CN111354423A - 一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法 - Google Patents
一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法 Download PDFInfo
- Publication number
- CN111354423A CN111354423A CN202010132329.9A CN202010132329A CN111354423A CN 111354423 A CN111354423 A CN 111354423A CN 202010132329 A CN202010132329 A CN 202010132329A CN 111354423 A CN111354423 A CN 111354423A
- Authority
- CN
- China
- Prior art keywords
- fuzzy
- follows
- neuron
- layer
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 41
- 238000012731 temporal analysis Methods 0.000 title claims abstract description 9
- 238000000700 time series analysis Methods 0.000 title claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000010865 sewage Substances 0.000 claims abstract description 30
- 230000008859 change Effects 0.000 claims abstract description 7
- 210000002569 neuron Anatomy 0.000 claims description 93
- 238000004364 calculation method Methods 0.000 claims description 56
- 230000006870 function Effects 0.000 claims description 41
- 238000004422 calculation algorithm Methods 0.000 claims description 36
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 34
- 238000012549 training Methods 0.000 claims description 25
- 230000007704 transition Effects 0.000 claims description 23
- 238000012360 testing method Methods 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 17
- 238000010206 sensitivity analysis Methods 0.000 claims description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 9
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 claims description 9
- 238000005273 aeration Methods 0.000 claims description 9
- 230000001186 cumulative effect Effects 0.000 claims description 9
- 230000004927 fusion Effects 0.000 claims description 9
- 230000007246 mechanism Effects 0.000 claims description 9
- 125000001477 organic nitrogen group Chemical group 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 239000011574 phosphorus Substances 0.000 claims description 9
- 239000010802 sludge Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- GQPLMRYTRLFLPF-UHFFFAOYSA-N nitrous oxide Inorganic materials [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000013138 pruning Methods 0.000 claims description 6
- 238000011160 research Methods 0.000 claims description 4
- 101710103613 Flightin Proteins 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 3
- 238000010219 correlation analysis Methods 0.000 claims description 3
- 238000012847 principal component analysis method Methods 0.000 claims description 3
- 238000009966 trimming Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 14
- 238000005259 measurement Methods 0.000 abstract description 12
- 238000012544 monitoring process Methods 0.000 abstract description 4
- 238000005728 strengthening Methods 0.000 abstract description 2
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 6
- 238000012300 Sequence Analysis Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000000306 recurrent effect Effects 0.000 description 4
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000012851 eutrophication Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000002798 spectrophotometry method Methods 0.000 description 2
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- -1 ammonium ions Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229960002523 mercuric chloride Drugs 0.000 description 1
- LWJROJCJINYWOX-UHFFFAOYSA-L mercury dichloride Chemical compound Cl[Hg]Cl LWJROJCJINYWOX-UHFFFAOYSA-L 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/20—Identification of molecular entities, parts thereof or of chemical compositions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/043—Architecture, e.g. interconnection topology based on fuzzy logic, fuzzy membership or fuzzy inference, e.g. adaptive neuro-fuzzy inference systems [ANFIS]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/70—Machine learning, data mining or chemometrics
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Mathematical Physics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Fuzzy Systems (AREA)
- Computational Mathematics (AREA)
- Automation & Control Theory (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Biology (AREA)
- Feedback Control In General (AREA)
Abstract
一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法既属于控制领域,又属于水处理领域。针对当前污水处理过程中出水氨氮浓度测量具有时滞性、成本高、精度低等问题,本发明利用一种自组织递归模糊神经网络实现对关键水质参数氨氮浓度的预测,解决了出水氨氮浓度难以测量的问题;结果表明该自组织递归模糊神经网络能够自适应改变网络结构与参数,从而实现快速、准确地预测污水处理出水氨氮的浓度,有利于提升污水处理过程出水氨氮的浓度质量监控水平和加强城市污水处理厂精细化管理。
Description
技术领域
本发明针对污水处理过程机理复杂、难以建立测量模型的问题,设计了一种基于多元时间序列分析的自组织递归模糊神经网络实现对污水处理过程关键水质参数氨氮浓度的预测,氨氮浓度是表征水体污染和污水处理程度的重要参量,对人体健康有着重要影响,实现氨氮浓度的在线预测是实现脱氮控制的基础环节,是先进制造技术领域的重要分支,既属于控制领域,又属于水处理领域。
背景技术
氨氮是水环境污染和水体富营养化问题的主要因素,控制水环境污染和水体富营养化的一项重要举措就是严格限制污水处理出水中氨氮的排放;氨氮浓度智能检测技术能够提高氨氮去除效率,改善目前出水氨氮超标的现象;有利于提升实时水质质量监控水平和加强城市污水处理厂精细化管理,不但具有较好的经济效益,而且具有显著的环境和社会效益。因此,本发明的研究成果具有广阔的应用前景。
我国发布的《城镇污水处理厂污染物排放标准》(GB18918-2002),对城镇污水处理厂的各个常规污染物排放的标准值进行明确规定和分级,其中,在一级A标准中,规定氨氮的最高排放标准为5Mg/L;因此,实现氨氮浓度的快速预测,控制污水处理厂出水氨氮达标排放,是保证污水处理厂出水水质合格的必要环节;目前氨氮浓度的测量方法主要有分光光度法、电化学分析法和机理模型等,而分光光度法的测定原理是将水中游离态氨或铵离子与氯化汞和碘化钾的碱性溶液发生反应生成淡红棕色胶态络合物,通过测量络合物的吸光度可得出氨氮的含量;然而,这种方法测量误差较大,干扰因素多,操作繁琐,存在废弃物安全处理等问题;电极法不需要对水样进行预处理,色度与浊度对测定结果影响较小,不易受到干扰,操作快捷简单,但电极的寿命和稳定性较差,同时,电极法测量精度较低;同时,污水处理过程影响硝化反应参数众多,动力学特性复杂,进而影响氨氮浓度的参数众多,各因素间相互作用,呈现非线性和偶尔性等特点,很难建立出水氨氮的机理模型;因此,现有的氨氮浓度检测方法很难满足污水处理厂实时检测的需求,必须寻求新的检测方法;近年来,随着软测量技术的发展,软测量方法能够实现一定精度范围内的非线性系统预测,为氨氮浓度预测提供了理论基础,为氨氮浓度的高精度预测提供一种可行方法。
本发明设计了一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法,实现出水氨氮浓度的在线预测。
发明内容
本发明获得了一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法,通过设计自组织递归模糊神经网络,根据污水处理过程的实时采集的数据实现递归模糊神经网络的在线校正,实现了出水氨氮浓度的实时测量,解决了污水处理过程出水氨氮浓度难以实时测量的问题,提高了城市污水处理厂水质质量实时监控水平,保障污水处理过程正常运行;
本发明采用了如下的技术方案及实现步骤:
一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法包括以下步骤:
1.一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法,其特征在于,包括以下步骤:
(1)确定辅助变量:采集污水处理厂的实际水质参数,并用主成分分析法对参数数据进行相关性分析,进而计算出各参数的贡献率,最终得出与出水氨氮浓度相关性强的辅助变量为:出水总氮TN、硝态氮NO3-N、亚硝态氮NO2-N、有机氮、总磷TP、混合液悬浮固体浓度MLSS以及曝气池污泥沉降比SV;
(2)设计用于出水氨氮浓度预测的自组织递归模糊神经网络拓扑结构,自组织递归模糊神经网络分为六层:输入层、隶属函数层、规则层、递归层、后件层和输出层;各层的计算功能如下:
①输入层:该层共有n个神经元,n为7,每个节点代表一个输入变量xi(t),该层的目的是将输入值直接传送到下一层,t代表时间序数;
xi(t),i=1,2,...,n (1)
②隶属函数层:该层共有m个神经元,m的初始值设为20,每个节点代表一个隶属度函数uij(t),隶属函数可以表示为:
其中,cij(t)与σij(t)分别为隶属度函数的中心和宽度,其初始值为rand随机函数生成范围在(0,2)之间均匀分布的随机实数;
③规则层:该层每个节点代表一个模糊逻辑规则wj(t),采用模糊算子为连乘算子;
④递归层:该层在规则层后建立自反馈连接,采用小波变换和马尔科夫链法对规则层的历史数据进行分析,以预测出当前时刻规则层的预测值wj *(t),将预测值作为递归量带入到当前的规则计算中得到oj(t);
其中,λj(t)为递归权值,λj(t)的初始值设为0,将该层的输出进行归一化得到网络输出层的权值为θj(t);
⑤后件层:该层中的每个节点执行T-S模糊规则的线性求和,该层的功能是计算每个规则的后件参数yj(t);
yj(t)=p0j(t)+p1j(t)x1(t)+...+pnj(t)xn(t) (6)
其中,p0j(t),p1j(t),...,pnj(t)为模糊系统参数,其初始值设为0.3;
⑥输出层:该层有一个输出节点,对其输入量进行求和实现去模糊化,得到输出值y(t);
(3)构建模糊神经网络的递归机制,具体为:
①将t-k时刻至t时刻的模糊规则记为序列Wj(t),k为样本总数的0.5%~2%;
Wj(t)=[wj(t-k),wj(t-k+1),...,wj(t-1),wj(t)] (8)
②将原始时间序列Wj(t)进行多尺度一维离散小波变换,并对其进行单支重构得到1个近似部分序列Hj(t)与r个细节部分序列D1j(t),D2j(t),...,Drj(t);
Wj(t)=Hj(t)+D1j(t)+D2j(t)+...+Drj(t) (9)
根据模糊马尔科夫链算法可知,在t+1时刻的状态隶属度向量μ(hj(t+1))的计算方法如下:
(4)构建模糊神经网络的自组织机制,具体为:
①采用加权动态时间弯曲距离以评估神经元之间的相关性:
其中δmax是权重的上限,设为1,g为一个常量,用于控制权值因子的曲率,设为0.5;为形态因子,为极值点检测常量,当为序列中的最大值时,设置为1,当为序列中的最小值时,设置为-1,在其他情况下,设置为0,的设置方式与相同;
②采用基于傅里叶变换的敏感度分析方法以评估神经元的贡献度:
然后,计算连续k个时刻隐含层的第j个神经元的累计贡献度为STj(t):
最后,将得到的STj(t)用于指导神经元的分裂与修剪计算,其计算方法见步骤(5)中的②和③;
(5)网络的结构参数调整算法,具体为:
①神经元融合算法:
其中,ζ1是相关系数,取值范围为[0.05,0.1];
②神经元分裂算法:
其中,ζ2是相关系数,取值范围为[2,4];
③神经元修剪算法:
其中,ζ3是相关系数,取值范围为[0.1,0.3];
(6)网络的参数学习算法,该网络选取梯度下降算法来调节网络参数,相关算法定义如下:
①定义误差函数e(t)为:
②模糊系统的参数更新算法定义如下:
③中心、宽度和递归权值的参数更新算法定义如下:
其中cij(t)和cij(t-1)、σij(t)和σij(t-1)、λj(t)和λj(t-1)分别为t时刻和t-1时刻的隶属函数的中心、宽度和递归权值,和分别为t时刻的隶属函数中心、宽度和递归权值的变化率;
(7)网络的训练样本与测试样本:输入训练样本数据x(t+1),重复步骤(2)-(6),直至所有训练样本训练结束后停止计算;输入测试样本数据,得到自组织递归模糊神经网络的输出即为出水氨氮浓度的预测值。
本发明的创造性主要体现在:
(1)针对当前污水处理厂出水氨氮浓度不能实时测量的问题,本发明通过提取与出水氨氮浓度相关的7个相关量:出水总氮TN、硝态氮NO3-N、亚硝态氮NO2-N、有机氮、总磷TP、混合液悬浮固体浓度MLSS以及曝气池污泥沉降比SV,提出了一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法,实现了出水氨氮浓度的预测,解决了出水氨氮浓度难以实时测量的问题;
(2)本发明根据当前污水处理过程是一个复杂的、动态时变的过程,出水氨氮浓度与相关变量间的关系不仅具有非线性、强耦合等特点,而且难以用精确数学模型描述,因此,基于实际污水处理厂实测数据,采用了基于多元时间序列分析的自组织递归模糊神经网络实现了出水氨氮浓度的预测,具有预测精度高,对环境差异具有很好的适应能力等特点;
附图说明
图1是本发明的出水氨氮浓度预测方法网络结构图
图2是本发明的出水氨氮浓度预测方法训练结果图
图3是本发明的出水氨氮浓度预测方法训练误差图
图4是本发明的出水氨氮浓度预测方法测试结果图
图5是本发明的出水氨氮浓度预测方法测试误差图
具体实施方式
本发明获得了一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法,通过设计自组织递归模糊神经网络,根据污水处理过程的实时采集的数据实现自组织递归模糊神经网络的在线校正,实现了出水氨氮浓度的实时测量,解决了污水处理过程出水氨氮浓度难以实时测量的问题,提高了城市污水处理厂水质质量实时监控水平,保障污水处理过程正常运行;
实验数据来自某污水厂2014年全年水质分析日报表;分别取出水总氮TN、硝态氮NO3-N、亚硝态氮NO2-N、有机氮、总磷TP、混合液悬浮固体浓度MLSS、曝气池污泥沉降比SV和出水氨氮浓度的实际检测数据为实验样本数据,剔除异常实验样本后剩余300组可用数据,将全部的300组样本分为两部分:其中200组数据作为训练样本,其余100组数据作为测量样本;
一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法包括以下步骤:
(1)确定辅助变量:采集污水处理厂的实际水质参数,并用主成分分析法对参数数据进行相关性分析,进而计算出各参数的贡献率,最终得出与出水氨氮浓度相关性强的辅助变量为:出水总氮TN、硝态氮NO3-N、亚硝态氮NO2-N、有机氮、总磷TP、混合液悬浮固体浓度MLSS以及曝气池污泥沉降比SV;
(2)设计用于出水氨氮浓度预测的自组织递归模糊神经网络拓扑结构,如图1所示,自组织递归模糊神经网络分为六层:输入层、隶属函数层、规则层、递归层、后件层和输出层;各层的计算功能如下:
①输入层:该层共有n个神经元,n为7,每个节点代表一个输入变量xi(t),该层的目的是将输入值直接传送到下一层,t代表时间序数;
xi(t),i=1,2,...,n (1)
②隶属函数层:该层共有m个神经元,m的初始值设为20,每个节点代表一个隶属度函数uij(t),隶属函数可以表示为:
其中,cij(t)与σij(t)分别为隶属度函数的中心和宽度,其初始值为rand随机函数生成范围在(0,2)之间均匀分布的随机实数;
③规则层:该层每个节点代表一个模糊逻辑规则wj(t),采用模糊算子为连乘算子;
其中,λj(t)为递归权值,λj(t)的初始值设为0,将该层的输出进行归一化得到网络输出层的权值为θj(t);
⑤后件层:该层中的每个节点执行T-S模糊规则的线性求和,该层的功能是计算每个规则的后件参数yj(t);
yj(t)=p0j(t)+p1j(t)x1(t)+...+pnj(t)xn(t) (6)
其中,p0j(t),p1j(t),...,pnj(t)为模糊系统参数,其初始值设为0.3;
⑥输出层:该层有一个输出节点,对其输入量进行求和实现去模糊化,得到输出值y(t);
(3)构建模糊神经网络的递归机制,具体为:
①将t-k时刻至t时刻的模糊规则记为序列Wj(t),k为样本总数的0.5%~2%;
Wj(t)=[wj(t-k),wj(t-k+1),...,wj(t-1),wj(t)] (8)
②将原始时间序列Wj(t)进行多尺度一维离散小波变换,并对其进行单支重构得到1个近似部分序列Hj(t)与r个细节部分序列D1j(t),D2j(t),...,Drj(t);
Wj(t)=Hj(t)+D1j(t)+D2j(t)+...+Drj(t) (9)
根据模糊马尔科夫链算法可知,在t+1时刻的状态隶属度向量μ(hj(t+1))的计算方法如下:
(4)构建模糊神经网络的自组织机制,具体为:
①采用加权动态时间弯曲距离以评估神经元之间的相关性:
其中δmax是权重的上限,设为1,g为一个常量,用于控制权值因子的曲率,设为0.5;为形态因子,为极值点检测常量,当为序列中的最大值时,设置为1,当为序列中的最小值时,设置为-1,在其他情况下,设置为0,的设置方式与相同;
②采用基于傅里叶变换的敏感度分析方法以评估神经元的贡献度:
然后,计算连续k个时刻隐含层的第j个神经元的累计贡献度为STj(t):
最后,将得到的STj(t)用于指导神经元的分裂与修剪计算,其计算方法见步骤(5)中的②和③;
(5)网络的结构参数调整算法,具体为:
①神经元融合算法:
其中,ζ1是相关系数,取值范围为[0.05,0.1];
②神经元分裂算法:
其中,ζ2是相关系数,取值范围为[2,4];
③神经元修剪算法:
其中,ζ3是相关系数,取值范围为[0.1,0.3];
(6)网络的参数学习算法,该网络选取梯度下降算法来调节网络参数,相关算法定义如下:
①定义误差函数e(t)为:
②模糊系统的参数更新算法定义如下:
③中心、宽度和递归权值的参数更新算法定义如下:
其中cij(t)和cij(t-1)、σij(t)和σij(t-1)、λj(t)和λj(t-1)分别为t时刻和t-1时刻的隶属函数的中心、宽度和递归权值,和分别为t时刻的隶属函数中心、宽度和递归权值的变化率;
(7)网络的训练样本与测试样本:输入训练样本数据x(t+1),重复步骤(2)-(6),直至所有训练样本训练结束后停止计算;输入测试样本数据,得到自组织递归模糊神经网络的输出即为出水氨氮浓度的预测值。
图1是本发明的出水氨氮浓度预测方法网络结构图
图2是本发明的出水氨氮浓度预测方法训练结果图
图3是本发明的出水氨氮浓度预测方法训练误差图
图4是本发明的出水氨氮浓度预测方法测试结果图
图5是本发明的出水氨氮浓度预测方法测试误差图
自组织递归模糊神经网络的训练结果如图2所示,X轴:样本数,单位是个/样本,Y轴:出水氨氮浓度,单位mg/L,实线为出水氨氮浓度实际输出值,虚线是网络输出值;出水氨氮浓度实际输出值与自组织递归模糊神经网络输出值的误差如图3,X轴:样本数,单位是个/样本,Y轴:出水氨氮浓度,单位是mg/L;
(8)将测试样本数据作为训练后的自组织递归模糊神经网络的输入,网络的输出即为出水氨氮浓度值;预测结果如图4所示,X轴:样本数,单位是个/样本,Y轴:出水氨氮浓度,单位是mg/L,实线为出水氨氮浓度实际输出值,虚线是出水氨氮浓度预测输出值;出水氨氮浓度实际输出值与出水氨氮浓度预测输出值的误差如图5,X轴:样本数,单位是个/样本,Y轴:出水氨氮浓度预测,单位是mg/L;结果表明基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法的有效性。
表1-表18是本发明实验数据,其中表1-表8为训练样本:出水总氮TN、硝态氮NO3-N、亚硝态氮NO2-N、有机氮、总磷TP、混合液悬浮固体浓度MLSS和曝气池污泥沉降比SV,表9为训练过程中递归模糊神经网络的输出,表10-表17为测试样本:出水总氮TN、硝态氮NO3-N、亚硝态氮NO2-N、有机氮、总磷TP、混合液悬浮固体浓度MLSS和曝气池污泥沉降比SV,表18为本发明出水氨氮浓度预测值。
表1.辅助变量出水总氮TN(训练集)(mg/L)
14.8 | 22.5 | 22 | 25 | 16 | 27.6 | 23 | 23.9 | 24.7 | 26.9 |
24.7 | 25.2 | 13.4 | 23.2 | 24.8 | 16.6 | 25.8 | 25.3 | 22.4 | 23.4 |
22.9 | 23.8 | 23.1 | 21.7 | 25.4 | 22.5 | 23.8 | 20.3 | 20.4 | 18.6 |
20.5 | 23.3 | 24 | 24.9 | 25.1 | 19.2 | 20.1 | 18.8 | 11.7 | 17.7 |
16 | 11.6 | 13.5 | 15.8 | 14.5 | 24.1 | 12.6 | 13.4 | 15.8 | 15.7 |
19.2 | 15.9 | 15.3 | 15.4 | 26.4 | 18.8 | 14.3 | 24.5 | 25.2 | 24.7 |
25.6 | 23.4 | 24.2 | 27 | 24.6 | 24.8 | 26.4 | 24.3 | 25.2 | 24.4 |
24.8 | 28.8 | 29.1 | 17.2 | 15.7 | 18.4 | 12 | 15.4 | 15.7 | 25.6 |
7.59 | 27.4 | 24.8 | 24.1 | 25.7 | 24.7 | 23.6 | 22.7 | 20 | 23.6 |
22 | 23 | 22.3 | 24.4 | 23.5 | 23 | 24 | 16.9 | 17 | 26.6 |
18.2 | 16.7 | 16.3 | 17.7 | 16.8 | 14.7 | 19.1 | 10.5 | 23 | 17.2 |
22.6 | 25.1 | 24.3 | 19.1 | 23.9 | 24.8 | 24.9 | 22.7 | 21.3 | 23.2 |
23.7 | 22 | 21.8 | 23 | 21.7 | 19.6 | 20.2 | 20.9 | 17.4 | 18.6 |
22.2 | 17.6 | 22.3 | 19.8 | 21.4 | 19.9 | 17.1 | 18.9 | 18 | 20.7 |
20.5 | 22.1 | 19.3 | 13.5 | 10.7 | 19.3 | 20.3 | 19.8 | 19.4 | 20.8 |
20.3 | 19.5 | 19.1 | 21 | 19 | 21.6 | 16.8 | 20.4 | 22.3 | 22 |
18.7 | 21.1 | 22.4 | 22.7 | 22.4 | 16.5 | 19 | 18.4 | 19.5 | 18.1 |
17.9 | 18.9 | 17.6 | 16.4 | 19.9 | 20.8 | 20.5 | 19.1 | 17.1 | 19.1 |
20.2 | 24 | 24.8 | 26.3 | 22.9 | 21.6 | 21.7 | 16.9 | 23.2 | 20.7 |
20 | 22 | 20.8 | 23.8 | 21.5 | 21.8 | 25.2 | 21.2 | 22.6 | 23.4 |
表2.辅助变量硝态氮NO3-N(训练集)(mg/L)
表3.辅助变量亚硝态氮NO2-N(训练集)(mg/L)
表4.辅助变量有机氮(训练集)(mg/L)
2.25 | 0.537 | 0.152 | 0.277 | 2.93 | 2.56 | 1.63 | 0.669 | 0.825 | 2.58 |
2.53 | 1.14 | 4.79 | 1.23 | 0.487 | 4.31 | 0.582 | 0.595 | 0.375 | 1.6 |
0.124 | 2.59 | 0.889 | 1.54 | 3.82 | 2.29 | 3.58 | 0.954 | 2.72 | 2.78 |
3.73 | 0.511 | 0.491 | 0.28 | 0.283 | 3.9 | 1.04 | 1.64 | 3.1 | 1.29 |
0.605 | 1.27 | 2.36 | 3.54 | 4.32 | 1.19 | 1.05 | 2.65 | 0.63 | 4.41 |
3.01 | 4.26 | 4.12 | 4.45 | 0.32 | 4.05 | 0.778 | 0.83 | 0.441 | 1.08 |
3.51 | 0.71 | 0.36 | 2.49 | 1.5 | 1 | 0.99 | 0.58 | 4.43 | 1.37 |
2.66 | 0.75 | 1.54 | 0.857 | 1.13 | 3.55 | 1.54 | 3.36 | 0.98 | 1.13 |
1.66 | 4.36 | 4.25 | 1.47 | 0.46 | 1.89 | 1.93 | 1.63 | 2.56 | 0.74 |
3.61 | 3.38 | 3.02 | 0.275 | 2.76 | 2.15 | 4.07 | 2.88 | 2.87 | 0.31 |
2.14 | 2.77 | 2.26 | 4.53 | 2.69 | 2.62 | 0.52 | 4.35 | 3.16 | 4.97 |
4.28 | 3.05 | 1.96 | 4.82 | 3.12 | 4.83 | 3.26 | 3.03 | 2.56 | 2.49 |
2.71 | 2.7 | 0.347 | 2.33 | 4.31 | 4.68 | 3.39 | 2.06 | 2.11 | 4.54 |
4.14 | 0.736 | 0.341 | 2.33 | 4.62 | 3.54 | 2.73 | 4.72 | 4.8 | 3.87 |
4.22 | 4.42 | 4.55 | 4.8 | 4.06 | 4.63 | 3.61 | 4.01 | 4.16 | 3.72 |
4.33 | 4.58 | 1.65 | 0.411 | 1.18 | 2.37 | 2.37 | 0.84 | 0.38 | 4.26 |
1.76 | 3.19 | 2.19 | 4.02 | 4.71 | 4.52 | 2.5 | 2.98 | 3.5 | 1.84 |
1.66 | 3.35 | 1.83 | 1.26 | 2.21 | 0.642 | 3.82 | 3.82 | 2.1 | 3.56 |
3.12 | 0.872 | 4.1 | 0.297 | 2.02 | 0.946 | 2.51 | 2.14 | 4.55 | 4.09 |
4.08 | 4.81 | 4.43 | 4.31 | 4.48 | 4.2 | 4.49 | 4.32 | 4.77 | 4.57 |
表5.辅助变量总磷TP(训练集)(mg/L)
表6.辅助变量混合液悬浮固体浓度MLSS(训练集)(mg/L)
表7.辅助变量曝气池污泥沉降比SV(训练集)(mg/L)
38 | 31 | 26 | 22 | 21 | 33 | 47 | 35 | 36 | 36 |
57 | 38 | 29 | 35 | 37 | 33 | 56 | 24 | 29 | 30 |
30 | 27 | 28 | 25 | 29 | 28 | 27 | 26 | 28 | 42 |
21 | 20 | 21 | 23 | 22 | 24 | 21 | 20 | 15 | 21 |
21 | 20 | 23 | 22 | 23 | 18 | 31 | 25 | 26 | 32 |
26 | 19 | 21 | 24 | 22 | 23 | 24 | 27 | 27 | 23 |
25 | 24 | 25 | 24 | 25 | 19 | 22 | 26 | 27 | 29 |
30 | 27 | 31 | 27 | 28 | 23 | 24 | 25 | 23 | 23 |
23 | 23 | 22 | 21 | 23 | 20 | 19 | 23 | 19 | 20 |
21 | 21 | 20 | 21 | 23 | 24 | 22 | 21 | 22 | 17 |
23 | 27 | 25 | 25 | 32 | 33 | 30 | 42 | 37 | 38 |
35 | 35 | 38 | 30 | 31 | 31 | 31 | 30 | 30 | 41 |
28 | 26 | 26 | 24 | 29 | 27 | 26 | 29 | 30 | 35 |
33 | 39 | 37 | 45 | 37 | 41 | 44 | 47 | 48 | 37 |
33 | 33 | 33 | 34 | 27 | 32 | 28 | 33 | 37 | 45 |
43 | 40 | 38 | 38 | 32 | 35 | 34 | 35 | 36 | 38 |
33 | 35 | 24 | 35 | 43 | 41 | 41 | 42 | 45 | 99 |
48 | 51 | 53 | 50 | 43 | 44 | 43 | 39 | 42 | 43 |
42 | 42 | 43 | 37 | 33 | 34 | 32 | 36 | 35 | 35 |
33 | 31 | 30 | 31 | 34 | 37 | 31 | 26 | 27 | 29 |
表8.实测出水氨氮浓度(训练集)(mg/L)
表9.自组织递归模糊神经网络训练输出(训练集)(mg/L)
测试样本
表10.辅助变量出水总氮TN(测试集)(mg/L)
23.1 | 22.9 | 23.1 | 22.3 | 19.4 | 19.6 | 21 | 23.7 | 24.1 | 21.4 |
15.9 | 15.1 | 19.7 | 19.7 | 20.2 | 23.2 | 22.8 | 22.5 | 21.4 | 23 |
25.7 | 22 | 24.1 | 22.9 | 22.5 | 23.1 | 24.9 | 23.4 | 24.2 | 21.7 |
21.7 | 22.3 | 22.7 | 23 | 23.5 | 27.2 | 26.2 | 26.4 | 25.9 | 23.4 |
22 | 22.8 | 26.4 | 25.9 | 25.8 | 23.9 | 24.7 | 26.6 | 25.5 | 23.8 |
22.7 | 25.5 | 23.5 | 22.4 | 22.1 | 24.2 | 23.6 | 24.4 | 22.5 | 22 |
24 | 24.6 | 22.6 | 20.4 | 20.7 | 21.6 | 24.1 | 23 | 22.6 | 22 |
24.9 | 23 | 21.4 | 24.3 | 24.5 | 25.1 | 25.5 | 22.8 | 23 | 24.3 |
25.2 | 23.9 | 25.6 | 23.6 | 20.6 | 24.5 | 24.3 | 23.9 | 20.5 | 22.7 |
23.8 | 15.9 | 15.3 | 15.4 | 26.4 | 18.8 | 25.7 | 17.1 | 19.1 | 20.2 |
表11.辅助变量硝态氮NO3-N(测试集)(mg/L)
17.6 | 17.7 | 17.2 | 16.9 | 14.2 | 15.2 | 15.9 | 19.8 | 20.7 | 16.7 |
11.8 | 10.9 | 11.9 | 15 | 17.8 | 18 | 18.6 | 19.9 | 19.4 | 20.1 |
20.5 | 20 | 19.6 | 18.1 | 17.8 | 18.3 | 20.4 | 18.6 | 20 | 16.6 |
20.1 | 19.9 | 20.4 | 21.1 | 17.5 | 23.4 | 21.8 | 23.9 | 22.5 | 22.8 |
16.5 | 15.3 | 18.3 | 19.5 | 20.8 | 22.1 | 24 | 22 | 24.1 | 20.1 |
20.4 | 20.1 | 19.8 | 19.1 | 20.2 | 23.3 | 21.6 | 20.7 | 19.8 | 20.9 |
23.1 | 22.7 | 21.3 | 19.1 | 19.2 | 19.4 | 19.9 | 21.6 | 19.3 | 19.8 |
20.1 | 20.7 | 18.7 | 19.3 | 19.7 | 21.8 | 19.9 | 18.6 | 17.7 | 18.5 |
19.7 | 19.4 | 19 | 18.1 | 17.1 | 21.8 | 14.7 | 15 | 10.4 | 7.22 |
5.04 | 10.8 | 10.8 | 10.7 | 22.4 | 8.57 | 20.5 | 14.5 | 15.2 | 16.6 |
表12.辅助变量亚硝态氮NO2-N(测试集)(mg/L)
表13.辅助变量有机氮(测试集)(mg/L)
4.99 | 4.68 | 4.36 | 4.19 | 4.87 | 3.99 | 4.65 | 0.515 | 0.477 | 1.89 |
3.57 | 3.73 | 2.31 | 4.39 | 1.6 | 2.54 | 3.48 | 1.95 | 1.52 | 2.58 |
4.45 | 1.7 | 3.81 | 4.23 | 1.7 | 3.17 | 3.03 | 3 | 1.07 | 4.21 |
0.919 | 1.99 | 1.78 | 1.15 | 3.15 | 3.18 | 4.03 | 1.85 | 2.75 | 0.292 |
2.73 | 3.97 | 4.67 | 4.87 | 3.703 | 1.24 | 0.172 | 3.98 | 1.24 | 3.16 |
1.86 | 4.84 | 3.26 | 2.97 | 1.53 | 0.594 | 1.64 | 0.601 | 1.93 | 0.884 |
0.24 | 1.03 | 0.961 | 0.921 | 1.14 | 1.74 | 3.62 | 0.962 | 2.73 | 1.77 |
4.17 | 1.68 | 1.95 | 4.29 | 4.29 | 2.46 | 4.62 | 2.58 | 4.61 | 4.82 |
4.74 | 3.37 | 4.87 | 4.68 | 2.69 | 0.51 | 4.38 | 4.8 | 4.79 | 4.73 |
4.96 | 4.26 | 4.12 | 4.45 | 0.32 | 4.05 | 4.45 | 2.1 | 3.56 | 3.12 |
表14.辅助变量总磷TP(测试集)(mg/L)
0.139 | 0.123 | 0.127 | 0.123 | 0.083 | 0.135 | 0.111 | 0.143 | 0.139 | 0.132 |
0.164 | 0.217 | 0.706 | 0.237 | 0.399 | 0.722 | 0.678 | 0.237 | 0.443 | 0.431 |
0.278 | 0.253 | 0.266 | 0.379 | 0.491 | 0.625 | 0.263 | 0.076 | 0.129 | 0.104 |
0.291 | 0.987 | 0.987 | 0.873 | 0.527 | 0.198 | 0.165 | 0.206 | 0.133 | 0.251 |
0.173 | 0.169 | 0.145 | 0.238 | 0.177 | 0.141 | 0.279 | 0.165 | 0.153 | 0.133 |
0.123 | 0.119 | 0.102 | 0.115 | 0.123 | 0.453 | 0.71 | 0.771 | 0.543 | 0.314 |
0.212 | 0.131 | 0.115 | 0.106 | 0.221 | 0.119 | 0.208 | 0.127 | 0.123 | 0.302 |
0.265 | 0.282 | 0.356 | 0.417 | 0.307 | 0.866 | 0.127 | 0.107 | 0.107 | 0.16 |
0.131 | 0.066 | 0.18 | 0.95 | 0.131 | 0.135 | 0.144 | 0.168 | 0.146 | 0.17 |
0.158 | 0.132 | 0.132 | 0.116 | 0.209 | 0.185 | 0.278 | 0.102 | 0.204 | 0.107 |
表15.辅助变量混合液悬浮固体浓度MLSS(测试集)(mg/L)
表16.辅助变量曝气池污泥沉降比SV(测试集)(mg/L)
29 | 29 | 27 | 29 | 29 | 33 | 36 | 35 | 36 | 29 |
28 | 24 | 25 | 26 | 26 | 27 | 25 | 25 | 25 | 27 |
27 | 27 | 28 | 29 | 30 | 34 | 34 | 35 | 36 | 37 |
55 | 44 | 42 | 44 | 45 | 36 | 37 | 40 | 38 | 36 |
41 | 41 | 47 | 52 | 48 | 40 | 43 | 45 | 36 | 37 |
37 | 37 | 37 | 36 | 31 | 26 | 25 | 26 | 28 | 28 |
28 | 30 | 29 | 26 | 27 | 27 | 28 | 28 | 24 | 23 |
23 | 23 | 24 | 22 | 23 | 23 | 24 | 24 | 24 | 22 |
24 | 22 | 23 | 27 | 28 | 27 | 89 | 27 | 27 | 27 |
27 | 19 | 21 | 24 | 22 | 23 | 27 | 42 | 43 | 42 |
表17.实测出水氨氮浓度(测试集)(mg/L)
0.506 | 0.52 | 1.54 | 1.03 | 0.334 | 0.413 | 0.45 | 0.815 | 0.273 | 0.369 |
0.529 | 0.468 | 3.16 | 0.31 | 0.8 | 0.506 | 0.724 | 0.649 | 0.48 | 0.32 |
0.752 | 0.296 | 0.693 | 0.571 | 0.669 | 1.63 | 1.47 | 1.8 | 3.13 | 0.894 |
0.681 | 0.409 | 0.515 | 0.749 | 2.85 | 0.616 | 0.367 | 0.648 | 0.651 | 0.308 |
2.77 | 3.53 | 3.43 | 1.53 | 0.772 | 0.56 | 0.528 | 0.616 | 0.164 | 0.54 |
0.444 | 0.555 | 0.438 | 0.327 | 0.374 | 0.306 | 0.365 | 0.339 | 0.768 | 0.216 |
0.66 | 0.873 | 0.339 | 0.379 | 0.359 | 0.461 | 0.578 | 0.438 | 0.566 | 0.428 |
0.629 | 0.615 | 0.748 | 0.712 | 0.513 | 0.845 | 0.983 | 1.62 | 0.693 | 0.983 |
0.762 | 1.13 | 1.73 | 0.82 | 0.825 | 2.19 | 3.59 | 2.32 | 1.97 | 5.66 |
7.32 | 0.84 | 0.385 | 0.251 | 1.3 | 0.82 | 0.752 | 0.495 | 0.345 | 0.475 |
表18.自组织递归模糊神经网络预测输出(测试集)(mg/L)
Claims (1)
1.一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法,其特征在于,包括以下步骤:
(1)确定辅助变量:采集污水处理厂的实际水质参数,并用主成分分析法对参数数据进行相关性分析,进而计算出各参数的贡献率,最终得出与出水氨氮浓度相关性强的辅助变量为:出水总氮TN、硝态氮NO3-N、亚硝态氮NO2-N、有机氮、总磷TP、混合液悬浮固体浓度MLSS以及曝气池污泥沉降比SV;
(2)设计用于出水氨氮浓度预测的自组织递归模糊神经网络拓扑结构,自组织递归模糊神经网络分为六层:输入层、隶属函数层、规则层、递归层、后件层和输出层;各层的计算功能如下:
①输入层:该层共有n个神经元,n为7,每个节点代表一个输入变量xi(t),该层的目的是将输入值直接传送到下一层,t代表时间序数;
xi(t),i=1,2,...,n (1)
②隶属函数层:该层共有m个神经元,m的初始值设为20,每个节点代表一个隶属度函数uij(t),隶属函数表示为:
其中,cij(t)与σij(t)分别为隶属度函数的中心和宽度,其初始值为rand随机函数生成范围在(0,2)之间均匀分布的随机实数;
③规则层:该层每个节点代表一个模糊逻辑规则wj(t),采用模糊算子为连乘算子;
其中,λj(t)为递归权值,λj(t)的初始值设为0,将该层的输出进行归一化得到网络输出层的权值为θj(t);
⑤后件层:该层中的每个节点执行T-S模糊规则的线性求和,该层的功能是计算每个规则的后件参数yj(t);
yj(t)=p0j(t)+p1j(t)x1(t)+...+pnj(t)xn(t) (6)
其中,p0j(t),p1j(t),...,pnj(t)为模糊系统参数,其初始值设为0.3;
⑥输出层:该层有一个输出节点,对其输入量进行求和实现去模糊化,得到输出值y(t);
(3)构建模糊神经网络的递归机制,具体为:
①将t-k时刻至t时刻的模糊规则记为序列Wj(t),k为样本总数的0.5%~2%;
Wj(t)=[wj(t-k),wj(t-k+1),...,wj(t-1),wj(t)] (8)
②将原始时间序列Wj(t)进行多尺度一维离散小波变换,并对其进行单支重构得到1个近似部分序列Hj(t)与r个细节部分序列D1j(t),D2j(t),...,Drj(t);
Wj(t)=Hj(t)+D1j(t)+D2j(t)+...+Drj(t) (9)
根据模糊马尔科夫链算法可知,在t+1时刻的状态隶属度向量μ(hj(t+1))的计算方法如下:
(4)构建模糊神经网络的自组织机制,具体为:
①采用加权动态时间弯曲距离以评估神经元之间的相关性:
其中δmax是权重的上限,设为1,g为一个常量,用于控制权值因子的曲率,设为0.5;为形态因子,为极值点检测常量,当为序列中的最大值时,设置为1,当为序列中的最小值时,设置为-1,在其他情况下,设置为0,的设置方式与相同;
②采用基于傅里叶变换的敏感度分析方法以评估神经元的贡献度:
然后,计算连续k个时刻隐含层的第j个神经元的累计贡献度为STj(t):
最后,将得到的STj(t)用于指导神经元的分裂与修剪计算,其计算方法见步骤(5)中的②和③;
(5)网络的结构参数调整算法,具体为:
①神经元融合算法:
其中,ζ1是相关系数,取值范围为[0.05,0.1];
②神经元分裂算法:
其中,ζ2是相关系数,取值范围为[2,4];
③神经元修剪算法:
其中,ζ3是相关系数,取值范围为[0.1,0.3];
(6)网络的参数学习算法,该网络选取梯度下降算法来调节网络参数,相关算法定义如下:
①定义误差函数e(t)为:
②模糊系统的参数更新算法定义如下:
③中心、宽度和递归权值的参数更新算法定义如下:
其中cij(t)和cij(t-1)、σij(t)和σij(t-1)、λj(t)和λj(t-1)分别为t时刻和t-1时刻的隶属函数的中心、宽度和递归权值,和分别为t时刻的隶属函数中心、宽度和递归权值的变化率;
(7)网络的训练样本与测试样本:输入训练样本数据x(t+1),重复步骤(2)-(6),直至所有训练样本训练结束后停止计算;输入测试样本数据,得到自组织递归模糊神经网络的输出即为出水氨氮浓度的预测值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010132329.9A CN111354423B (zh) | 2020-02-29 | 2020-02-29 | 一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010132329.9A CN111354423B (zh) | 2020-02-29 | 2020-02-29 | 一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111354423A true CN111354423A (zh) | 2020-06-30 |
CN111354423B CN111354423B (zh) | 2024-03-08 |
Family
ID=71194207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010132329.9A Active CN111354423B (zh) | 2020-02-29 | 2020-02-29 | 一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111354423B (zh) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112183719A (zh) * | 2020-09-15 | 2021-01-05 | 北京工业大学 | 一种基于多目标优化-模糊神经网络的出水总氮智能检测方法 |
CN112215495A (zh) * | 2020-10-13 | 2021-01-12 | 北京工业大学 | 一种基于长短时记忆神经网络的污染源贡献度计算方法 |
CN112863614A (zh) * | 2021-01-08 | 2021-05-28 | 北京工业大学 | 一种基于emd算法的模块化神经网络的出水氨氮软测量方法 |
CN112967761A (zh) * | 2021-03-09 | 2021-06-15 | 北京北排水环境发展有限公司 | 基于自组织模糊神经网络的污水除磷加药计算方法及介质 |
CN113033877A (zh) * | 2021-03-03 | 2021-06-25 | 华南农业大学 | 对虾养殖水体亚硝酸盐氮含量的预测预警方法 |
CN113031445A (zh) * | 2021-03-12 | 2021-06-25 | 北京工业大学 | 基于机理模型的污水脱氮过程鲁棒多变量控制方法 |
CN113156074A (zh) * | 2021-02-22 | 2021-07-23 | 北京工业大学 | 一种基于模糊迁徙的出水总氮预测方法 |
CN113406313A (zh) * | 2021-06-28 | 2021-09-17 | 浙江邦业科技股份有限公司 | 基于全自动游离氧化钙分析仪数据实时预测熟料f-CaO的方法 |
CN113433086A (zh) * | 2021-06-28 | 2021-09-24 | 淮阴工学院 | 一种模糊神经网络结合分光光度法预测水质cod的方法 |
CN113869359A (zh) * | 2021-08-18 | 2021-12-31 | 北京工业大学 | 基于模块化神经网络的城市固废焚烧过程氮氧化物预测方法 |
CN114527646A (zh) * | 2021-12-18 | 2022-05-24 | 北京工业大学 | 面向城市固废焚烧过程的多回路准对角递归神经网络pid控制方法 |
CN114626300A (zh) * | 2022-03-17 | 2022-06-14 | 北京工业大学 | 一种基于数据离散化的出水总氮智能预测方法 |
CN114660248A (zh) * | 2020-12-22 | 2022-06-24 | 中国石油化工股份有限公司 | 基于多步预测策略的cod预警方法和装置 |
CN114783532A (zh) * | 2022-04-12 | 2022-07-22 | 北京工业大学 | 一种基于机理-数据驱动的城市污水处理脱氮过程的混合建模方法 |
CN116681992A (zh) * | 2023-07-29 | 2023-09-01 | 河南省新乡生态环境监测中心 | 一种基于神经网络的氨氮检测方法 |
CN117637063A (zh) * | 2024-01-10 | 2024-03-01 | 广东工业大学 | 一种水质测量方法、装置、设备和存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104376380A (zh) * | 2014-11-17 | 2015-02-25 | 北京工业大学 | 一种基于递归自组织神经网络的氨氮浓度预测方法 |
CN105510546A (zh) * | 2015-12-27 | 2016-04-20 | 北京工业大学 | 一种基于自组织递归rbf神经网络的生化需氧量bod智能检测方法 |
CN106295800A (zh) * | 2016-07-28 | 2017-01-04 | 北京工业大学 | 一种基于递归自组织rbf神经网络的出水总氮tn智能检测方法 |
CN109344971A (zh) * | 2018-09-26 | 2019-02-15 | 北京工业大学 | 一种基于自适应递归模糊神经网络的出水氨氮浓度预测方法 |
-
2020
- 2020-02-29 CN CN202010132329.9A patent/CN111354423B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104376380A (zh) * | 2014-11-17 | 2015-02-25 | 北京工业大学 | 一种基于递归自组织神经网络的氨氮浓度预测方法 |
CN105510546A (zh) * | 2015-12-27 | 2016-04-20 | 北京工业大学 | 一种基于自组织递归rbf神经网络的生化需氧量bod智能检测方法 |
CN106295800A (zh) * | 2016-07-28 | 2017-01-04 | 北京工业大学 | 一种基于递归自组织rbf神经网络的出水总氮tn智能检测方法 |
US20180029900A1 (en) * | 2016-07-28 | 2018-02-01 | Beijing University Of Technology | A Method for Effluent Total Nitrogen-based on a Recurrent Self-organizing RBF Neural Network |
CN109344971A (zh) * | 2018-09-26 | 2019-02-15 | 北京工业大学 | 一种基于自适应递归模糊神经网络的出水氨氮浓度预测方法 |
Non-Patent Citations (2)
Title |
---|
乔俊飞;马士杰;许进超;: "基于递归RBF神经网络的出水氨氮预测研究", 计算机与应用化学, no. 02, 28 February 2017 (2017-02-28) * |
卢超;杨翠丽;乔俊飞;: "基于尖峰自组织径向基网络的氨氮软测量方法", 信息与控制, no. 06, 15 December 2017 (2017-12-15) * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112183719B (zh) * | 2020-09-15 | 2024-02-02 | 北京工业大学 | 一种基于多目标优化-模糊神经网络的出水总氮智能检测方法 |
CN112183719A (zh) * | 2020-09-15 | 2021-01-05 | 北京工业大学 | 一种基于多目标优化-模糊神经网络的出水总氮智能检测方法 |
CN112215495B (zh) * | 2020-10-13 | 2022-05-24 | 北京工业大学 | 一种基于长短时记忆神经网络的污染源贡献度计算方法 |
CN112215495A (zh) * | 2020-10-13 | 2021-01-12 | 北京工业大学 | 一种基于长短时记忆神经网络的污染源贡献度计算方法 |
CN114660248A (zh) * | 2020-12-22 | 2022-06-24 | 中国石油化工股份有限公司 | 基于多步预测策略的cod预警方法和装置 |
CN112863614A (zh) * | 2021-01-08 | 2021-05-28 | 北京工业大学 | 一种基于emd算法的模块化神经网络的出水氨氮软测量方法 |
CN112863614B (zh) * | 2021-01-08 | 2024-04-02 | 北京工业大学 | 一种基于emd算法的模块化神经网络的出水氨氮软测量方法 |
CN113156074A (zh) * | 2021-02-22 | 2021-07-23 | 北京工业大学 | 一种基于模糊迁徙的出水总氮预测方法 |
CN113033877A (zh) * | 2021-03-03 | 2021-06-25 | 华南农业大学 | 对虾养殖水体亚硝酸盐氮含量的预测预警方法 |
CN112967761B (zh) * | 2021-03-09 | 2023-10-27 | 北京北排水环境发展有限公司 | 基于自组织模糊神经网络的污水除磷加药计算方法及介质 |
CN112967761A (zh) * | 2021-03-09 | 2021-06-15 | 北京北排水环境发展有限公司 | 基于自组织模糊神经网络的污水除磷加药计算方法及介质 |
CN113031445A (zh) * | 2021-03-12 | 2021-06-25 | 北京工业大学 | 基于机理模型的污水脱氮过程鲁棒多变量控制方法 |
CN113433086A (zh) * | 2021-06-28 | 2021-09-24 | 淮阴工学院 | 一种模糊神经网络结合分光光度法预测水质cod的方法 |
CN113406313A (zh) * | 2021-06-28 | 2021-09-17 | 浙江邦业科技股份有限公司 | 基于全自动游离氧化钙分析仪数据实时预测熟料f-CaO的方法 |
CN113433086B (zh) * | 2021-06-28 | 2023-01-31 | 淮阴工学院 | 一种模糊神经网络结合分光光度法预测水质cod的方法 |
CN113869359A (zh) * | 2021-08-18 | 2021-12-31 | 北京工业大学 | 基于模块化神经网络的城市固废焚烧过程氮氧化物预测方法 |
CN113869359B (zh) * | 2021-08-18 | 2024-05-28 | 北京工业大学 | 基于模块化神经网络的城市固废焚烧过程氮氧化物预测方法 |
CN114527646A (zh) * | 2021-12-18 | 2022-05-24 | 北京工业大学 | 面向城市固废焚烧过程的多回路准对角递归神经网络pid控制方法 |
CN114626300A (zh) * | 2022-03-17 | 2022-06-14 | 北京工业大学 | 一种基于数据离散化的出水总氮智能预测方法 |
CN114626300B (zh) * | 2022-03-17 | 2023-05-02 | 北京工业大学 | 一种基于数据离散化的出水总氮智能预测方法 |
CN114783532A (zh) * | 2022-04-12 | 2022-07-22 | 北京工业大学 | 一种基于机理-数据驱动的城市污水处理脱氮过程的混合建模方法 |
CN116681992B (zh) * | 2023-07-29 | 2023-10-20 | 河南省新乡生态环境监测中心 | 一种基于神经网络的氨氮检测方法 |
CN116681992A (zh) * | 2023-07-29 | 2023-09-01 | 河南省新乡生态环境监测中心 | 一种基于神经网络的氨氮检测方法 |
CN117637063A (zh) * | 2024-01-10 | 2024-03-01 | 广东工业大学 | 一种水质测量方法、装置、设备和存储介质 |
CN117637063B (zh) * | 2024-01-10 | 2024-05-31 | 广东工业大学 | 一种水质测量方法、装置、设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN111354423B (zh) | 2024-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111354423A (zh) | 一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法 | |
CN109344971B (zh) | 一种基于自适应递归模糊神经网络的出水氨氮浓度预测方法 | |
CN107358021B (zh) | 一种基于优化bp神经网络的do预测模型建立方法 | |
CN104376380B (zh) | 一种基于递归自组织神经网络的氨氮浓度预测方法 | |
CN105510546B (zh) | 一种基于自组织递归rbf神经网络的生化需氧量bod智能检测方法 | |
CN110378533B (zh) | 一种基于大数据分析的智能曝气管理方法 | |
CN102854296B (zh) | 一种基于集成神经网络的污水处理软测量方法 | |
US10570024B2 (en) | Method for effluent total nitrogen-based on a recurrent self-organizing RBF neural network | |
CN103606006B (zh) | 基于自组织t‑s模糊神经网络的污泥沉降指数软测量方法 | |
CN109657790B (zh) | 一种基于pso的递归rbf神经网络出水bod预测方法 | |
CN110542748B (zh) | 一种基于知识的鲁棒型出水氨氮软测量方法 | |
CN107247888B (zh) | 基于储备池网络的污水处理出水总磷tp软测量方法 | |
CN112989704B (zh) | 一种基于de算法的irfm-cmnn出水bod浓度预测方法 | |
CN111125907B (zh) | 一种基于混合智能模型的污水处理氨氮软测量方法 | |
CN102313796A (zh) | 一种污水处理生化需氧量软测量方法 | |
CN114690700B (zh) | 一种基于plc的智能污水处理决策优化方法及系统 | |
CN113156074B (zh) | 一种基于模糊迁徙的出水总氮预测方法 | |
CN110991616B (zh) | 一种基于删减型前馈小世界神经网络出水bod预测方法 | |
CN113433086B (zh) | 一种模糊神经网络结合分光光度法预测水质cod的方法 | |
CN113111576B (zh) | 一种基于混合编码粒子群-长短期记忆神经网络出水氨氮软测量方法 | |
CN115165770B (zh) | 基于宽光谱及bpnn的水体cod与浊度同时检测方法 | |
CN114781166B (zh) | 基于加权概率慢特征模型的污水处理过程软测量方法 | |
CN113222324B (zh) | 一种基于pls-pso-rbf神经网络模型的污水质量监测方法 | |
Zeng et al. | A convolutional neural network-based prediction mechanism for sewage treatment | |
Lu et al. | Research on soft measurement of ammonia nitrogen in wastewater treatment based on dynamic optimization modular neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |