CN113433086A - 一种模糊神经网络结合分光光度法预测水质cod的方法 - Google Patents
一种模糊神经网络结合分光光度法预测水质cod的方法 Download PDFInfo
- Publication number
- CN113433086A CN113433086A CN202110719087.8A CN202110719087A CN113433086A CN 113433086 A CN113433086 A CN 113433086A CN 202110719087 A CN202110719087 A CN 202110719087A CN 113433086 A CN113433086 A CN 113433086A
- Authority
- CN
- China
- Prior art keywords
- cod
- water quality
- digestion
- measuring
- spectrophotometry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 147
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000002798 spectrophotometry method Methods 0.000 title claims abstract description 32
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 27
- 239000000126 substance Substances 0.000 title claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 4
- 229910052760 oxygen Inorganic materials 0.000 title claims description 4
- 239000001301 oxygen Substances 0.000 title claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000012549 training Methods 0.000 claims abstract description 24
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 17
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 17
- 239000011574 phosphorus Substances 0.000 claims abstract description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 16
- 238000003062 neural network model Methods 0.000 claims abstract description 15
- 238000009499 grossing Methods 0.000 claims abstract description 11
- 238000010606 normalization Methods 0.000 claims abstract description 9
- 230000029087 digestion Effects 0.000 claims description 62
- 239000003153 chemical reaction reagent Substances 0.000 claims description 45
- 238000006243 chemical reaction Methods 0.000 claims description 36
- 238000002156 mixing Methods 0.000 claims description 26
- 238000005070 sampling Methods 0.000 claims description 9
- 238000012163 sequencing technique Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims description 4
- 229940010552 ammonium molybdate Drugs 0.000 claims description 4
- 235000018660 ammonium molybdate Nutrition 0.000 claims description 4
- 239000011609 ammonium molybdate Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 abstract description 2
- 238000012216 screening Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 32
- 238000001816 cooling Methods 0.000 description 21
- 239000000243 solution Substances 0.000 description 11
- 239000012153 distilled water Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 5
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical group [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910001430 chromium ion Inorganic materials 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000003911 water pollution Methods 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 1
- -1 ammonium ions Chemical class 0.000 description 1
- 229940026189 antimony potassium tartrate Drugs 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 239000012496 blank sample Substances 0.000 description 1
- 239000012490 blank solution Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- HLVXFWDLRHCZEI-UHFFFAOYSA-N chromotropic acid Chemical compound OS(=O)(=O)C1=CC(O)=C2C(O)=CC(S(O)(=O)=O)=CC2=C1 HLVXFWDLRHCZEI-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- LBJNMUFDOHXDFG-UHFFFAOYSA-N copper;hydrate Chemical compound O.[Cu].[Cu] LBJNMUFDOHXDFG-UHFFFAOYSA-N 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- WBTCZEPSIIFINA-MSFWTACDSA-J dipotassium;antimony(3+);(2r,3r)-2,3-dioxidobutanedioate;trihydrate Chemical compound O.O.O.[K+].[K+].[Sb+3].[Sb+3].[O-]C(=O)[C@H]([O-])[C@@H]([O-])C([O-])=O.[O-]C(=O)[C@H]([O-])[C@@H]([O-])C([O-])=O WBTCZEPSIIFINA-MSFWTACDSA-J 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011964 heteropoly acid Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- YPNVIBVEFVRZPJ-UHFFFAOYSA-L silver sulfate Chemical compound [Ag+].[Ag+].[O-]S([O-])(=O)=O YPNVIBVEFVRZPJ-UHFFFAOYSA-L 0.000 description 1
- 229910000367 silver sulfate Inorganic materials 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/3103—Atomic absorption analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/152—Water filtration
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110719087.8A CN113433086B (zh) | 2021-06-28 | 2021-06-28 | 一种模糊神经网络结合分光光度法预测水质cod的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110719087.8A CN113433086B (zh) | 2021-06-28 | 2021-06-28 | 一种模糊神经网络结合分光光度法预测水质cod的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113433086A true CN113433086A (zh) | 2021-09-24 |
CN113433086B CN113433086B (zh) | 2023-01-31 |
Family
ID=77754966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110719087.8A Active CN113433086B (zh) | 2021-06-28 | 2021-06-28 | 一种模糊神经网络结合分光光度法预测水质cod的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113433086B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114839340A (zh) * | 2022-04-27 | 2022-08-02 | 芯视界(北京)科技有限公司 | 水质生物活性检测方法及装置、电子设备和存储介质 |
CN115728463A (zh) * | 2022-12-01 | 2023-03-03 | 哈尔滨工业大学 | 一种基于半嵌入式特征选择的可解释性水质预测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107169621A (zh) * | 2017-04-01 | 2017-09-15 | 中国农业大学 | 一种水体溶解氧预测方法及装置 |
CN109344971A (zh) * | 2018-09-26 | 2019-02-15 | 北京工业大学 | 一种基于自适应递归模糊神经网络的出水氨氮浓度预测方法 |
CN110057761A (zh) * | 2019-03-01 | 2019-07-26 | 江苏中车环保设备有限公司 | 一种全光谱结合快速易测指标的水质在线监测系统与方法 |
CN111354423A (zh) * | 2020-02-29 | 2020-06-30 | 北京工业大学 | 一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法 |
CN112989704A (zh) * | 2021-03-30 | 2021-06-18 | 北京工业大学 | 一种基于de算法的irfm-cmnn出水bod浓度预测方法 |
-
2021
- 2021-06-28 CN CN202110719087.8A patent/CN113433086B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107169621A (zh) * | 2017-04-01 | 2017-09-15 | 中国农业大学 | 一种水体溶解氧预测方法及装置 |
CN109344971A (zh) * | 2018-09-26 | 2019-02-15 | 北京工业大学 | 一种基于自适应递归模糊神经网络的出水氨氮浓度预测方法 |
CN110057761A (zh) * | 2019-03-01 | 2019-07-26 | 江苏中车环保设备有限公司 | 一种全光谱结合快速易测指标的水质在线监测系统与方法 |
CN111354423A (zh) * | 2020-02-29 | 2020-06-30 | 北京工业大学 | 一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法 |
CN112989704A (zh) * | 2021-03-30 | 2021-06-18 | 北京工业大学 | 一种基于de算法的irfm-cmnn出水bod浓度预测方法 |
Non-Patent Citations (2)
Title |
---|
曹建芳著: "T-S模糊神经网络", 《大规模场景图像的情感语义分析若干关键技术研究》, 31 January 2018 (2018-01-31), pages 64 - 66 * |
温忠麟著: "皮尔逊相关系数", 《皮尔逊相关系数 心理与教育统计》, 30 April 2016 (2016-04-30), pages 141 - 142 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114839340A (zh) * | 2022-04-27 | 2022-08-02 | 芯视界(北京)科技有限公司 | 水质生物活性检测方法及装置、电子设备和存储介质 |
CN115728463A (zh) * | 2022-12-01 | 2023-03-03 | 哈尔滨工业大学 | 一种基于半嵌入式特征选择的可解释性水质预测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113433086B (zh) | 2023-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10570024B2 (en) | Method for effluent total nitrogen-based on a recurrent self-organizing RBF neural network | |
CN108898215B (zh) | 一种基于二型模糊神经网络的污泥膨胀智能辨识方法 | |
CN113433086B (zh) | 一种模糊神经网络结合分光光度法预测水质cod的方法 | |
CN102854296B (zh) | 一种基于集成神经网络的污水处理软测量方法 | |
CN104376380B (zh) | 一种基于递归自组织神经网络的氨氮浓度预测方法 | |
CN111354423A (zh) | 一种基于多元时间序列分析的自组织递归模糊神经网络的出水氨氮浓度预测方法 | |
Han et al. | Data-driven intelligent monitoring system for key variables in wastewater treatment process | |
US20170185892A1 (en) | Intelligent detection method for Biochemical Oxygen Demand based on a Self-organizing Recurrent RBF Neural Network | |
CN109344971B (zh) | 一种基于自适应递归模糊神经网络的出水氨氮浓度预测方法 | |
Ventura et al. | Artificial neural networks for estimation of kinetic analytical parameters | |
CN106841075B (zh) | 基于神经网络的cod紫外光谱在线检测优化方法 | |
CN110320335B (zh) | 一种关于污水处理出水水质指标的多元鲁棒软测量方法 | |
CN113077039B (zh) | 基于任务驱动rbf神经网络的出水总氮tn软测量方法 | |
CN110542748B (zh) | 一种基于知识的鲁棒型出水氨氮软测量方法 | |
CN114136900A (zh) | 一种结合紫外可见光吸收光谱技术的水质检测方法 | |
CN115165770B (zh) | 基于宽光谱及bpnn的水体cod与浊度同时检测方法 | |
CN113029993A (zh) | 一种基于注意力机制的紫外光谱快速总氮在线检测方法 | |
CN116818692A (zh) | 一种dbn算法结合分光光度法预测水质的方法 | |
CN113222324B (zh) | 一种基于pls-pso-rbf神经网络模型的污水质量监测方法 | |
CN114913933A (zh) | 存储器、污水处理过程atp预测方法、装置及设备 | |
CN114166769A (zh) | 一种紫外-可见光谱水质多参数监测系统 | |
CN114660248B (zh) | 基于多步预测策略的cod预警方法和装置 | |
CN114912580B (zh) | 一种基于自适应判别策略的区间二型模糊神经网络出水总磷智能检测方法 | |
Ji et al. | Simultaneous determination of calcium and magnesium in water using artificial neural network spectro-photometric method | |
CN116297251B (zh) | 一种多传感器组合的水质检测系统及其检测探头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240117 Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee after: Dragon totem Technology (Hefei) Co.,Ltd. Address before: 223000 No.1, Meicheng East Road, Huaian Economic and Technological Development Zone, Jiangsu Province Patentee before: HUAIYIN INSTITUTE OF TECHNOLOGY |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240329 Address after: No. 36, Chanwang Street, Suyin Industrial Park, Xingqing District, Yinchuan City, 750000 Ningxia Hui Autonomous Region Patentee after: Yinchuan Lianhua Technology Development Co.,Ltd. Country or region after: China Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee before: Dragon totem Technology (Hefei) Co.,Ltd. Country or region before: China |