes for lithium batteries
DE102014100574A1 (de) 2014-01-20 2015-07-23 Teamtechnik Maschinen Und Anlagen Gmbh Batteriezellenverbindung
US10290869B2 (en) 2014-03-20 2019-05-14 Washington University Doped lithium-rich layered composite cathode materials
US9748582B2 (en) 2014-03-31 2017-08-29 X Development Llc Forming an interconnection for solid-state batteries
CN103943844B (zh) 2014-04-04 2016-08-17 西安交通大学 一种无钴富锂锰基正极材料及其制备方法和应用
AR102033A1 (es) 2014-07-03 2017-02-01 Csir Producción de un material estratificado de óxido de litio-manganeso-níquel-cobalto
CN104241633B (zh) 2014-09-11 2017-09-29 北大先行科技产业有限公司 一种梯度掺杂的锂离子电池正极材料及其制备方法
CN107210419B (zh) 2014-12-23 2021-06-08 昆腾斯科普电池公司 富锂镍锰钴氧化物(lr-nmc)
JP6587804B2 (ja) 2015-01-23 2019-10-09 住友化学株式会社 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
KR20160091172A (ko) * 2015-01-23 2016-08-02 주식회사 포스코이에스엠 잔류 리튬이 감소된 양극활물질의 제조 방법 및 이에 의하여 제조된 잔류 리튬이 감소된 양극활물질
JP6655943B2 (ja) 2015-02-27 2020-03-04 パナソニック株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池
US20160294010A1 (en) 2015-03-31 2016-10-06 The Trustees Of Princeton University Electrolytes for magnesium-ion batteries
EP3093272A1 (en) 2015-05-13 2016-11-16 Basf Se Cathode materials for lithium ion batteries, process for preparing the same and their use in electrochemical cells
CN105047898B (zh) 2015-06-05 2017-03-01 吉林大学 一种双生球形锂离子二次电池富锂正极材料及其制备方法
US9960458B2 (en) 2015-06-23 2018-05-01 Quantumscape Corporation Battery systems having multiple independently controlled sets of battery cells
WO2016210419A1 (en) * 2015-06-26 2016-12-29 Florida State University Research Foundation, Inc. Dry process method for producing electrodes for electrochemical devices and electrodes for electrochemical devices
KR101728826B1 (ko) 2015-07-14 2017-04-20 울산과학기술원 마그네슘 이차 전지용 전해질, 및 이를 포함하는 마그네슘 이차 전지
KR102010014B1 (ko) * 2015-08-31 2019-08-12 주식회사 엘지화학 리튬 이차전지 및 그의 구동방법
WO2017047280A1 (ja) 2015-09-16 2017-03-23 日本電気株式会社 リチウム二次電池及びその製造方法
US10978709B2 (en) 2015-11-16 2021-04-13 The Regents Of The University Of California Lithium-excess cathode material and co-precipitation formation method
CN106910887B (zh) 2015-12-22 2020-05-26 国联汽车动力电池研究院有限责任公司 一种富锂锰基正极材料、其制备方法及包含该正极材料的锂离子电池
GB2548361B (en) 2016-03-15 2020-12-02 Dyson Technology Ltd Method of fabricating an energy storage device
CN105742607A (zh) * 2016-04-15 2016-07-06 东华大学 一种提高富锂正极材料首次库伦效率的方法
CN105810934B (zh) 2016-05-09 2019-07-05 北京工业大学 一种稳定富锂层状氧化物材料晶畴结构方法
CN106299338A (zh) 2016-08-30 2017-01-04 山东玉皇新能源科技有限公司 一种高品质富锂锰基锂离子电池正极材料及其合成方法
CN106410186B (zh) 2016-11-17 2019-01-25 天津理工大学 一种富锂层状氧化物正极材料的制备方法及应用
GB2566473B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
GB2566472B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
GB2569389B (en) 2017-12-18 2022-02-09 Dyson Technology Ltd Compound
GB2569392B (en) 2017-12-18 2022-01-26 Dyson Technology Ltd Use of aluminium in a cathode material
GB2569391A (en) 2017-12-18 2019-06-19 Dyson Technology Ltd Compound
GB2569387B (en) 2017-12-18 2022-02-02 Dyson Technology Ltd Electrode
GB2569390A (en) 2017-12-18 2019-06-19 Dyson Technology Ltd Compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404635A (zh) * 2000-11-20 2003-03-19 中央电气工业株式会社 非水电解质二次电池及其正极活性材料
CN1458706A (zh) * 2002-05-15 2003-11-26 中国科学院成都有机化学研究所 锂离子蓄电池正极材料及合成方法
CN1464573A (zh) * 2002-06-27 2003-12-31 中国科学院成都有机化学研究所 一种锂离子蓄电池正极材料LixNi1-yMyO2及其制备方法
WO2011052607A1 (ja) * 2009-10-29 2011-05-05 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極材料の製造方法
CN102074700A (zh) * 2010-12-09 2011-05-25 深圳市贝特瑞新能源材料股份有限公司 层状三元正极材料及其制备方法
CN103887562A (zh) * 2012-12-21 2014-06-25 三星Sdi株式会社 电解质添加剂和含其的电解质及可再充电锂电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"High capacity, surface-modified layered Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss";Wu, Y and Manthiram, A;《ELECTROCHEMICAL AND SOLID STATE LETTERS》;20060302;第9卷(第5期);正文摘要,实验部分,图1-3,表1,结果与讨论第3段 *
High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a;D.-K. Lee et al.;《Journal of Power Sources》;20061112;第162卷(第2期);1346-1350 *

Also Published As

Publication number Publication date
GB2569388A (en) 2019-06-19
WO2019122843A1 (en) 2019-06-27
CN111511688A (zh) 2020-08-07
JP2021506727A (ja) 2021-02-22
US11967711B2 (en) 2024-04-23
EP3728127A1 (en) 2020-10-28
JP7101802B2 (ja) 2022-07-15
GB2569388B (en) 2022-02-02
GB201721173D0 (en) 2018-01-31
KR102401394B1 (ko) 2022-05-24
KR20200092376A (ko) 2020-08-03
US20200381724A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
CN111511688B (zh) 化合物
CN111491894B (zh) 钴在富锂正极材料中增大正极材料的电荷容量和抑制在充电循环期间从正极材料的气体放出的用途
Li et al. The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries
CN111479780B (zh) 化合物
JP6985528B2 (ja) 化合物
JP7153740B2 (ja) 充電サイクル中のカソード材料からのガス発生の抑制及びカソード材料の充電容量の増大のためのリチウムリッチカソード材料におけるニッケルの使用
CN111491897A (zh) 铝在富锂正极材料中抑制在充电循环期间从正极材料的气体放出和增大正极材料的电荷容量的用途
JP6872816B2 (ja) ニッケルマンガン系複合酸化物及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant