CN111406322A - 形成晶体管的沟道区的方法和用于形成存储器阵列的方法 - Google Patents

形成晶体管的沟道区的方法和用于形成存储器阵列的方法 Download PDF

Info

Publication number
CN111406322A
CN111406322A CN201880076542.3A CN201880076542A CN111406322A CN 111406322 A CN111406322 A CN 111406322A CN 201880076542 A CN201880076542 A CN 201880076542A CN 111406322 A CN111406322 A CN 111406322A
Authority
CN
China
Prior art keywords
channel material
forming
amorphous
insulating material
amorphous channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880076542.3A
Other languages
English (en)
Other versions
CN111406322B (zh
Inventor
D·H·韦尔斯
A·A·汗埃卡
K·舍罗特瑞
李�杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of CN111406322A publication Critical patent/CN111406322A/zh
Application granted granted Critical
Publication of CN111406322B publication Critical patent/CN111406322B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

晶体管包括具有第一和第二相对侧的沟道材料。栅极在所述沟道材料的所述第一侧上且栅极绝缘体在所述栅极与所述沟道材料之间。第一绝缘材料具有第一和第二相对侧,其中所述第一侧邻近于所述沟道材料的所述第二侧。具有不同于所述第一绝缘材料的组合物的第二绝缘材料邻近于所述第一绝缘材料的所述第二侧。所述第二绝缘材料具有(a)、(b)和(c)中的至少一者,其中(a):低于所述第一材料的氧扩散率,(b):净正电荷,和(c):比所述第一材料至少大两倍的抗剪强度。在一些实施例中,存储器单元的垂直延伸串的阵列包括此类晶体管。揭示包含方法的其它实施例。

Description

形成晶体管的沟道区的方法和用于形成存储器阵列的方法
技术领域
本文中揭示的实施例涉及晶体管、存储器单元的垂直延伸串的阵列、形成晶体管的沟道区的方法和用于形成存储器阵列的方法。
背景技术
存储器是一种类型的集成电路,且在计算机系统中用于存储数据。存储器可制造为个别存储器单元的一或多个阵列。可使用数字线(其也可被称为位线、数据线或感测线)和存取线(其也可被称为字线)写入或读取存储器单元。感测线可沿着阵列的列导电地互连存储器单元,且存取线可沿着阵列的行导电地互连存储器单元。每一存储器单元可通过感测线和存取线的组合唯一地寻址。
存储器单元可为易失性、半易失性的或非易失性的。非易失性存储器单元可在没有电源的情况下存储数据达长时间段。非易失性存储器常规被指定为具有至少约10年的保持时间的存储器。易失性存储器消耗,且因此经刷新/重新写入以维持数据存储。易失性存储器可具有几毫秒或更少的保持时间。无论如何,存储器单元经配置以在至少两个不同可选择状态中保持或存储存储器。在二进制系统中,所述状态被视为“0”或“1”。在其它系统中,至少一些个别存储器单元可经配置以存储超过两个级别或状态的信息。
场效晶体管是一种可用于存储器单元中的电子组件。这些晶体管包括一对导电源极/漏极区,其间具有半导沟道区。导电栅极邻近沟道区且通过薄栅极绝缘体与之分离。将适当电压施加到栅极允许电流从一个源极/漏极区通过沟道区流动到另一个源极/漏极区。当从栅极移除电压时,很大程度上防止电流流动通过沟道区。场效晶体管也可包含额外结构,例如,作为栅极绝缘体与导电栅极之间的栅极构造的部分的可逆编程电荷存储区。
快闪存储器是一种类型的存储器,且在现代计算机和装置中具有许多用途。例如,现代个人计算机可具有存储在快闪存储器芯片上的BIOS。如另一实例,计算机和其它装置越来越普遍地利用固态驱动器中的快闪存储器来取代传统的硬盘驱动器。如又一实例,快闪存储器在无线电子装置中很受欢迎,因为其使制造商能够在其标准化时支持新的通信协议,并提供针对增强特征远程升级装置的能力。
NAND可为集成快闪存储器的基本架构。NAND单元元件包括串联耦合到存储器单元的串联组合的至少一个选择装置(其中串联组合通常被称为NAND串)。NAND架构可被配置为包括个别地包括可逆编程竖直晶体管的竖直堆叠存储器单元的三维布置。
晶体管可用于除了存储器电路外的电路中。
附图说明
图1是根据本发明的实施例的存储器单元的垂直延伸串的阵列的部分的图解横截面视图。
图2是通过图1中的线2-2取得的横截面视图。
图3是通过图1中的线3-3取得的横截面视图。
图4是根据本发明的实施例的存储器单元的垂直延伸串的阵列的部分的图解横截面视图。
图5是根据本发明的实施例的晶体管的图解横截面视图。
图6是根据本发明的实施例的晶体管的图解横截面视图。
图7是根据本发明的实施例的处理中的衬底构造的图解横截面视图。
图8是在由图7展示的步骤之后的处理步骤的图7构造的视图。
图9是在由图8展示的步骤之后的处理步骤的图8构造的视图。
具体实施方式
本发明的实施例涵盖非易失性晶体管、半易失性晶体管和易失性晶体管(例如,不含任何电荷存储材料的易失性晶体管)。本发明的实施例也涵盖存储器单元的垂直延伸串(例如,NAND存储器单元的串)的阵列。本发明的实施例也涵盖形成晶体管的沟道区的方法和用于形成存储器阵列的方法。
参考图1到3描述存储器单元的(也是个别晶体管的)垂直延伸串的阵列的第一实例实施例。构造10包括基底衬底11,所述基底衬底11可包含(即,本文中之电)导电/导体/传导、半导电/半导体/半传导或(即,本文中之电)绝缘(insulative)/绝缘体/绝缘(insulating)材料中的任何一或多者。各种材料已经在基底衬底11上方垂直形成。材料可在图1到3所描绘材料的旁边、垂直内部或垂直外部。例如,集成电路的其它部分或完全制成组件可设置在基底衬底11的上方、附近或内部某处。也可制造用于在晶体管阵列内操作组件的控制和/或其它周边电路,并且其可或可不完全或部分地在晶体管阵列或子阵列内。此外,还可独立地、串联地或以其它方式彼此相对地制造且操作多个子阵列。在此文献中,“子阵列”也可被视为阵列。
构造10包括存储器单元30的垂直延伸串14的阵列12。仅展示一个串14,其中可能数百、数千、数万等等个此类串包含在阵列12中。阵列12包括具有交替的绝缘层18和字线层20的竖直堆叠16。实例层20包括导电材料22。实例包含元素金属(例如,钨、钛、铜等)、金属材料(例如,金属氮化物、金属硅化物、金属碳化物等)和导电掺杂半导体材料(例如,硅、镓等),包括其混合物。实例层18包括绝缘材料24(例如,掺杂或未掺杂二氧化硅)。图1中阵列12被展示为具有七个竖直交替层18、20,不过可形成(例如几十、几百等)更少或可能更多。因此,更多层18和20可在所描绘的层上方及/或下方。层18和20可具有任何适当竖直厚度且可具有相对于彼此相同或不同的竖直厚度。如实例,层18和20可具有约10纳米(nm)到300nm的各自厚度。
字线层20在对应于个别存储器单元30的控制栅极区28的所描绘图1横截面中具有末端26。存储器单元30的大致位置在图1中用括号指示,且在图3中用虚线指示,其中存储器单元30在所描绘的实例中本质上是环状或环形的。控制栅极区28可为在行方向上互连个别字线层20内的多个串14的多个存储器单元30的个别控制栅极线29(图3中仅展示且用数字指示一个线)的部分。电介质材料27(图3;例如,二氧化硅及/或氮化硅)横向在控制栅极线29之间。可使用替代的现有或尚待开发的构造。例如,多个存储器单元(未展示)可(例如)通过将图3所描绘的控制栅极线29纵向沿其中间(未展示)分叉因此产生在可分离控制此类分叉的控制栅极线的情况下可分离控制的两个存储器单元(未展示)而围绕个别字线层20中的单个串14形成。
个别存储器单元30具有沿着个别控制栅极区28垂直延伸的电荷阻挡区31和沿着个别电荷阻挡区31垂直延伸的电荷存储材料34。电荷阻挡可在存储器单元中具有下列功能:在编程模式中,电荷阻挡可防止电荷载体朝向控制栅极传递出电荷存储材料(例如,浮动栅极材料、电荷捕获材料等),且在抹除模式中,电荷阻挡可防止电荷载体从控制栅极流动到电荷存储材料中。因此,电荷阻挡可用于阻挡控制栅极区与个别存储器单元的电荷存储材料之间的电荷迁移。如展示的实例电荷阻挡区包括绝缘体材料32(例如,二氧化硅及/或一或多个高介电系数材料,具有25到80埃的实例厚度)。通过进一步实例,电荷阻挡区可包括电荷存储材料(例如,材料34)的横向(例如,径向)外部分,其中此电荷存储材料是绝缘的(例如,绝缘电荷存储材料34与导电材料22之间没有任何不同组合物材料)。无论如何,如额外实例,电荷存储材料与控制栅极的导电材料之间的界面可足以在没有任何单独组合物绝缘体材料32的情况下充当电荷阻挡区。此外,导电材料22与材料32(在存在时)的界面与绝缘体材料32组合可一起充当电荷阻挡区,并且替代地或另外可为绝缘电荷存储材料(例如,氮化硅材料34)的横向外区。
无论如何,且在一个实施例中,电荷阻挡区31由沿着堆叠16垂直延伸且呈管23的形式的绝缘体材料32形成。在一个实施例中,电荷存储材料34沿着堆叠16垂直延伸且呈管25的形式。电荷存储材料34可包括任何适当组合物,且在一些实施例中,可包括浮动栅极材料(例如,掺杂或未掺杂硅)或电荷捕获材料(例如,氮化硅、金属点等)。在一些实施例中,电荷存储材料34可包括氮化硅,本质上由氮化硅构成,或由氮化硅构成。实例厚度为50到80埃。
个别存储器单元30包括也沿着堆叠16垂直延伸的沟道材料36(理想地为晶体)。在一个实施例中,沟道材料36呈管25的形式延伸。沟道材料36具有横向内侧37(例如,径向内侧)和横向外侧38(例如,径向外侧)。在一些实施例中,侧38和37分别被称为第一相对侧38和第二相对侧37。实例沟道材料36包含未掺杂或适当掺杂晶体半导体材料,例如硅、锗和所谓的III/V半导体材料(例如,GaAs、InP、GaP和GaN)中的一或多者。
电荷沟道材料40(例如,栅极绝缘体)横向(例如,径向)在沟道材料36与电荷存储材料34之间。在一个实施例中,电荷沟道材料40沿着堆叠16垂直延伸且呈管33的形式。通过实例,电荷沟道材料40可为具有夹置于两个绝缘体氧化物(例如,二氧化硅)之间的含氮材料(例如,氮化硅)的带隙工程结构。实例厚度为25到80埃。
构造10包括分别具有第一和第二相对侧43和44的第一绝缘材料42。在一个实施例中,第一绝缘材料42沿着堆叠16垂直延伸且呈管39的形式。第一侧43邻近于沟道材料36的横向内侧37(即,比第二侧44更邻近)。构造10包括具有不同于第一绝缘材料42的组合物的第二绝缘材料46且分别具有第一和第二相对侧47和48。在一个实施例中,第二绝缘材料46沿着堆叠16垂直延伸且呈管41的形式。第二绝缘材料46邻近于第一绝缘材料42的第二侧44。实例存储器单元串14被展示为包括径向中心固体电介质材料50(例如,自旋电介质、二氧化硅及/或氮化硅)。替代地,且仅通过实例,存储器单元串14的径向中心部分可包含(若干)空隙空间(未展示)或不含固体材料(未展示)。
在一个实施例中,第一绝缘材料42包括SixOy(x和y各自大于0)、SixOyNz(x、y和z各自大于0)、Al3O4、ZrO2、HfO2、Pr2O3和Ta2O5中的至少一者,本质上由其构成或由其构成,且第二绝缘材料46包括Si3N4、Al2O3、HfN、HfOxNy(x和y各自大于0)、HfYxOy(x和y各自大于0)、BN、AlN、SiC、金刚石、类金刚石碳、SixNyHz(x、y和z各自大于0)、HfxNyHz(x、y和z各自大于0)、HfOxNyHz(x、y和z各自大于0)、HfYxOyHz(x、y和z各自大于0)、BNxHy(x和y各自大于0)和AlNxHy(x和y各自大于0)中的至少一者,本质上由其构成或由其构成。在一个实施例中且如展示,第一绝缘材料42的第一侧43直接抵靠沟道材料36的横向内侧37,且SixOy、SixOyNz、Al3O4、ZrO2、HfO2、Pr2O3和Ta2O5中的至少一者直接抵靠沟道材料36的横向内侧37。在一个实施例中且如展示,第二绝缘材料46直接抵靠第一绝缘材料42的第二侧44,且Si3N4、Al2O3、HfN、HfOxNy、HfYxOy、BN、AlN、SiC、金刚石、类金刚石碳、SixNyHz、HfxNyHz、HfOxNyHz、HfYxOyHz、BNxHy和AlNxHy中的至少一者直接抵靠第一材料42的SixOy、SixOyNz、Al3O4、ZrO2、HfO2、Pr2O3和Ta2O5中的至少一者。在一个实施例中,第一绝缘材料42包括SixOy、SixOyNz、Al3O4、ZrO2、HfO2、Pr2O3和Ta2O5中的超过一者。在一个实施例中,第二绝缘材料46包括Si3N4、Al2O3、HfN、HfOxNy、HfYxOy、BN、AlN、SiC、金刚石、类金刚石碳、SixNyHz、HfxNyHz、HfOxNyHz、HfYxOyHz、BNxHy和AlNxHy中的超过一者。可使用本文中相对于其它实施例展示及/或描述的任何其它属性或方面。
材料/区28、31、34、40、36、42和46组成根据本发明的实施例的晶体管55的实例实施例,且其在此实施例中是包括电荷存储材料的非易失性可编程晶体管。
在一个实施例中,且无关于材料42和46是否包含上文具体陈述之组合物材料中的任一者,第二绝缘材料46具有(a)、(b)和(c)中的至少一者,其中(a)的氧扩散率低于第一材料42,(b)为净正电荷(即,尽管也可存在负电荷但仍为正的总或总体电荷,且也被称为固定正电荷密度),且(c)的抗剪强度比第一材料42至少大两倍。在一个实施例中,第二绝缘材料46具有(a):低于第一材料42的氧扩散率,在一个此实施例中,在600℃不超过5x10-11/cm2的氧扩散率,在一个此实施例中,比第一材料42至少低两倍的氧扩散率,且在一个此实施例中,比第一材料42至少低十倍的氧扩散率。在一个实施例中,第二绝缘材料46具有(b):净正电荷,其中在一个此实施例中,具有至少5.0x1012/cm2的净正电荷。在一个实施例中,第二绝缘材料46具有(c):比第一材料42至少大两倍的抗剪强度,在一个此实施例中,至少200GPA的抗剪强度,且在一个此实施例中,比第一材料42至少大四倍的抗剪强度。如实例,一些可能的第二绝缘体材料46的抗剪强度为Si3N4:250到310GPa,Al2O3:400GPa,BN:440GPa,AlN:350GPa,SiC:480GPa,金刚石:1050GPa,且类金刚石碳:200GPa。实例SiO2第一材料具有50到80GPa的典型抗剪强度。
在一个实施例中,第二绝缘材料46具有(a)、(b)和(c)中的仅一者。在一个实施例中,第二绝缘材料46具有(a)、(b)和(c)中的仅两者。在一个实施例中,第二绝缘材料46具有(a)、(b)和(c)中的全部三者。在一个实施例中,沟道材料36包括晶体硅,第一绝缘材料42包括SixOy(x和y各自大于0),且第二绝缘材料46包括Si3N4。可使用本文中相对于其它实施例展示及/或描述的任何其它属性或方面。
图4展示说明另一实例实施例存储器阵列12a的构造10a。在适当的情况下,已使用来自上述实施例的相同元件符号,其中一些构造差异用后缀“a”指示。实例存储器单元30a个别地包括晶体管55a。实例电荷阻挡材料32a、电荷存储材料34a和栅极绝缘体材料40a并不全部沿着构造10a中的竖直堆叠16延伸。电荷阻挡材料32a部分围绕电荷存储材料34a。可使用本文中相对于其它实施例展示及/或描述的任何其它属性或方面。
晶体管55和55a为实例垂直延伸晶体管,且其在一个实施例中被展示为竖直或在竖直的10°内。如替代实例,晶体管除了垂直延伸外,可(例如)为图5中展示的构造10b的水平晶体管55b。在适当的情况下,已使用来自上述实施例的相同元件符号,其中一些构造差异用后缀“b”或用不同元件符号指示。晶体管55b包含控制栅极28b、电荷阻挡区32b、电荷存储材料34b和绝缘电荷沟道材料40b。一对源极/漏极区70和72在半导体基底材料71内。沟道区36b在半导体基底材料71内且在源极/漏极区70和72之间,其中沟道区36b在电荷沟道材料40b下方。第一和第二绝缘材料42b和42b如展示般设置。半导体材料71被展示为块体材料,不过可使用替代构造(例如,绝缘体上半导体)。可使用本文中相对于其它实施例展示及/或描述的任何其它属性或方面。
所展示且描述的每一实例晶体管55、55a和55b个别地包括非易失性可编程晶体管,例如包括控制栅极、邻近于控制栅极的电荷阻挡区、邻近于电荷阻挡区的电荷存储材料;和沟道材料与电荷存储材料之间的栅极绝缘体。本发明的实施例也涵盖易失性晶体管,例如,不含任何电荷存储材料的晶体管,且包含此类晶体管的阵列。如实例,图6展示构造10c的替代实施例水平晶体管55c。在适当的情况下,已使用来自上述实施例的相同元件符号,其中一些构造差异用后缀“c”指示。晶体管55c包括栅极28c(例如,作为在行方向[未展示]上互连多个晶体管[未展示]的存取线[未分开展示]的部分),且被展示为不含图1到5构造的任何电荷存储材料。当然,晶体管55c可非水平定向(未展示)。可使用本文中相对于其它实施例展示及/或描述的任何其它属性或方面。
本发明的实施例包括用于形成存储器阵列(例如,如图1到4中任一者的实施例中展示的存储器阵列)的方法。参考图7到9描述实例性的此类方法以导致图1到3的示例性完成构造。来自上述实施例的相同元件符号已经用于(若干)先前构造、区和其类似/先前材料。可在方法实施例中使用本文中相对于结构实施例展示及/或描述的任何属性或方面。类似地,可在结构实施例中使用本文中相对于方法实施例展示及/或描述的任何属性或方面。
参考图7,此展示图1的构造的先前构造,其包括组合件或构造10,所述组合件或构造10包括竖直堆叠16,所述竖直堆叠16包括具有不同组合物材料的交替层18和20。不同组合物材料中的一者(即,至少一个)和交替层的对应者(例如,18)是绝缘的,例如包括绝缘材料24。通过实例,处理可通过所谓的“先栅极”或“后栅极”处理进行。无论如何,组合件/构造10包括至少导电控制栅极材料22和垂直延伸穿过堆叠16的非晶沟道材料36的中空管35。实例沟道材料包含上文描述的材料中的任一者,其中在所描绘及描述的过程中,此沟道材料此时是非晶的。
参考图8,绝缘体材料42的中空管39已经在低于结晶温度的温度下邻近于非晶沟道材料36的中空管35的径向内侧(例如,侧37)形成,非晶沟道材料36在结晶温度或高于结晶温度将变结晶。在此文献中,“非晶”需要至少90%体积非晶相,且“结晶”需要至少90%体积结晶相(即,意味着至少90%体积总结晶度,不管是一个还是多个结晶相)。不同半导体沟道材料具有不同结晶温度,此材料在结晶温度及高于结晶温度从非晶转换/变换成结晶。此可部分取决于沟道材料内的导电改性掺杂剂的类型及/或数量。例如,且仅通过实例,非晶元素硅具有约570℃的结晶温度,其可取决于设置于其中的掺杂剂的类型和数量下降到约530℃。绝缘体材料42可通过任何适当现有或尚待开发的方式沉积。一个实例是在从5mTorr到10mTorr的压力、至少175℃的卡盘温度和40到3000sccm的适当前驱体的流速下的感应耦合等离子反应器中的PECVD。
无论如何,具有邻近其的绝缘体材料42的非晶沟道材料36经受处于或高于结晶温度的温度以使非晶沟道材料变换成结晶沟道材料。根据方法实施例,在存在或不存在第二绝缘材料46(图8中未展示)中的任一者的情况下,此可或可不发生。但是,在一个实施例中,绝缘材料(例如,第二绝缘材料46)直接抵靠非晶沟道材料36的侧37形成。无论如何,在一个实施例中,非晶沟道材料包括元素形式硅且第一绝缘材料包括SiO2,其中在结晶之前及之后,元素形式硅和SiO2的界面具有每eV 109到1013个陷阱/cm2的界面陷阱的密度,在一个实施例中为每eV 109到1011个陷阱/cm2
参考图9,且在一个实施例中,第二绝缘材料46的中空管41已经邻近于绝缘体/第一绝缘材料42的中空管39的径向内侧44形成。在一个实施例中,全部第二绝缘材料46在将非晶沟道材料36变换成结晶沟道材料36之前形成。在替代实施例中,全部第二绝缘材料46在将非晶沟道材料36变换成结晶沟道材料36之后形成。在另一替代实施例中,至少一些第二绝缘材料46在将非晶沟道材料36变换成结晶沟道材料36期间形成。可发生后续处理(例如)以用如图1中展示的固体电介质材料50填充结构的中心。
根据本发明的方法可用于形成除了图1到3中展示的结构外的结构,包含且不限于水平结构。例如,刚才描述的方法可用于形成晶体管的沟道区,无论所述晶体管是垂直延伸、水平或具有其它定向。
在一个实施例中,非晶沟道材料形成于衬底上方,其中非晶沟道材料具有第一和第二相对侧。绝缘材料在低于结晶温度下邻近于非晶沟道材料的第二侧形成(例如,在第二侧不暴露时包括离子植入且在第二侧暴露的情况下通过沉积),处于及高于所述结晶温度,非晶沟道材料将变为结晶。具有邻近其的绝缘体材料的非晶沟道材料经受处于或高于结晶温度的温度以使非晶沟道材料变换成结晶沟道材料。可使用本文中相对于其它实施例展示及/或描述的任何其它属性或方面。
在一个实施例中,第一绝缘材料在低于结晶温度下邻近于非晶沟道材料的第二侧形成,处于及高于所述结晶温度,非晶沟道材料将变为结晶。第一绝缘材料具有第一和第二相对侧。第一绝缘材料的第一侧邻近于非晶沟道材料的第二侧。具有不同于第一沟道材料的组合物的第二沟道材料邻近于第一绝缘材料的第二侧形成。具有邻近其的第一绝缘材料的非晶沟道材料经受处于或高于结晶温度的温度以使非晶沟道材料变换成结晶沟道材料。可使用本文中相对于其它实施例展示及/或描述的任何其它属性或方面。
本发明的方法实施例可导致存储器单元的垂直延伸串中的改进串电流、可编程电荷存储晶体管中的改进沟道穿隧、非晶沟道材料结晶前其背侧的钝化和具有与之直接抵靠的绝缘材料的沟道的背侧的界面陷阱的降低密度中的任何一或多者。
在此文献中,除非另有指示,否则“垂直”、“更高”、“上”,“下”、“顶部”、“在……顶部”、“在……底部”、“在……上方”、“在……下方”、“在……下”、“在……下面”、“向上”和“向下”大体参考垂直方向。“水平”是指沿着主衬底表面的大体方向(即,在10度内)且可相对于制造期间处理衬底的方向,且垂直是大体与之正交的方向。引用“精确水平”是沿着主衬底表面的方向(即,没有偏离度数)且可相对于在制造期间处理衬底的方向。此外,本文中使用的“垂直”和“水平”为彼此相对的大体垂直方向且无关于三维空间中的衬底的定向。另外,“垂直延伸(elevationally-extending和extend(ing)elevationally)”是指与精确水平成至少45°角的方向。此外,相对于场效晶体管的“垂直延伸(extend(ing)elevationally和elevationally extending)”参考电流在操作中在源极/漏极区之间流动所沿着的晶体管的沟道长度的定向。针对双极结晶体管,“垂直延伸(extend(ing)elevationally和elevationally extending)”参考电流在操作中在发射极与集电极之间流动所沿着的基底长度的定向。
此外,“正上方”和“正下方”需要两个所陈述区/材料/组件相对于彼此的至少一些横向重叠(即,水平地)。同样地,使用之前没有“正”的“上方”仅需要在另一所陈述区/材料/组件上方的所陈述区/材料/组件的一些部分在另一所陈述区/材料/组件垂直外部(即,无关于两个所陈述区/材料/组件之间是否存在任何横向重叠)。类似地,使用之前没有“正”的“下方”仅需要在另一所陈述区/材料/组件下方的所陈述区/材料/组件的一些部分在另一所陈述区/材料/组件垂直内部(即,无关于两个所陈述区/材料/组件之间是否存在任何横向重叠)。
本文中描述的材料、区和结构中的任一者可为均匀的或不均匀的,且无论如何,可在其覆盖的任何材料上连续或间断。此外,除非另有陈述,否则每一材料可使用任何适当或尚待开发的技术形成,其中原子层沉积、化学气相沉积、物理气相沉积、外延生长、扩散掺杂和离子植入是实例。
另外,“厚度”自身(之前没有方向形容词)被定义为从具有不同组合物的直接相邻材料或直接相邻区的最近表面垂直穿过给定材料或区的平均直线距离。另外,本文中描述的各种材料或区可具有实质上恒定的厚度或具有可变厚度。如果具有可变厚度,那么厚度是指平均厚度,除非另有指示,且此材料或区将归因于厚度可变具有一些最小厚度和一些最大厚度。如本文中使用,“不同组合物”仅需要可彼此直接抵靠的两个所陈述材料或区的所述部分在化学上及/或物理上是不同的,例如在此类材料或区不均匀的情况下。如果两个所陈述的材料或区彼此并不直接抵靠,那么在两个所陈述的材料或区不均匀的情况下,“不同组合物”仅需要彼此最靠近的此类材料或区的所述部分化学上及/或物理上不同。在此文献中,在材料、区或结构相对于彼此存在至少一些物理接触时,所陈述的材料、区或结构彼此“直接抵靠”。相反地,之前没有“直接”的“在……上方”、“在……上”、“与……邻近”、“沿着”和“抵靠”涵盖“直接抵靠”以及其中中介材料、区或结构导致所陈述的材料、区或结构相对于彼此并不物理接触的构造。
本文中,如果在正常操作中电流能够从一者连续流动到另一者,且主要是在产生充分亚原子正及/或负电荷时通过此类电荷的移动实现,那么区-材料-组件相对于彼此“电耦合”。另一电子组件可在区-材料-组件之间且电耦合到区-材料-组件。相反地,当区-材料-组件被称为“直接电耦合”时,直接电耦合的区-材料-组件之间不存在中介电子组件(例如,无二极管、晶体管、电阻器、换能器、开关、保险丝等)。
另外,“金属材料”是元素金属、两个或两个以上元素金属的混合物或合金和任何导电金属化合物中的任一者或组合。
结论
在一些实施例中,晶体管包括具有第一和第二相对侧的沟道材料。栅极在沟道材料的第一侧上且栅极绝缘体在栅极与沟道材料之间。第一绝缘材料具有第一和第二相对侧,其中第一侧邻近于沟道材料的第二侧。具有不同于第一绝缘材料的组合物的第二绝缘材料邻近于第一绝缘材料的第二侧。第二绝缘材料具有(a)、(b)和(c)中的至少一者,其中(a):低于第一材料的氧扩散率,(b):净正电荷,和(c):比第一材料至少大两倍的抗剪强度。在一些实施例中,存储器单元的垂直延伸串的阵列包括此类晶体管。
在一些实施例中,晶体管包括具有第一和第二相对侧的沟道材料。栅极在沟道材料的第一侧上且栅极绝缘体在栅极与沟道材料之间。第一绝缘材料具有第一和第二相对侧,其中第一侧邻近于沟道材料的第二侧。第一绝缘材料包括SixOy(x和y各自大于0)、SixOyNz(x、y和z各自大于0)、Al3O4、ZrO2、HfO2、Pr2O3和Ta2O5中的至少一者。具有不同于第一绝缘材料的组合物的第二绝缘材料邻近于第一绝缘材料的第二侧。第二绝缘材料包括Si3N4、Al2O3、HfN、HfOxNy(x和y各自大于0)、HfYxOy(x和y各自大于0)、BN、AlN、SiC、金刚石、类金刚石碳、SixNyHz(x、y和z各自大于0)、HfxNyHz(x、y和z各自大于0)、HfOxNyHz(x、y和z各自大于0)、HfYxOyHz(x、y和z各自大于0)、BNxHy(x和y各自大于0)和AlNxHy(x和y各自大于0)中的至少一者。在一些实施例中,存储器单元的垂直延伸串的阵列包括此类晶体管。
在一些实施例中,形成晶体管的沟道区的方法包括在衬底上方形成非晶沟道材料。非晶沟道材料具有第一和第二相对侧。绝缘体材料在低于结晶温度下邻近于非晶沟道材料的第二侧形成,处于及高于所述结晶温度,非晶沟道材料将变为结晶。具有邻近其的绝缘体材料的非晶沟道材料经受处于或高于结晶温度的温度以使非晶沟道材料变换成结晶沟道材料。
在一些实施例中,形成晶体管的沟道区的方法包括在衬底上方形成非晶沟道材料。非晶沟道材料具有第一和第二相对侧。第一绝缘材料在低于结晶温度下邻近于非晶沟道材料的第二侧形成,处于及高于所述结晶温度,非晶沟道材料将变为结晶。第一绝缘材料具有第一和第二相对侧。第一绝缘材料的第一侧邻近于非晶沟道材料的第二侧。具有不同于第一绝缘材料的组合物的第二绝缘材料邻近于第一绝缘材料的第二侧形成。具有邻近其的第一绝缘材料的非晶沟道材料经受处于或高于结晶温度的温度以使非晶沟道材料变换成结晶沟道材料。
在一些实施例中,用于形成存储器阵列的方法包括形成包括垂直堆叠的组合件,所述垂直堆叠包括不同组合物材料的交替层。不同组合物材料中的一者与交替层的对应者是绝缘的。组合件包括垂直延伸穿过堆叠的非晶沟道材料的中空管。绝缘材料的中空管在低于结晶温度下邻近于非晶沟道材料的中空管的径向内侧形成,处于及高于所述结晶温度,非晶沟道材料将变为结晶。具有邻近其的绝缘体材料的非晶沟道材料经受处于或高于结晶温度的温度以使非晶沟道材料变换成结晶沟道材料。
在一些实施例中,用于形成存储器阵列的方法包括形成包括垂直堆叠的组合件,所述垂直堆叠包括不同组合物材料的交替层。不同组合物材料中的一者与交替层的对应者是绝缘的。组合件包括垂直延伸穿过堆叠的非晶沟道材料的中空管。第一绝缘材料的中空管在低于结晶温度下邻近于非晶沟道材料的中空管的径向内侧形成,处于及高于所述结晶温度,非晶沟道材料将变为结晶。第二绝缘材料的中空管邻近于第一绝缘材料的中空管的径向内侧形成。具有邻近其的第一绝缘材料的非晶沟道材料经受处于或高于结晶温度的温度以使非晶沟道材料变换成结晶沟道材料。

Claims (22)

1.一种形成晶体管的沟道区的方法,其包括:
在衬底上方形成非晶沟道材料,所述非晶沟道材料具有第一和第二相对侧;
在低于结晶温度下邻近于所述非晶沟道材料的所述第二侧形成绝缘体材料,处于及高于所述结晶温度,所述非晶沟道材料将变为结晶;及
使具有邻近其的所述绝缘体材料的所述非晶沟道材料经受处于或高于所述结晶温度的温度以使所述非晶沟道材料变换成结晶沟道材料。
2.根据权利要求1所述的方法,其中所述绝缘体材料包括SixOy(x和y各自大于0)、SixOyNz(x、y和z各自大于0)、Al3O4、ZrO2、HfO2、Pr2O3和Ta2O5中的至少一者。
3.根据权利要求1所述的方法,在所述经受之后,将具有不同于所述绝缘体材料的组合物的绝缘材料直接抵靠所述绝缘体材料沉积。
4.根据权利要求1所述的方法,其中所述绝缘体材料直接抵靠所述非晶沟道材料的所述第二侧形成。
5.根据权利要求1所述的方法,其中所述非晶沟道材料形成为中空管。
6.根据权利要求5所述的方法,其中所述绝缘体材料形成为所述非晶沟道材料的所述中空管内侧的中空管。
7.根据权利要求5所述的方法,其中所述中空管垂直延伸。
8.根据权利要求7所述的方法,其中所述中空管竖直或在竖直的10°内。
9.根据权利要求1所述的方法,其中所述非晶沟道材料包括硅且所述绝缘体材料包括SixOy(x和y各自大于0)。
10.一种形成晶体管的沟道区的方法,其包括:
在衬底上方形成非晶沟道材料,所述非晶沟道材料具有第一和第二相对侧;
在低于结晶温度下邻近于所述非晶沟道材料的所述第二侧形成第一绝缘材料,处于及高于所述结晶温度,所述非晶沟道材料将变为结晶,所述第一绝缘材料具有第一和第二相对侧,所述第一绝缘材料的所述第一侧邻近于所述非晶沟道材料的所述第二侧;
邻近于所述第一绝缘材料的所述第二侧形成具有不同于所述第一绝缘材料的组合物的第二绝缘材料;及
使具有邻近其的所述第一绝缘材料的所述非晶沟道材料经受处于或高于所述结晶温度的温度以使所述非晶沟道材料变换成结晶沟道材料。
11.根据权利要求10所述的方法,其包括在所述使所述非晶沟道材料变换成所述结晶沟道材料之前形成全部所述第二绝缘材料。
12.根据权利要求10所述的方法,其包括在所述使所述非晶沟道材料变换成所述结晶沟道材料之后形成全部所述第二绝缘材料。
13.根据权利要求10所述的方法,其包括在所述使所述非晶沟道材料变换成所述结晶沟道材料期间形成所述第二绝缘材料中的至少一些。
14.根据权利要求10所述的方法,其中所述第二绝缘材料具有(a)、(b)和(c)中的至少一者,其中,
(a):低于所述第一材料的氧扩散率;
(b):净正电荷;
(c):比所述第一材料至少大两倍的抗剪强度。
15.根据权利要求10所述的方法,其中所述第一绝缘材料包括SixOy(x和y各自大于0)、SixOyNz(x、y和z各自大于0)、Al3O4、ZrO2、HfO2、Pr2O3和Ta2O5中的至少一者。
16.根据权利要求10所述的方法,其中所述第二绝缘材料包括Si3N4、Al2O3、HfN、HfOxNy(x和y各自大于0)、HfYxOy(x和y各自大于0)、BN、AlN、SiC、金刚石、类金刚石碳、SixNyHz(x、y和z各自大于0)、HfxNyHz(x、y和z各自大于0)、HfOxNyHz(x、y和z各自大于0)、HfYxOyHz(x、y和z各自大于0)、BNxHy(x和y各自大于0)和AlNxHy(x和y各自大于0)中的至少一者。
17.根据权利要求10所述的方法,其包括在低于所述结晶温度下直接抵靠所述非晶沟道材料的所述第二侧形成所述第一绝缘材料的所述第一侧。
18.根据权利要求17所述的方法,其中所述非晶沟道材料包括元素形式硅且所述第一绝缘材料包括SiO2,在结晶之前及之后,所述元素形式硅和所述SiO2的界面具有每eV 109到1013个陷阱/cm2的界面陷阱密度。
19.根据权利要求18所述的方法,其中在结晶之前及之后,所述界面具有每eV 109到1011个陷阱/cm2的界面陷阱密度。
20.根据权利要求10所述的方法,其包括直接抵靠所述第一绝缘材料的所述第二侧形成所述第二绝缘材料。
21.一种用于形成存储器阵列的方法,其包括:
形成包括竖直堆叠的组合件,所述竖直堆叠包括不同组合物材料的交替层,所述不同组合物材料中的一者和所述交替层的对应者是绝缘的,所述组合件包括垂直延伸穿过所述堆叠的非晶沟道材料的中空管;
在低于结晶温度下邻近于所述非晶沟道材料的所述中空管的径向内侧形成绝缘体材料的中空管,处于及高于所述结晶温度,所述非晶沟道材料将变为结晶;及
使具有邻近其的所述绝缘体材料的所述非晶沟道材料经受处于或高于所述结晶温度的温度以使所述非晶沟道材料变换成结晶沟道材料。
22.一种用于形成存储器阵列的方法,其包括:
形成包括竖直堆叠的组合件,所述竖直堆叠包括不同组合物材料的交替层,所述不同组合物材料中的一者和所述交替层的对应者是绝缘的,所述组合件包括垂直延伸穿过所述堆叠的非晶沟道材料的中空管;
在低于结晶温度下邻近于所述非晶沟道材料的所述中空管的径向内侧形成第一绝缘材料的中空管,处于及高于所述结晶温度,所述非晶沟道材料将变为结晶;
邻近于所述第一绝缘材料的所述中空管的径向内侧形成第二绝缘材料的中空管;
使具有邻近其的所述第一绝缘材料的所述非晶沟道材料经受处于或高于所述结晶温度的温度以使所述非晶沟道材料变换成结晶沟道材料。
CN201880076542.3A 2017-12-27 2018-12-13 形成晶体管的沟道区的方法和用于形成存储器阵列的方法 Active CN111406322B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762610851P 2017-12-27 2017-12-27
US62/610,851 2017-12-27
PCT/US2018/065437 WO2019133274A1 (en) 2017-12-27 2018-12-13 Methods of forming a channel region of a transistor and method used in forming a memory array

Publications (2)

Publication Number Publication Date
CN111406322A true CN111406322A (zh) 2020-07-10
CN111406322B CN111406322B (zh) 2023-12-08

Family

ID=66951377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880076542.3A Active CN111406322B (zh) 2017-12-27 2018-12-13 形成晶体管的沟道区的方法和用于形成存储器阵列的方法

Country Status (6)

Country Link
US (2) US10559466B2 (zh)
EP (1) EP3704742A4 (zh)
JP (1) JP7113923B2 (zh)
KR (1) KR102416864B1 (zh)
CN (1) CN111406322B (zh)
WO (1) WO2019133274A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446681B2 (en) 2017-07-10 2019-10-15 Micron Technology, Inc. NAND memory arrays, and devices comprising semiconductor channel material and nitrogen
US11587789B2 (en) * 2020-03-06 2023-02-21 Applied Materials, Inc. System and method for radical and thermal processing of substrates
KR20220004857A (ko) * 2020-07-02 2022-01-12 삼성디스플레이 주식회사 표시 장치
US11538919B2 (en) 2021-02-23 2022-12-27 Micron Technology, Inc. Transistors and arrays of elevationally-extending strings of memory cells
US11856766B2 (en) * 2021-08-02 2023-12-26 Micron Technology, Inc. Memory cell having programmable material comprising at least two regions comprising SiNx

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150263074A1 (en) * 2014-03-12 2015-09-17 Sandisk 3D Llc Transistor device and method of making thereof
US20160111434A1 (en) * 2014-10-21 2016-04-21 SanDisk Technologies, Inc. Three dimensional nand string memory devices and methods of fabrication thereof
US20170110470A1 (en) * 2015-10-19 2017-04-20 Sandisk Technologies Inc. Methods for manufacturing ultrathin semiconductor channel three-dimensional memory devices
US20170330752A1 (en) * 2016-05-12 2017-11-16 SK Hynix Inc. Method of manufacturing memory device

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065222A (en) 1987-11-11 1991-11-12 Seiko Instruments Inc. Semiconductor device having two-layered passivation film
US5990516A (en) 1994-09-13 1999-11-23 Kabushiki Kaisha Toshiba MOSFET with a thin gate insulating film
US6767655B2 (en) * 2000-08-21 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magneto-resistive element
JP3940560B2 (ja) 2001-01-25 2007-07-04 独立行政法人産業技術総合研究所 半導体装置の製造方法
JP2004039736A (ja) 2002-07-01 2004-02-05 Shinko Electric Ind Co Ltd 半導体チップの搭載装置および搭載方法
KR100598098B1 (ko) 2004-02-06 2006-07-07 삼성전자주식회사 매몰 절연 영역을 갖는 모오스 전계 효과 트랜지스터 및그 제조 방법
KR100634262B1 (ko) 2005-03-05 2006-10-13 삼성전자주식회사 복합 유전막을 갖는 반도체 장치의 제조 방법
JP2007005721A (ja) 2005-06-27 2007-01-11 Toshiba Corp 半導体装置およびその製造方法
FR2888399B1 (fr) 2005-07-05 2008-03-14 Commissariat Energie Atomique Substrat, notamment en carbure de silicium, recouvert par une couche mince de nitrure de silicium stoechiometrique, pour la fabrication de composants electroniques, et procede d'obtention d'une telle couche
KR100731752B1 (ko) * 2005-09-07 2007-06-22 삼성에스디아이 주식회사 박막트랜지스터
DE102006001493B4 (de) 2006-01-11 2007-10-18 Austriamicrosystems Ag MEMS-Sensor und Verfahren zur Herstellung
US20070218663A1 (en) 2006-03-20 2007-09-20 Texas Instruments Inc. Semiconductor device incorporating fluorine into gate dielectric
US20080150003A1 (en) 2006-12-20 2008-06-26 Jian Chen Electron blocking layers for electronic devices
US7642616B2 (en) 2007-05-17 2010-01-05 Micron Technology, Inc. Tunnel and gate oxide comprising nitrogen for use with a semiconductor device and a process for forming the device
KR101281682B1 (ko) 2007-08-29 2013-07-03 삼성전자주식회사 알루미늄 산화물층 형성방법 및 이를 이용한 전하 트랩형메모리 소자의 제조 방법
US7883931B2 (en) 2008-02-06 2011-02-08 Micron Technology, Inc. Methods of forming memory cells, and methods of forming programmed memory cells
US7668010B2 (en) 2008-02-27 2010-02-23 Macronix International Co., Ltd. Flash memory having insulating liners between source/drain lines and channels
JP5781720B2 (ja) 2008-12-15 2015-09-24 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
US7968406B2 (en) 2009-01-09 2011-06-28 Micron Technology, Inc. Memory cells, methods of forming dielectric materials, and methods of forming memory cells
JP2011014824A (ja) 2009-07-06 2011-01-20 Elpida Memory Inc 半導体装置の製造方法
US9705028B2 (en) 2010-02-26 2017-07-11 Micron Technology, Inc. Light emitting diodes with N-polarity and associated methods of manufacturing
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US8928061B2 (en) 2010-06-30 2015-01-06 SanDisk Technologies, Inc. Three dimensional NAND device with silicide containing floating gates
KR101744758B1 (ko) 2010-08-31 2017-06-09 삼성전자 주식회사 비휘발성 메모리요소 및 이를 포함하는 메모리소자
US8629496B2 (en) 2010-11-30 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN102130009B (zh) 2010-12-01 2012-12-05 北京大学深圳研究生院 一种晶体管的制造方法
US8681555B2 (en) 2011-01-14 2014-03-25 Micron Technology, Inc. Strings of memory cells having string select gates, memory devices incorporating such strings, and methods of accessing and forming the same
US8441855B2 (en) 2011-01-14 2013-05-14 Micron Technology, Inc. Strings of memory cells having string select gates, memory devices incorporating such strings, and methods of accessing and forming the same
US20120286349A1 (en) 2011-05-13 2012-11-15 Globalfoundries Singapore Pte Ltd Non-Volatile Memory Device With Additional Conductive Storage Layer
KR101743661B1 (ko) * 2011-06-01 2017-06-07 삼성전자 주식회사 서로 다른 두께의 게이트 절연막을 갖는 모스펫 소자 형성 방법
US10290614B2 (en) 2011-12-19 2019-05-14 Intel Corporation Group III-N transistors for system on chip (SOC) architecture integrating power management and radio frequency circuits
DE112011105988B4 (de) 2011-12-23 2020-08-06 Intel Corporation III-N-Materialstruktur für Gate-Aussparungstransistoren
KR101916223B1 (ko) 2012-04-13 2018-11-07 삼성전자 주식회사 반도체 장치 및 그 제조 방법
KR102144992B1 (ko) 2012-11-30 2020-08-18 삼성전자주식회사 반도체 물질과 이를 포함하는 트랜지스터 및 트랜지스터를 포함하는 전자소자
EP2738815B1 (en) 2012-11-30 2016-02-10 Samsung Electronics Co., Ltd Semiconductor materials, transistors including the same, and electronic devices including transistors
US9230987B2 (en) 2014-02-20 2016-01-05 Sandisk Technologies Inc. Multilevel memory stack structure and methods of manufacturing the same
US9318315B2 (en) 2013-07-15 2016-04-19 Globalfoundries Inc. Complex circuit element and capacitor utilizing CMOS compatible antiferroelectric high-k materials
JP2015053336A (ja) 2013-09-05 2015-03-19 株式会社東芝 半導体装置およびその製造方法
CN103500763B (zh) 2013-10-15 2017-03-15 苏州晶湛半导体有限公司 Ⅲ族氮化物半导体器件及其制造方法
US20150194478A1 (en) 2014-01-03 2015-07-09 Micron Technology, Inc. Capacitors and Methods of Forming Capacitors
US9929279B2 (en) 2014-02-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9070481B1 (en) 2014-05-30 2015-06-30 Sandisk Technologies Inc. Internal current measurement for age measurements
KR102244219B1 (ko) 2014-09-29 2021-04-27 삼성전자주식회사 메모리 장치 및 그 제조 방법
US9230984B1 (en) 2014-09-30 2016-01-05 Sandisk Technologies Inc Three dimensional memory device having comb-shaped source electrode and methods of making thereof
US9825051B2 (en) 2014-10-22 2017-11-21 Sandisk Technologies Llc Three dimensional NAND device containing fluorine doped layer and method of making thereof
US9385232B2 (en) 2014-10-23 2016-07-05 Globalfoundries Inc. FD devices in advanced semiconductor techniques
TWI695383B (zh) * 2014-12-25 2020-06-01 日商半導體能源研究所股份有限公司 移位暫存器、半導體裝置及電子裝置
KR20160087479A (ko) * 2015-01-13 2016-07-22 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
US9478558B2 (en) 2015-01-20 2016-10-25 Sandisk Technologies Llc Semiconductor structure with concave blocking dielectric sidewall and method of making thereof by isotropically etching the blocking dielectric layer
US9613975B2 (en) * 2015-03-31 2017-04-04 Sandisk Technologies Llc Bridge line structure for bit line connection in a three-dimensional semiconductor device
JP6803682B2 (ja) 2015-05-22 2020-12-23 株式会社半導体エネルギー研究所 半導体装置の作製方法
US10249498B2 (en) 2015-06-19 2019-04-02 Tokyo Electron Limited Method for using heated substrates for process chemistry control
KR102251815B1 (ko) 2015-07-02 2021-05-13 삼성전자주식회사 메모리 장치 및 메모리 시스템
JP2017017208A (ja) 2015-07-02 2017-01-19 株式会社ジャパンディスプレイ 半導体装置
KR20170006978A (ko) * 2015-07-10 2017-01-18 에스케이하이닉스 주식회사 반도체 장치의 제조방법
US9754961B2 (en) 2015-09-11 2017-09-05 Toshiba Memory Corporation Semiconductor memory device and method for manufacturing same
US9837504B2 (en) * 2015-10-28 2017-12-05 Taiwan Semiconductor Manufacturing Co., Ltd. Method of modifying capping layer in semiconductor structure
TWI611607B (zh) 2015-12-15 2018-01-11 旺宏電子股份有限公司 三維記憶體元件
US9741737B1 (en) 2016-04-15 2017-08-22 Micron Technology, Inc. Integrated structures comprising vertical channel material and having conductively-doped semiconductor material directly against lower sidewalls of the channel material
KR102629466B1 (ko) * 2016-09-21 2024-01-26 에스케이하이닉스 주식회사 반도체 장치의 제조 방법
DE102016118752A1 (de) 2016-10-04 2018-04-05 Johnson Controls Advanced Power Solutions Gmbh Energiespeichermodul und verfahren zum herstellen hiervon
US10014311B2 (en) 2016-10-17 2018-07-03 Micron Technology, Inc. Methods of forming an array of elevationally-extending strings of memory cells, methods of forming polysilicon, elevationally-extending strings of memory cells individually comprising a programmable charge storage transistor, and electronic components comprising polysilicon
KR102552461B1 (ko) 2016-11-01 2023-07-06 삼성전자 주식회사 반도체 소자 및 그 제조 방법
US10008570B2 (en) 2016-11-03 2018-06-26 Sandisk Technologies Llc Bulb-shaped memory stack structures for direct source contact in three-dimensional memory device
US10607850B2 (en) 2016-12-30 2020-03-31 American Air Liquide, Inc. Iodine-containing compounds for etching semiconductor structures
US10128265B2 (en) 2017-01-18 2018-11-13 Micron Technology, Inc. Memory cells, integrated structures and memory arrays
US10446681B2 (en) 2017-07-10 2019-10-15 Micron Technology, Inc. NAND memory arrays, and devices comprising semiconductor channel material and nitrogen
US10192878B1 (en) 2017-09-14 2019-01-29 Sandisk Technologies Llc Three-dimensional memory device with self-aligned multi-level drain select gate electrodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150263074A1 (en) * 2014-03-12 2015-09-17 Sandisk 3D Llc Transistor device and method of making thereof
US20160111434A1 (en) * 2014-10-21 2016-04-21 SanDisk Technologies, Inc. Three dimensional nand string memory devices and methods of fabrication thereof
US20170110470A1 (en) * 2015-10-19 2017-04-20 Sandisk Technologies Inc. Methods for manufacturing ultrathin semiconductor channel three-dimensional memory devices
US20170330752A1 (en) * 2016-05-12 2017-11-16 SK Hynix Inc. Method of manufacturing memory device

Also Published As

Publication number Publication date
WO2019133274A1 (en) 2019-07-04
JP2022501800A (ja) 2022-01-06
US10971360B2 (en) 2021-04-06
KR20200093075A (ko) 2020-08-04
US20200020529A1 (en) 2020-01-16
US10559466B2 (en) 2020-02-11
CN111406322B (zh) 2023-12-08
KR102416864B1 (ko) 2022-07-05
JP7113923B2 (ja) 2022-08-05
US20190198320A1 (en) 2019-06-27
EP3704742A4 (en) 2020-12-23
EP3704742A1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
US10847538B2 (en) Methods of forming an array of elevationally-extending strings of memory cells
CN111406322B (zh) 形成晶体管的沟道区的方法和用于形成存储器阵列的方法
CN110556382A (zh) 竖向延伸的存储器单元串的阵列和形成竖向延伸的存储器单元串的阵列的方法
CN111512440B (zh) 水平晶体管、垂直晶体管、及立面延伸的存储器单元串的阵列
WO2020149911A1 (en) Memory arrays and methods used in forming a memory array
CN110890374B (zh) 竖向延伸存储器单元串的阵列及用于形成竖向延伸存储器单元串的阵列的方法
US11621270B2 (en) Methods of forming an array of elevationally-extending strings of memory cells, methods of forming polysilicon, elevationally-extending strings of memory cells individually comprising a programmable charge storage transistor, and electronic components comprising polysilicon
CN110858594A (zh) 用于形成竖向延伸的存储器单元串的阵列的方法
CN113424320B (zh) 存储器阵列及用以形成存储器阵列的方法
CN113675203B (zh) 用于形成包括存储器单元串的存储器阵列的方法
US10483407B2 (en) Methods of forming si3nX, methods of forming insulator material between a control gate and charge-storage material of a programmable charge-storage transistor, and methods of forming an array of elevationally-extending strings of memory cells and a programmable charge-storage transistor manufactured in accordance with methods
US11538919B2 (en) Transistors and arrays of elevationally-extending strings of memory cells
US11856766B2 (en) Memory cell having programmable material comprising at least two regions comprising SiNx
US20220271127A1 (en) Transistors And Arrays Of Elevationally-Extending Strings Of Memory Cells
CN116615028A (zh) 包括存储器单元串的存储器阵列及用于形成包括存储器单元串的存储器阵列的方法
CN113658956A (zh) 包括存储器单元串的存储器阵列和用于形成包括存储器单元串的存储器阵列的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant