CN111250148A - 一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和应用 - Google Patents

一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN111250148A
CN111250148A CN202010218473.4A CN202010218473A CN111250148A CN 111250148 A CN111250148 A CN 111250148A CN 202010218473 A CN202010218473 A CN 202010218473A CN 111250148 A CN111250148 A CN 111250148A
Authority
CN
China
Prior art keywords
catalyst
noble metal
cyclohexylbenzene
preparation
molecular sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010218473.4A
Other languages
English (en)
Other versions
CN111250148B (zh
Inventor
陈秉辉
李建军
张诺伟
刘慧晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202010218473.4A priority Critical patent/CN111250148B/zh
Publication of CN111250148A publication Critical patent/CN111250148A/zh
Application granted granted Critical
Publication of CN111250148B publication Critical patent/CN111250148B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/74Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition with simultaneous hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • C07C2529/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • C07C2529/14Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • C07C2529/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65 containing iron group metals, noble metals or copper
    • C07C2529/76Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/80Mixtures of different zeolites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和应用,属于催化材料领域。本发明提供的用于苯加氢烷基化制环己基苯的催化剂,活性组分为非贵金属M,包括Fe、Co、Ni和Cu中的至少一种,并以Hβ、HY和Hβ‑HY复合分子筛中一种作为载体,非贵金属M的质量含量为0.1%~40%。本发明提供的催化剂以非贵金属为活性组分,具有价格优势,降低了催化剂的生产成本,且低温活性好,目标产物选择性高。在较低的工作温度(可低至130℃)下,利用本申请提供的催化剂,催化苯加氢烷基化制备得到的环己基苯的选择性高达97.3%,大幅降低了由苯加氢烷基化制环己基苯的生产成本,可适用于大规模工业化生产。

Description

一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和 应用
技术领域
本发明涉及催化材料领域,尤其涉及一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和应用。
背景技术
环己基苯(CHB)是一种新型化工中间体,由于其高的沸点和接近室温的凝点等特点,被广泛应用于锂离子电池电解液防过充液、柴油添加剂以及合成薄膜晶体管(TFT)液晶屏等领域。此外,环己基苯还可以用于直接氧化生产苯酚,同时副产高附加值的环己酮,相对于异丙苯氧化法生产苯酚解决了丙酮产能过剩的问题。
目前,由苯加氢烷基化生产环己基苯的方法主要包括:(1)苯与环己烯烷基化法;(2)联苯加氢法;(3)苯加氢烷基化法。与前两种方法相比,苯加氢烷基化法具有原料来源广泛、工艺简单、生产过程环保等优点,但现有技术中利用苯加氢烷基化法制备环己基苯的工艺,所用催化剂为价格昂贵的贵金属催化剂,且其催化活性较低,尤其是制备得到环己基苯的选择性较低(低于80%),因此该工艺距适用于大规模工业化生产还有较大距离。
发明内容
本发明的目的在于提供一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和应用,本发明提供的用于苯加氢烷基化制环己基苯的催化剂以非贵金属为活性金属,降低了生产成本,低温活性好,目标产物选择性高。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种用于苯加氢烷基化制环己基苯的催化剂,包括活性组分和载体,所述活性组分为非贵金属,所述非贵金属包括Fe、Co、Ni和Cu中的至少一种,所述载体为分子筛,所述分子筛包括Hβ、HY和Hβ-HY复合分子筛中一种,所述非贵金属质量含量为0.1~40%。
本发明还提供了上述技术方案所述催化剂的制备方法,包括以下步骤:
(1)将非贵金属盐溶液、保护剂和络合剂混合,得到混合溶液;
(2)向所述步骤(1)得到的混合溶液中依次加入分子筛和沉淀剂,水热反应,得到前驱体;
(3)将所述步骤(2)得到的前驱体进行焙烧,得到用于苯加氢烷基化制环己基苯的催化剂。
优选地,所述的非贵金属盐溶液的浓度按非贵金属元素的质量计为1.4~957.1mg/mL。
优选地,所述保护剂和络合剂的体积比为(1~5):(1~5)。
优选地,所述保护剂和络合剂的总体积与非贵金属盐溶液的体积比为(1~5):6。
优选地,所述步骤(2)中的分子筛与所述步骤(1)中的非贵金属盐溶液中非贵金属元素的质量比为10:(0.01~7)。
优选地,所述步骤(2)中沉淀剂与所述步骤(1)中的非贵金属盐溶液中非贵金属元素的物质的量之比为(2~25):1。
优选地,所述步骤(2)中水热反应的温度为40~160℃,时间为2~12h。
优选地,所述步骤(3)中焙烧的温度为200~700℃,时间为2~12h。
本发明还提供了上述技术方案所述的催化剂或所述制备方法制备的催化剂在苯加氢制环己基苯中的应用。
本发明提供了一种用于苯加氢烷基化制环己基苯的催化剂,所述催化剂的活性组分为非贵金属M,包括Fe、Co、Ni和Cu中的至少一种,并以Hβ、HY和Hβ-HY复合分子筛中一种作为载体,非贵金属M的质量含量为0.1%~40%。本发明提供的催化剂以非贵金属为活性组分,具有价格优势,降低了催化剂的生产成本,且低温活性好,目标产物选择性高。实施例的结果显示,在较低的工作温度(可低至130℃)下,利用本申请提供的催化剂,催化苯加氢烷基化制备得到的环己基苯的选择性高达97.3%,大幅降低了由苯加氢烷基化制环己基苯的生产成本,可适用于大规模工业化生产。
且本发明提供的用于苯加氢烷基化制环己基苯的催化剂的制备方法操作简单,原料来源广泛,适宜规模化生产。
附图说明
图1为本发明实施例1中样品焙烧前和焙烧后的SEM图以及焙烧后和还原后的的TEM图,其中,图1(1)为焙烧前的催化剂的SEM图;图1(2)为焙烧后催化剂TEM图;图1(3)为焙烧后催化剂的SEM图;图(4)、图1(5)为还原后催化剂的TEM图;
图2为本发明对比例中样品焙烧后的SEM图以及还原后的SEM图和TEM图,其中,图2(1)为焙烧后的催化剂SEM图;图2(2)为还原后催化剂的SEM图;图2(3)为还原后催化剂的TEM图。
具体实施方式
本发明提供了一种用于苯加氢烷基化制环己基苯的催化剂,包括活性组分和载体,所述活性组分为非贵金属,所述非贵金属包括Fe、Co、Ni和Cu中的至少一种,所述载体为分子筛,所述分子筛包括Hβ、HY和Hβ-HY复合分子筛中一种,所述非贵金属质量含量为0.1~40%。
本发明提供的用于苯加氢烷基化制环己基苯的催化剂包括活性组分,所述活性组分为非贵金属,所述非贵金属包括Fe、Co、Ni和Cu中的至少一种,优选为Ni和Cu中的至少一种,更优选为Cu。在本发明中,所述活性组分的作用是在低温条件下,催化苯加氢转化为环己基苯。
在本发明中,所述非贵金属质量含量为0.1~40%,优选为0.1~25%,更优选为0.2~18%,最优选为0.3~17%。
本发明提供的用于苯加氢烷基化制环己基苯的催化剂包括载体,所述载体为分子筛,所述分子筛包括Hβ、HY和Hβ-HY复合分子筛中一种,优选为Hβ-HY复合分子筛。在本发明中,所述分子筛能够负载非贵金属阳离子和进行烷基化反应,其大的表面积有利于加氢活性组分的分散和催化活性位点的增加,进而提高催化性能;当所述分子筛为Hβ-HY复合分子筛时,本发明优选按照本领域技术人员熟知的制备方法制备。在本发明中,所述Hβ-HY复合分子筛优先采用实施例中的制备方法制备。
本发明对所述Hβ、HY和Hβ-HY复合分子筛的来源没有特殊的限定,采用本领域技术人员熟知的市售产品或按照本领域技术人员熟知的制备方法制备即可。
本发明提供的催化剂以非贵金属为活性组分,具有价格优势,降低了催化剂的生产成本,且低温活性好,目标产物选择性高。
本发明还提供了上述技术方案所述催化剂的制备方法,包括以下步骤:
(1)将非贵金属盐溶液、保护剂和络合剂混合,得到混合溶液;
(2)向所述步骤(1)得到的混合溶液中依次加入分子筛和沉淀剂,水热反应,得到前驱体;
(3)将所述步骤(2)得到的前驱体进行焙烧,得到用于苯加氢烷基化制环己基苯的催化剂。
本发明将非贵金属盐溶液、保护剂和络合剂混合,得到混合溶液。本发明对所述非贵金属盐溶液、保护剂和络合剂的混合的操作没有特殊的限定,采用本领域技术人员熟知的制备混合溶液的技术方案即可。在本发明中,所述非贵金属盐溶液、保护剂和络合剂混合优选为向非贵金属盐溶液中加入保护剂和络合剂后搅拌。在本发明中,所述搅拌的时间优选为0.5~3h,更优选为1h。本发明对于所述搅拌的速率没有特殊的限定,常规搅拌速率即可。本发明将搅拌的时间控制在上述范围内,能够有利于络合剂更充分地发挥其对非贵金属盐溶液中非贵金属阳离子的络合作用,以及保护剂对非贵金属阳离子与沉淀剂形成的沉淀颗粒的抑制生长作用。
在本发明中,所述非贵金属盐溶液中的非贵金属盐优选为硝酸亚铁、硫酸亚铁、氯化亚铁、醋酸亚铁、氯化钴、硝酸钴、硫酸钴、氯化镍、硝酸镍、硫酸镍、醋酸镍、氯化铜、硝酸铜、硫酸铜和醋酸铜中的一种或几种。在本发明中,所述非贵金属盐溶液的浓度按非贵金属元素的重量计优选为1.4~957.1mg/mL,更优选为4.2~690.0mg/mL,进一步优选为10.0~400.0mg/mL。在本发明的实施例中,所述非贵金属盐溶液的浓度可具体为15.1mg/mL、15.8mg/mL、30.1mg/mL、31.5mg/mL、31.6mg/mL、32.5mg/mL或60.2mg/mL。在本发明中,所述非贵金属盐溶液的溶剂优选为去离子水。本发明对所述非贵金属盐溶液的配制方法没有特殊的限定,采用本领域技术人员熟知的方法配制即可。
在本发明中,所述保护剂优选为乙二醇或丙三醇。在本发明中,所述保护剂能够避免后续非贵金属盐溶液中非贵金属阳离子与沉淀剂形成的沉淀颗粒生长过大。
在本发明中,所述络合剂优选为乙二胺、乙酰丙酮和乙二胺四乙酸二钠中的一种或几种;当所述络合剂包括两种以上组分时,本发明对所述两种以上组分的体积比没有特殊的限定。在本发明中,所述络合剂能够与非贵金属盐溶液中非贵金属阳离子络合,降低后续加入沉淀剂后,生成沉淀颗粒时的沉淀速率。
在本发明中,所述保护剂和络合剂的体积比优选为(1~5):(1~5),更优选为(1~3):(1~3)。在本发明中,所述保护剂和络合剂的总体积与非贵金属盐溶液的体积比为(1~5):6,更优选为(2~4):6。在本发明的实施例中,所述保护剂和络合剂的体积比可具体为3:1,所述保护剂和络合剂的总体积与非贵金属盐溶液的体积比为3.4:6。本发明将保护剂和络合剂的总体积与非贵金属盐溶液的体积比控制在上述范围内,能够进一步保证实现非贵金属盐溶液中非贵金属阳离子与络合剂的络合,以及保护剂对非贵金属阳离子与沉淀剂形成的沉淀颗粒的抑制生长作用。
本发明对所述非贵金属盐、保护剂和络合剂的来源没有特殊的限定,采用本领域技术人员熟知的市售产品即可。
得到混合溶液后,本发明向所述混合溶液中依次加入分子筛和沉淀剂,水热反应,得到前驱体。
在本发明中,所述分子筛包括Hβ、HY和Hβ-HY复合分子筛中一种,优选为Hβ-HY复合分子筛。在本发明中,所述分子筛能够负载非贵金属阳离子和进行烷基化反应,其大的表面积有利于加氢活性组分的分散和催化活性位点的增加,进而提高催化性能;当所述分子筛为Hβ-HY复合分子筛时,本发明优选按照本领域技术人员熟知的制备方法制备。在本发明中,所述Hβ-HY复合分子筛优先采用实施例中的制备方法制备。
本发明对所述Hβ、HY和Hβ-HY复合分子筛的来源没有特殊的限定,采用本领域技术人员熟知的市售产品或按照本领域技术人员熟知的制备方法制备即可。
在本发明中,所述分子筛与所述非贵金属盐溶液中非贵金属元素的质量比优选为10:(0.01~7),更优选为10:(0.04~4)。本发明将分子筛与非贵金属盐溶液中非贵金属元素的质量比控制在上述范围内,能够保证实现活性组分非贵金属和分子筛更好的结合,以及有利于提高制备得到催化剂的催化性能。
在本发明中,向得到的所述混合溶液中加入分子筛后优选还包括搅拌。在本发明中,所述搅拌的时间优选为2~12h,更优选为3~10h,进一步优选为4h。本发明对于所述搅拌的速率没有特殊的限定,常规搅拌速率即可。本发明将搅拌的时间控制在上述范围内,能够有利于非金属盐均匀负载在分子筛中。
在本发明中,所述沉淀剂优选为氢氧化钠、尿素、氯化铵、氨水、碳酸氢铵、碳酸铵、硝酸铵和硫酸铵中的至少一种,更优选为氢氧化钠、尿素、氯化铵、氨水中的至少一种,最优选为尿素。当所述沉淀剂包括两种以上组分时,本发明对所述两种以上组分的用量比没有特殊限定。在本发明中,所述沉淀剂与所述非贵金属盐溶液中非贵金属元素的物质的量之比为(2~25):1,更优选为(3~20):1,进一步优选为(5~18):1。
本发明对所述沉淀剂的来源没有特殊的限定,采用本领域技术人员熟知的市售产品即可。
在本发明中,向得到的所述混合溶液中加入沉淀剂后优选还包括超声。在本发明中,所述超声的时间优选为2~12h,更优选为3~10h,进一步优选为4~8h;所述超声的功率优选为20~250W,更优选为30~240W,进一步优选为50~200W。本发明将超声的时间和功率控制在上述范围内,能够有利于沉淀剂更充分地发挥沉淀作用。
在本发明中,所述水热反应的温度优选为40~160℃,更优选为50~150℃,进一步优选为90℃;所述溶剂热反应的时间优选为2~8h,更优选为3~6h,进一步优选为4h。本发明控制溶剂热反应的温度和时间在上述范围内,能够有利于形成形貌规整的前驱体。在本发明中,所述溶剂热反应优选在常压和搅拌条件下进行,本发明对于所述搅拌的速率没有特殊的限定,常规搅拌速率即可。
水热反应完成后,本发明优选将所述水热反应的产物依次进行固液分离、洗涤和干燥,得到前驱体。本发明对于所述固液分离的方式没有特殊的限定,采用本领域技术人员熟知的方式即可,具体如抽滤。在本发明中,所述洗涤优选包括依次进行的第一洗涤和第二洗涤;所述第一洗涤所用溶剂优选为去离子水,所述第二洗涤所用溶剂优选为体积分数为50%的乙醇;所述第一洗涤和第二洗涤的次数优选独立地为2~4次。在本发明中,所述干燥的方式优选为在高温条件下干燥,所述高温条件优选为80~120℃,更优选为100℃;所述干燥的时间优选为6~10h,更优选为8h。
得到前驱体后,本发明将所述前驱体进行焙烧,得到用于苯加氢烷基化制环己基苯的催化剂。
在本发明中,所述焙烧的温度优选为200~700℃,更优选为300~600℃,进一步优选为500℃;所述焙烧的时间优选为2~12h,更优选为3~6h,进一步优选为4h。本发明控制焙烧的温度和时间在上述范围内,能够进一步保证最终制备得到的合适粒径、形貌规整的用于苯加氢烷基化制环己基苯的催化剂。
本发明提供的制备方法操作简单,原料来源广泛,适宜规模化生产。
本发明还提供了上述技术方案所述的催化剂或所述制备方法制备的催化剂在苯加氢制环己基苯中的应用。
在本发明中,所述催化剂在苯加氢制环己基苯中的应用优选包括以下步骤:
1)将上述技术方案所述的催化剂或所述制备方法制备的催化剂用氢气进行预处理,得到活化催化剂;
2)在所述步骤1)得到的活化催化剂存在的条件下,将苯和氢气混合,加成反应得到环己基苯。
本发明优选将上述技术方案所述的催化剂或所述制备方法制备的催化剂用氢气进行预处理,得到活化催化剂。在本发明中,所述氢气的气流量优选为60~200mL/min,更优选为80~180mL/min。在本发明中,所述预处理的温度优选为300~700℃,更优选为350~650℃;所述预处理的时间优选为0.5~6h,更优选为1~4h。
本发明对所述加成反应的装置没有特殊的限定,采用本领域技术人员熟知的反应器即可。在本发明中,所述加成反应的装置优选为固定床反应器,更优选为连续流动固定床反应器。
得到活化催化剂后,本发明优选在所述活化催化剂存在的条件下,将苯和氢气混合,加成反应得到环己基苯。在本发明中,所述加成反应条件优选为:苯液相空速为0.1~2h-1,反应温度为100~250℃,反应压力为1.0~4.0MPa。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一、制备用于苯加氢烷基化制环己基苯的催化剂
(1)向70mL浓度为31.5mg/mL的NiCl2去离子水溶液中,加入30ml乙二醇和10ml乙二胺,室温搅拌1h,得到混合溶液;
(2)向所述步骤(1)得到的混合溶液中,加入10g的Hβ分子筛,继续室温搅拌30min,再加入2.0g氢氧化钠和6.14g尿素,继续室温搅拌30min,然后于密封水热釜中,90℃下水热反应4h,待反应结束,反应釜冷却至室温,将得到的产物进行抽滤,依次用去离子水和体积分数为50%的乙醇分别洗涤三次,然后在100℃下干燥8小时,得到前驱体
(3)将所述步骤(2)得到的前驱体在马弗炉中500℃下焙烧4h,得到用于苯加氢烷基化制环己基苯的催化剂,记为10Ni/Hβ。
二、将由上述制备方法制备的催化剂应用到苯加氢制环己基苯中:
1)将由上述制备方法制备的催化剂用气流量为100mL/min的氢气,在400℃下预处理2h,得到活化催化剂;
2)在已装入所述步骤1)得到的活化催化剂的连续流动固定床反应器中,控制苯液相空速为1.5h-1,反应温度为130℃,反应压力为2.0MPa的条件下,苯和氢气混合,加成反应得到环己基苯,具体实验结果见表1。
图1为本发明实施例1中样品焙烧前和焙烧后的SEM图以及焙烧后和还原后的TEM图,其中,图1(1)为焙烧前的催化剂的SEM图;图(2)为焙烧后催化剂TEM图;图1(3)为焙烧后催化剂的SEM图;图1(4)、图1(5)为还原后催化剂的TEM图,由图1可知,本发明实施例1制备的催化剂在焙烧前后均为花状结构包裹分子筛的核壳结构,在氢气还原活化之后,非贵金属在分子筛的外部形成高分散的纳米颗粒。
实施例2
按照实施例1的方法,制备用于苯加氢烷基化制环己基苯的催化剂,其中,分子筛为10gHY分子筛,最后制得的催化剂记为10Ni/HY。并采用相同的方法将制备的10Ni/HY催化剂应用到苯加氢制环己基苯中,具体实验结果见表1。
实施例3
首先制备Hβ-HY复合分子筛:
将12.4g四乙基氢氧化铵(TEAOH,20wt%)、4.0ml的氨水(25-27wt%)、0.65g氢氧化钠(98wt%)溶解到43ml的去离子水中,再加入12gHY分子筛,所得混合物在室温下搅拌0.5h,在搅拌的条件下缓慢加入12g硅溶胶(30wt%),继续搅拌2h,进而转移到100mL的水热釜中,于140℃晶化100h。将得到的产物经过离心,洗涤,干燥后,在马弗炉中以5℃/min的升温速率,升温至500℃焙烧4h,得到Hβ-HY复合分子筛。
按照实施例1的方法,制备用于苯加氢烷基化制环己基苯的催化剂,其中,分子筛为10g上述步骤制备的Hβ-HY复合分子筛,最后制得的催化剂记为10Ni/Hβ-HY。并采用相同的方法将制备的10Ni/Hβ-HY催化剂应用到苯加氢制环己基苯中,具体实验结果见表1。
实施例4
按照实施例1的方法,制备用于苯加氢烷基化制环己基苯的催化剂,其中,将70mL浓度为31.5mg/mL的NiCl2去离子水溶液换做70mL浓度为32.5mg/mL的FeCl2去离子水溶液,分子筛为10g的按照实施例3的方法制得的Hβ-HY分子筛,最后制得的催化剂记为10Fe/Hβ-HY。并采用相同的方法将制备的10Fe/Hβ-HY催化剂应用到苯加氢制环己基苯中,具体实验结果见表1。
实施例5
按照实施例1的方法,制备用于苯加氢烷基化制环己基苯的催化剂,其中,将70mL浓度为31.5mg/mL的NiCl2去离子水溶液换做70mL浓度为31.6mg/mL的CoCl2去离子水溶液,分子筛为10g的按照实施例3的方法制得的Hβ-HY分子筛,最后制得的催化剂记为10Co/Hβ-HY。并采用相同的方法将制备的10Co/Hβ-HY催化剂应用到苯加氢制环己基苯中,具体实验结果见表1。
实施例6
按照实施例1的方法,制备用于苯加氢烷基化制环己基苯的催化剂,其中,将70mL浓度为31.5mg/mL的NiCl2去离子水溶液换做70mL浓度为30.1mg/mL的CuCl2去离子水溶液,分子筛为10g的按照实施例3的方法制得的Hβ-HY分子筛,最后制得的催化剂记为10Cu/Hβ-HY。并采用相同的方法将制备的10Cu/Hβ-HY催化剂应用到苯加氢制环己基苯中,具体实验结果见表1。
实施例7
按照实施例1的方法,制备用于苯加氢烷基化制环己基苯的催化剂,其中,将70mL浓度为31.5mg/mL的NiCl2去离子水溶液换做70mL的浓度为15.8mg/mL的NiCl2和15.1mg/mL的CuCl2的去离子水溶液,分子筛为10g的按照实施例3的方法制得的Hβ-HY分子筛,最后制得的催化剂记为5Ni-5Cu/Hβ-HY。并采用相同的方法将制备的5Ni-5Cu/Hβ-HY催化剂应用到苯加氢制环己基苯中,具体实验结果见表1。
实施例8
按照实施例6的方法,制备用于苯加氢烷基化制环己基苯的催化剂,其中,将70mL浓度为30.1mg/mL的CuCl2去离子水溶液换做70mL浓度为15.1mg/mL的CuCl2去离子水溶液,分子筛为10g的按照实施例3的方法制得的Hβ-HY分子筛,最后制得的催化剂记为5Cu/Hβ-HY。并采用相同的方法将制备的5Cu/Hβ-HY催化剂应用到苯加氢制环己基苯中,具体实验结果见表1。
实施例9
按照实施例6的方法,制备用于苯加氢烷基化制环己基苯的催化剂,其中,将70mL浓度为30.1mg/mL的CuCl2去离子水溶液换做70mL浓度为60.2mg/mL的CuCl2去离子水溶液,分子筛为10g的按照实施例3的方法制得的Hβ-HY分子筛,最后制得的催化剂记20Cu/Hβ-HY。并采用相同的方法将制备的20Cu/Hβ-HY催化剂应用到苯加氢制环己基苯中,具体实验结果见表1。
对比例
浸渍法制备20Cu/Hβ-HY-IM催化剂
向70mL浓度为60.2mg/mL二氯化铜的去离子水溶液中,加入10g的按照实施例3的方法制得的Hβ-HY分子筛载体,静置12h后,干燥并烘干,然后在马弗炉中500℃下焙烧4小时,得到催化剂20Cu/Hβ-HY-IM,并按照实施例1的方法将制备的20Cu/Hβ-HY-IM催化剂应用到苯加氢制环己基苯中,具体实验结果见表1。
图2为本发明对比例中样品焙烧后的SEM图以及还原后的SEM图和TEM图,其中,图2(1)为焙烧后的催化剂SEM图;图2(2)为还原之后催化剂的SEM图;图2(3)为还原后催化剂的TEM图,由图2可知,浸渍法制备的催化剂出现了严重的团聚现象,经氢气还原活化之后,非贵金属纳米颗粒分散性差且不均匀。
苯加氢烷基化制环己基苯包括苯加氢生成加氢中间物和加氢中间物烷基化进一步生成环己基苯两步反应。由图1、2可知,本申请制备得到的催化剂的非贵金属纳米颗粒高度分散于分子筛子载体表面,有利于加氢和烷基化两步反应的相互匹配,从而使得该催化剂具有优良的催化性能。而对比例制备的催化剂中的非贵金属纳米颗粒团聚于分子筛载体表面,且非贵金属纳米颗粒较大不利于加氢反应的进行,而团聚状态也不利于烷基化反应的进行,表现出低的转化率和低的选择性。
表1不同用于苯加氢烷基化制环己基苯的催化剂的催化性能
Figure BDA0002425232730000111
由实施例和表1可知,在较低的工作温度(可低至130℃)下,利用本申请提供的用于苯加氢烷基化制环己基苯的催化剂,催化苯加氢烷基化制备得到的环己基苯的选择性高达97.3%,同时苯的转化率高达30.5%,远远高于对比例以及现有技术,且本申请提供的用于苯加氢烷基化制环己基苯的催化剂,以非贵金属为活性金属,具有价格优势,降低了催化剂的生产成本,且低温活性好,目标产物选择性高,大幅降低了由苯加氢烷基化制环己基苯的生产成本,可适用于大规模工业化生产。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种用于苯加氢烷基化制环己基苯的催化剂,包括活性组分和载体,所述活性组分为非贵金属,所述非贵金属包括Fe、Co、Ni和Cu中的至少一种,所述载体为分子筛,所述分子筛包括Hβ、HY和Hβ-HY复合分子筛中一种,所述非贵金属的质量含量为0.1~40%。
2.权利要求1所述催化剂的制备方法,包括以下步骤:
(1)将非贵金属盐溶液、保护剂和络合剂混合,得到混合溶液;
(2)向所述步骤(1)得到的混合溶液中依次加入分子筛和沉淀剂,水热反应,得到前驱体;
(3)将所述步骤(2)得到的前驱体进行焙烧,得到用于苯加氢烷基化制环己基苯的催化剂。
3.根据权利要求2所述的制备方法,其特征在于,所述的非贵金属盐溶液的浓度按非贵金属元素的质量计为1.4~957.1mg/mL。
4.根据权利要求2所述的制备方法,其特征在于,所述保护剂和络合剂的体积比为(1~5):(1~5)。
5.根据权利要求3或4所述的制备方法,其特征在于,所述保护剂和络合剂的总体积与非贵金属盐溶液的体积比为(1~5):6。
6.根据权利要求2或3所述的制备方法,其特征在于,所述步骤(2)中的分子筛与所述步骤(1)中的非贵金属盐溶液中非贵金属元素的质量比为10:(0.01~7)。
7.根据权利要求2或3所述的制备方法,其特征在于,所述步骤(2)中沉淀剂与所述步骤(1)中的非贵金属盐溶液中非贵金属元素的物质的量之比为(2~25):1。
8.根据权利要求2所述的制备方法,其特征在于,所述步骤(2)中水热反应的温度为40~160℃,时间为2~12h。
9.根据权利要求2所述的制备方法,其特征在于,所述步骤(3)中焙烧的温度为200~700℃,时间为2~12h。
10.权利要求1所述的催化剂或权利要求2~9任意一项所述制备方法制备的催化剂在苯加氢制环己基苯中的应用。
CN202010218473.4A 2020-03-25 2020-03-25 一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和应用 Active CN111250148B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010218473.4A CN111250148B (zh) 2020-03-25 2020-03-25 一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010218473.4A CN111250148B (zh) 2020-03-25 2020-03-25 一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111250148A true CN111250148A (zh) 2020-06-09
CN111250148B CN111250148B (zh) 2021-01-29

Family

ID=70943335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010218473.4A Active CN111250148B (zh) 2020-03-25 2020-03-25 一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111250148B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663722A (zh) * 2021-09-01 2021-11-19 郑州大学 苯加氢烷基化制备环己基苯的催化剂及其制备方法和应用
CN114042472A (zh) * 2021-11-24 2022-02-15 郑州大学 一种高分散性亚纳米型双功能催化剂及其制备方法与应用
CN114130424A (zh) * 2020-09-04 2022-03-04 中国石油化工股份有限公司 加氢烷基化催化剂及其制备方法和应用
CN114130420A (zh) * 2020-09-04 2022-03-04 中国石油化工股份有限公司 一种苯加氢烷基化催化剂及其制备方法和应用
CN114534775A (zh) * 2022-02-25 2022-05-27 厦门大学 一种催化剂及其制备方法和应用
CN114950542A (zh) * 2022-06-02 2022-08-30 江苏扬农化工集团有限公司 一种双金属负载型分子筛催化剂及其制备方法和用途
WO2023072041A1 (zh) * 2021-10-26 2023-05-04 中国石油化工股份有限公司 加氢-酸催化双功能催化剂及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559922A (zh) * 2021-08-13 2021-10-29 郑州大学 一种苯加氢制备环己基苯用双金属催化剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268699A (en) * 1978-07-21 1981-05-19 Phillips Petroleum Company Hydroalkylation using nickel-ruthenium catalyst on zeolite type support
CN101796000A (zh) * 2007-08-15 2010-08-04 埃克森美孚化学专利公司 环己基苯的制备方法
CN107303512A (zh) * 2016-04-25 2017-10-31 中国石化扬子石油化工有限公司 一种双功能催化剂及其在苯加氢烷基化反应中的应用
CN107303501A (zh) * 2016-04-25 2017-10-31 中国石化扬子石油化工有限公司 金属/mcm-49催化剂及其在生产环己基苯中的应用
CN108993577A (zh) * 2018-06-13 2018-12-14 厦门大学 一种苯加氢制环己基苯的催化剂及其制备方法和应用
CN109772432A (zh) * 2019-02-01 2019-05-21 郑州大学 一种苯选择加氢烷基化制备环己基苯用金属包覆型催化剂及其制备方法、使用方法
CN110479355A (zh) * 2019-09-03 2019-11-22 中触媒新材料股份有限公司 一种用于合成环己基苯的催化剂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268699A (en) * 1978-07-21 1981-05-19 Phillips Petroleum Company Hydroalkylation using nickel-ruthenium catalyst on zeolite type support
CN101796000A (zh) * 2007-08-15 2010-08-04 埃克森美孚化学专利公司 环己基苯的制备方法
CN107303512A (zh) * 2016-04-25 2017-10-31 中国石化扬子石油化工有限公司 一种双功能催化剂及其在苯加氢烷基化反应中的应用
CN107303501A (zh) * 2016-04-25 2017-10-31 中国石化扬子石油化工有限公司 金属/mcm-49催化剂及其在生产环己基苯中的应用
CN108993577A (zh) * 2018-06-13 2018-12-14 厦门大学 一种苯加氢制环己基苯的催化剂及其制备方法和应用
CN109772432A (zh) * 2019-02-01 2019-05-21 郑州大学 一种苯选择加氢烷基化制备环己基苯用金属包覆型催化剂及其制备方法、使用方法
CN110479355A (zh) * 2019-09-03 2019-11-22 中触媒新材料股份有限公司 一种用于合成环己基苯的催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
曹鹰等: ""苯加氢烷基化制环己基苯催化剂的制备与工艺条件的考察"", 《石油化工》 *
纪刚等: ""低温固定床Ni/HY催化苯加氢烷基化制环己基苯"", 《石油学报》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114130424A (zh) * 2020-09-04 2022-03-04 中国石油化工股份有限公司 加氢烷基化催化剂及其制备方法和应用
CN114130420A (zh) * 2020-09-04 2022-03-04 中国石油化工股份有限公司 一种苯加氢烷基化催化剂及其制备方法和应用
CN114130424B (zh) * 2020-09-04 2023-10-31 中国石油化工股份有限公司 加氢烷基化催化剂及其制备方法和应用
CN114130420B (zh) * 2020-09-04 2024-01-30 中国石油化工股份有限公司 一种苯加氢烷基化催化剂及其制备方法和应用
CN113663722A (zh) * 2021-09-01 2021-11-19 郑州大学 苯加氢烷基化制备环己基苯的催化剂及其制备方法和应用
WO2023072041A1 (zh) * 2021-10-26 2023-05-04 中国石油化工股份有限公司 加氢-酸催化双功能催化剂及其制备方法和应用
CN114042472A (zh) * 2021-11-24 2022-02-15 郑州大学 一种高分散性亚纳米型双功能催化剂及其制备方法与应用
CN114042472B (zh) * 2021-11-24 2024-01-19 郑州大学 一种高分散性亚纳米型双功能催化剂及其制备方法与应用
CN114534775A (zh) * 2022-02-25 2022-05-27 厦门大学 一种催化剂及其制备方法和应用
CN114950542A (zh) * 2022-06-02 2022-08-30 江苏扬农化工集团有限公司 一种双金属负载型分子筛催化剂及其制备方法和用途
CN114950542B (zh) * 2022-06-02 2023-12-22 江苏扬农化工集团有限公司 一种双金属负载型分子筛催化剂及其制备方法和用途

Also Published As

Publication number Publication date
CN111250148B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN111250148B (zh) 一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和应用
CN103192086B (zh) 一种可控的双金属合金纳米颗粒的制备方法
CN106914255B (zh) 一种非合金金属复合物及其制备方法和应用
CN105397103A (zh) 一种纳米银/石墨烯复合材料及其制备方法
JPH03134106A (ja) 有機溶媒中、保護コロイドの不存在で溶解した微晶質―アモルファス金属及び/又は合金粉末並びに金属及び/又は合金
CN110404573A (zh) 一种超小钯基合金材料的制备方法及应用
CN107537517B (zh) 一种合金胶体及其制备方法与应用
CN113058605B (zh) 碳纳米管用催化剂及其制备方法和应用
CN110586117B (zh) 一种Co3O4/CuMoO4复合物及其制备方法和应用
CN112246244B (zh) 一种氧空位含量可调铜-氧化铜-钴酸铜催化剂的制备方法及应用
CN113398944B (zh) 钒酸铋表面修饰钴酸镍尖晶石的复合材料及其制备和应用
CN111036249A (zh) 一种FexP/Mn0.3Cd0.7S复合光催化剂及其制备方法与应用
CN110581281A (zh) 一种应用于燃料电池领域的PdCu合金纳米催化剂及制备方法
CN113814408B (zh) 一种CuPd合金纳米晶的制备及其组分调控方法
CN110339844B (zh) Fe纳米棒与Pt@Fe纳米棒催化剂及合成和应用
CN112246273B (zh) 一种用于二氧化碳转化制备低碳醇的催化剂、制备方法及应用
CN105195147A (zh) 一种碳纳米管内部负载铜纳米粒子脱氢催化剂及其制备方法
CN107552053B (zh) 一种p25负载分子态钴/镍等活性位点材料的制备方法
CN114522708B (zh) 一种多孔氮杂碳材料负载钴基催化剂制备方法及其在co加氢制备高碳醇反应中的应用
CN115888785A (zh) 一种杂原子掺杂碳包覆的金属型催化剂及其制备方法
CN108906092B (zh) 一种选择性去除阳离子染料的Ag3PO4@Ag/碳球三元异质结复合材料的制备方法
JPS6245544A (ja) シクロオレフインの製造方法
CN116422342B (zh) 一种多原子掺杂的表面富铂的催化剂及其制备方法
CN115591550B (zh) 一种双原子量子点催化剂及其制备方法
CN110893347A (zh) 低温高活性镍基双金属甲烷化催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant