WO2023072041A1 - 加氢-酸催化双功能催化剂及其制备方法和应用 - Google Patents

加氢-酸催化双功能催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023072041A1
WO2023072041A1 PCT/CN2022/127278 CN2022127278W WO2023072041A1 WO 2023072041 A1 WO2023072041 A1 WO 2023072041A1 CN 2022127278 W CN2022127278 W CN 2022127278W WO 2023072041 A1 WO2023072041 A1 WO 2023072041A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
molecular sieve
silica
hydrogenation
reaction
Prior art date
Application number
PCT/CN2022/127278
Other languages
English (en)
French (fr)
Inventor
蓝大为
杨为民
王振东
李相呈
刘闯
李俊杰
王闻年
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111250651.2A external-priority patent/CN116020541A/zh
Priority claimed from CN202210754110.1A external-priority patent/CN117358295A/zh
Priority claimed from CN202210754120.5A external-priority patent/CN117342911A/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to KR1020247017468A priority Critical patent/KR20240090988A/ko
Priority to EP22885918.7A priority patent/EP4424418A1/en
Publication of WO2023072041A1 publication Critical patent/WO2023072041A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/74Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition with simultaneous hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2767Changing the number of side-chains
    • C07C5/277Catalytic processes
    • C07C5/2775Catalytic processes with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/14Aliphatic saturated hydrocarbons with five to fifteen carbon atoms
    • C07C9/16Branched-chain hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • C07C2529/068Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • C07C2529/072Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • C07C2529/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • C07C2529/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present application relates to the field of catalysts, in particular to a hydrogenation-acid catalysis dual-function catalyst and its preparation method and application.
  • Cyclohexylbenzene is an important chemical product, which has important applications in the fields of liquid crystals and rechargeable batteries. Among them, cyclohexylbenzene liquid crystal has extremely high chemical stability, photochemical stability and excellent physical properties, and is one of the ideal materials for liquid crystal displays. Cyclohexylbenzene can also be used as an additive component in the electrolyte of lithium-ion batteries, which has the function of preventing overcharge and can effectively improve battery safety. In addition, the important chemical products phenol and cyclohexanone can be obtained through further peroxidation and decomposition reactions using cyclohexylbenzene as an intermediate, which can then be used in the production of phenolic resin, caprolactam and nylon.
  • cyclohexylbenzene is widely used. s concern.
  • the basic information of cyclohexylphenyl is as follows: colorless liquid, CAS No. 827-52-1, density 0.95g/cm 3 , boiling point 238-240°C, melting point 5°C, flash point 98°C.
  • the main methods for preparing cyclohexylbenzene include: hexenylbenzene cyclization method, and benzene hydroalkylation method.
  • the basic principle of benzene hydroalkylation method is: use benzene and hydrogen as raw materials to hydrogenate part of benzene at the metal active center to obtain a 6-membered cycloalkene structure (such as cyclohexene, etc.), and further combine with benzene at the acidic active center Alkylation occurs at the position to give the cyclohexylbenzene product. Therefore, a dual-functional catalyst having both a hydrogenation center and an alkylation active center can be used in the production process of cyclohexylbenzene.
  • patent CN112934251A discloses a hydrogenation metal-mordenite solution for n-heptane hydroisomerization reaction, and its isoheptane selectivity is about 60%-70%.
  • Earlier US5643440, US5302279, US6190532, etc. disclosed the scheme of using noble metal-low acidity molecular sieves to catalyze the isomerization of heavy oil, but the overall lack of position regulation of hydrogenation and acid catalytic center sites did not show dual active centers optimal matching effect.
  • the purpose of this application is to provide a hydrogenation-acid catalysis dual-function catalyst and its preparation method and application.
  • the catalyst has dual functions of hydrogenation and acid catalysis, and is suitable for benzene hydroalkylation and alkane hydroisomerization reaction.
  • the catalyst when used in the production of cyclohexylbenzene by hydroalkylation of benzene, the catalyst has the characteristics of high benzene conversion rate, good product selectivity and less by-product cyclohexane.
  • the application provides a hydrogenation-acid catalysis dual-function catalyst, based on the quality of the catalyst, comprising 80-99.8% of the silica-alumina molecular sieve component, 0.2-2% of the loading on the The metal component with hydrogenation activity on the molecular sieve, and 0-20% of the hydrocarbyl modification component, wherein the hydrogenation active metal is selected from ruthenium, platinum, palladium, copper, nickel, or a combination thereof, the The hydrocarbon group modification component is a C 1-20 hydrocarbon group.
  • it provides the application of the catalyst of the present application in hydrocarbon hydroconversion reaction, including the step of contacting hydrocarbon feedstock with the catalyst in the presence of hydrogen.
  • the present application provides a method for the one-step hydrogenation of benzene to prepare cyclohexylbenzene, comprising contacting and reacting benzene with the catalyst of the present application in the presence of hydrogen to obtain cyclohexylbenzene.
  • the present application provides a method for alkane hydroisomerization, comprising contacting and reacting straight-chain alkanes with the catalyst of the present application in the presence of hydrogen to obtain isomerized products, wherein the straight-chain alkanes are Straight chain alkanes above C8.
  • the catalyst of this application has dual functions of hydrogenation and solid acid, and can realize the hydroalkylation reaction of benzene to generate cyclohexylbenzene under mild reaction conditions.
  • the conversion rate of benzene and the selectivity of the main product cyclohexylbenzene are very high. high, and the reaction system has good stability; especially, when using the silica-alumina molecular sieve with ATS structure as the molecular sieve component, the catalyst of the present application has a special pore structure and acidic characteristics, which is useful for reducing benzene hydrogenation alkyl
  • the by-products of cyclohexane and dicyclohexylbenzene in the oxidation reaction have obvious effects;
  • the catalyst of the present application has a specific composition, especially its active metal components are mainly distributed in the pores of the molecular sieve, and the metal content on the outer surface is low, thereby ensuring the content of excessive hydrogenation by-products (such as cyclohexane) less; and the outer surface of the catalyst has strong hydrophobicity, so it has better affinity with non-polar substances such as various alkanes and aromatics, ensuring that the conversion rate of benzene is maintained at a high level; and
  • the catalyst of the present application is used for the isomerization of straight-chain alkanes, since the metal is mainly dispersed in the pores of the molecular sieve and the space distance between the strong acid sites is small, and the amount of acid on the outer surface is relatively small, the hydrogenation isomerization of alkanes In the hydrogenation reaction, it has the advantages of high substrate conversion and good selectivity of hydroisomerization products.
  • Fig. 1 is the catalyst XRD spectrogram that preparation example 1-1 prepares
  • Fig. 2 is the catalyst TEM figure that preparation example 1-1 prepares
  • Fig. 3 is the SEM figure of the catalyst prepared by Preparation Example 1-1;
  • Fig. 4 is the catalyst XRD spectrogram that preparation example II-1 prepares
  • Fig. 5 is the infrared absorption spectrogram of the catalyst prepared by Preparation Example II-1;
  • Fig. 6 is the catalyst XRD spectrogram that preparation example II-3 prepares.
  • Figure 7 is the XRD spectrum of the catalyst prepared in Preparation Example III-1.
  • silicon-aluminum ratio or “silicon-aluminum molar ratio” refers to the molar ratio between silicon calculated as SiO2 and aluminum calculated as Al2O3 in the molecular sieve.
  • w, m, s, vs, wm, ms and s-vs, etc. represent the diffraction at the corresponding 2 ⁇ angle calculated based on the diffraction peak intensity (in peak height)
  • the relative intensity I/I 0 of the peak relative to the strongest diffraction peak that is, the highest intensity diffraction peak
  • I represents the peak intensity of the corresponding diffraction peak
  • I 0 represents the peak intensity of the strongest diffraction peak
  • w represents weak
  • m represents Medium
  • wm for weak to medium ms for medium to strong
  • s-vs for strong to very strong are well known to those skilled in the art.
  • pore volume refers to the volume of pores per unit mass of the catalyst.
  • total pore volume refers to the volume of all pores per unit mass of the catalyst.
  • micropore volume refers to the volume of all micropores (generally referring to pores with a channel diameter less than 2 nanometers) possessed by the catalyst per unit mass.
  • the so-called “specific surface area” refers to the total area of a sample per unit mass, including the inner surface area and the outer surface area.
  • Non-porous samples only have an external surface area, such as Portland cement, some clay mineral powders, etc.; porous and porous samples have both external and internal surface areas, such as asbestos fibers, diatomaceous earth, and molecular sieves.
  • the surface area in micropores with a pore diameter less than 2 nanometers is the internal surface area, and the surface area after deducting the internal surface area is called the external surface area.
  • the external surface area of a unit mass sample is the external specific surface area.
  • the "catalyst outer surface” mentioned in this application refers to the surface of the catalyst except the inner surface of micropores with a pore diameter less than 2 nanometers.
  • H-type silica-alumina molecular sieve has the meaning generally understood in the art, especially refers to a silica-alumina molecular sieve with active acid sites. It can usually be directly prepared by using an acidic system, or obtained by subjecting a basic metal-type silica-alumina molecular sieve such as Na-type silica-alumina molecular sieve to ammonium ion exchange and roasting.
  • the amount and content of the metal component having hydrogenation activity are calculated by metal.
  • any matters or matters not mentioned are directly applicable to those known in the art without any change.
  • any of the implementations described herein can be freely combined with one or more other implementations described herein, and the resulting technical solutions or technical ideas are regarded as a part of the original disclosure or original record of the application, and should not be It is regarded as a new content that has not been disclosed or expected in this paper, unless those skilled in the art think that the combination is obviously unreasonable.
  • the present application provides a hydrogenation-acid catalytic dual-functional catalyst, based on the quality of the catalyst, comprising 80-99.8% of the silica-alumina molecular sieve component, 0.2-2% of the The metal component with hydrogenation activity on the molecular sieve, and 0-20% of the hydrocarbyl modification component.
  • the hydrocarbon-based modification component is connected to the surface of the molecular sieve through a covalent bond, for example, a hydrocarbon-Si-O-molecular sieve.
  • a silylating agent can be used as a raw material to link the hydrocarbon-based modification component on the surface of the molecular sieve through the reaction of the silicon-oxygen bond connected to silicon with the active hydroxyl group on the surface of the molecular sieve.
  • the hydrogenation active metal is selected from ruthenium, platinum, palladium, copper, nickel, or a combination thereof, more preferably ruthenium, palladium, or a combination thereof.
  • the hydrocarbon group modification component is a C 1-20 hydrocarbon group, preferably a C 1-10 hydrocarbon group, more preferably selected from methyl, ethyl, propyl, isopropyl, butyl, benzene phenylmethyl, phenethyl, or combinations thereof.
  • the mass content of the silica-alumina molecular sieve is 90-99.8%, such as 91%, 92%, 93%, 94%, 95%, 96% %, 97%, 98%, 99%, 99.5%, etc. Further preferably, the mass content of the silica-alumina molecular sieve is 90-98%.
  • the mass content of the hydrogenation active metal is 0.2-1.5%, preferably 0.2-1.2%, more preferably 0.3-1.0%, for example 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9% and so on.
  • the silica-alumina molecular sieve is selected from molecular sieves with MWW, FAU, MOR, BEA or ATS structures, or a combination thereof, preferably molecular sieves with ATS structures.
  • molecular sieves with MWW structure SCM-1 molecular sieves, MCM-22 molecular sieves, etc.
  • the silica-alumina molecular sieve is H-type silica-alumina molecular sieve.
  • the silica-alumina ratio of the molecular sieve in the silica-alumina catalyst is 2-50, preferably 2-40, more preferably 2-20.
  • the molecular sieve is a silica-alumina molecular sieve with an ATS structure
  • the X-ray diffraction spectrum of the catalyst shows the relative intensity characteristics of the diffraction peaks as shown in the following table :
  • the X-ray diffraction spectrum of the catalyst shows the relative intensity characteristics of the diffraction peaks shown in any row in the following table:
  • the crystals have a strip-like or rod-like morphology, the length of the crystals is 0.3-3 ⁇ m, and the aspect ratio is 2-20, preferably 5-20.
  • the catalyst can optionally undergo one or both of hydrocarbylation treatment and reduction treatment, wherein the hydrocarbylation treatment and reduction treatment can be used in the hydrogenation active metal during the preparation of the catalyst After the loading step, it can also be carried out before the catalyst is used; and, when both hydrocarbylation treatment and reduction treatment are carried out, the reduction treatment can be carried out before or after the hydrocarbylation treatment, preferably after the hydrocarbylation treatment Afterwards.
  • the catalyst is reduced.
  • the silica-alumina molecular sieve is a molecular sieve having a structure of MWW, FAU, MOR or BEA
  • the catalyst is preferably hydrocarbylated.
  • the hydrogenation active metal in the catalyst, may exist in various forms, for example, in a form selected from metal element, oxide, chloride, nitrate, or a combination thereof.
  • the hydrogenation active metal mainly exists in the form of simple metal, such as when the catalyst has been reduced.
  • the particle size of the hydrogenation active metal particles is 0.5-10 nm, preferably 1-5 nm.
  • the silica-alumina molecular sieve is a molecular sieve with an ATS structure, especially an ATS molecular sieve with the above-mentioned XRD spectrum characteristics, and based on the quality of the catalyst, the silicon
  • the mass content of the aluminum molecular sieve is 80-99.8%, preferably 90-99.8%
  • the mass content of the hydrogenation active metal is 0.2-2%, preferably 0.2-1.5%
  • the catalyst does not contain the hydrocarbyl modified sex component.
  • the mass of the silica-alumina molecular sieve is based on the quality of the catalyst
  • the content is 80-98%, preferably 90-98%
  • the mass content of the hydrogenation active metal is 0.2-1.5%, preferably 0.2-1.2%, more preferably 0.3-1.0%
  • the hydrocarbyl modified The mass content of the components is 1-20%, preferably 1-10%, more preferably 2-10%, such as 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% wait.
  • the mass content of the hydrogenation active metal on the outer surface of the catalyst to the elements on the outer surface is less than 0.5%, preferably less than 0.4%, more preferably 0.01% -0.35%, such as 0.01-0.2%.
  • the distribution coefficient of the hydrogenation active metal on the outer surface of the catalyst is 1-20%, preferably 1.5-18%, more preferably 1.5-12%, eg 1.5-10%.
  • the hydrogenation active metal distribution coefficient on the outer surface of the catalyst is calculated by the following formula:
  • the distribution coefficient of the hydrogenation active metal on the outer surface (the mass content of the hydrogenation active metal on the outer surface of the catalyst to the elements on the outer surface * the external specific surface area of the catalyst) / (the total mass content of the hydrogenation active metal in the catalyst * the specific surface area of the catalyst) * 100 %,
  • the mass content of hydrogenation active metals on the outer surface of the catalyst accounting for the outer surface elements is obtained by X-ray photoelectron spectroscopy (XPS) test, and the total mass content of hydrogenation active metals in the catalyst can be obtained by inductively coupled plasma atomic emission spectroscopy (ICP) analysis.
  • XPS X-ray photoelectron spectroscopy
  • ICP inductively coupled plasma atomic emission spectroscopy
  • the distribution coefficient of the hydrogenation active metal on the outer surface of the catalyst can be used to characterize the ratio of the hydrogenation active metal content on the outer surface of the catalyst to the total hydrogenation active metal content. Specifically, when the hydrogenation active metals in the catalyst are loaded on the inner and outer surfaces of molecular sieves by a simple impregnation method, the ratio of the hydrogenation active metal content on the outer surface to the total hydrogenation active metal content is divided by the relative distribution of hydrogenation active metals on the outer surface In addition to being directly proportional, it is also directly proportional to the proportion of the external surface area of the catalyst.
  • the specific surface area of the catalyst is 200-800m 2 /g, preferably 250-700m 2 /g, such as 300m 2 /g, 380m 2 /g, 385m 2 /g, 410m 2 / g g, 490m 2 /g or 500m 2 /g.
  • the total pore volume of the catalyst is not less than 0.15 cm 3 /g, preferably 0.18-1.0 cm 3 /g, more preferably 0.2-1.0 cm 3 /g, for example 0.2-0.9 cm 3 /g.
  • the micropore volume of the catalyst is 0.05-0.30 cm 3 /g, preferably 0.10-0.25 cm 3 /g.
  • the total acid content of the catalyst is 400-1500 ⁇ mol ⁇ g -1 , preferably 600-1500 ⁇ mol ⁇ g -1 , such as 800 ⁇ mol ⁇ g -1 , 1250 ⁇ mol ⁇ g -1 , 1300 ⁇ mol ⁇ g -1 or 1500 ⁇ mol ⁇ g -1 .
  • the catalyst when the catalyst is hydrocarbylated (i.e., the hydrocarbyl modification component content in the catalyst is in the range of 1-20%, preferably 1-10%), the catalyst's The relative acid equivalent of the outer surface is 15-50%, preferably 15-40%, for example 20%, 30% or 35%.
  • the acid amount ratio of B acid/L acid of the catalyst is 0.2-8.0, preferably 0.4-6.0, more preferably 3.0- 6.0, for example 5.0 or 5.5.
  • the ratio of acid amount of B acid/L acid of the catalyst is 3-10, preferably 5-7.
  • the metal H 2 -TPR test reduction temperature of the catalyst is 470-500°C, preferably 480-500°C, in the case of hydrocarbylation treatment but no reduction treatment.
  • a method for preparing the catalyst of the present application comprising the steps of:
  • the H-type silica-alumina molecular sieve is selected from molecular sieves having a structure of MWW, FAU, MOR, BEA or ATS, or a combination thereof, preferably a molecular sieve having an ATS structure.
  • the step (1) includes subjecting the raw material of the silica-alumina molecular sieve to ammonium ion exchange and calcining to obtain the H-type silica-alumina molecular sieve.
  • the raw material of the silica-alumina molecular sieve is selected from a silica-alumina molecular sieve having a structure of MWW, FAU, MOR or BEA, or a combination thereof.
  • the ammonium ion exchange is to exchange the alkali metal or alkaline earth metal cations such as Na + and K + in the basic metal type molecular sieve into NH 4 + , at 20- Exchange at 60°C for 0.5-4h, one or more times, the ammonium salt in the ammonium ion exchange is selected from one or more of ammonia water, ammonium chloride, ammonium nitrate, and ammonium carbonate. The concentration of the ammonium salt is 0.1-1.0mol/L.
  • After the ammonium ion exchange dry at 60-120°C for 4-24h, and then roast. The roasting temperature is 400-650°C, the roasting time is 1-12 hours, and the roasting atmosphere is oxygen or air to obtain the H-type silica-alumina molecular sieve.
  • the step (1) includes mixing the silicon source, the aluminum source, the fluorine source, the organic structure directing agent and water, and after pre-heating, crystallization treatment and roasting are carried out to obtain the H-type ATS Silica-alumina molecular sieve.
  • the added silicon source is calculated as SiO 2
  • the aluminum source is calculated as Al 2 O 3
  • the fluorine source is calculated as F-
  • the molar ratio of organic structure directing agent and water is The ratio is 1:(0.02-0.2):(0.5-2):(0.25-1.5):(3-15), preferably 1:(0.05-0.15):(0.5-1):(0.5-1): (5-10).
  • the silicon source is selected from silicic acid, silica gel, silica sol, tetraethyl silicate, water glass, or a combination thereof
  • the aluminum source is selected from pseudo Boehmite, aluminum isopropoxide, or their combination
  • the fluorine source is hydrofluoric acid
  • the organic structure directing agent is 4-pyrrolidinylpyridine.
  • 4-pyrrolidinylpyridine is used as the organic structure directing agent, no alkali is needed during the reaction, and the obtained molecular sieve can be used as a catalyst without ammonium ion exchange.
  • the heating pretreatment method is rotary evaporation or open heating to remove water, and the treatment condition of open heating is heating and stirring at 50-100°C, It is preferably heated and stirred at 70-90°C.
  • step (1) after the raw material mixture is heated and pretreated, the molar ratio of the silicon source to water in terms of SiO2 during crystallization is 1: (1-10), preferably 1: (1.5-6.5).
  • the crystallization conditions include: the crystallization temperature is 120-200°C, preferably 150-200°C, and the crystallization time is 7-21 days, preferably 7 -15 days.
  • the crystallization in step (1), can be carried out in any manner conventionally known in the art, such as making the silicon source, aluminum source, fluorine source, and organic structure-oriented It is a method in which the agent and water are mixed according to a predetermined ratio, and the obtained mixture is heated and crystallized under crystallization conditions.
  • the product in step (1), after the crystallization step is completed, can be obtained from the obtained mixture by any conventionally known separation method and calcination treatment.
  • the separation means for example, a method of filtering, washing and drying the obtained mixture can be mentioned.
  • the filtering, washing and drying can be performed in any manner conventionally known in the art.
  • the filtering for example, the obtained product mixture can be simply suction filtered.
  • the washing for example, washing with deionized water and/or ethanol is mentioned.
  • the drying temperature is, for example, 40-250°C, preferably 60-150°C
  • the drying time is, for example, 8-30 hours, preferably 10-20 hours. This drying may be performed under normal pressure or under reduced pressure.
  • the calcination in step (1), can be carried out in any manner conventionally known in the art, for example, the calcination temperature is generally 300-800°C, preferably 400-650°C, and the calcination time Generally 1-12 hours, preferably 2-6 hours.
  • the calcination is generally carried out in an oxygen-containing atmosphere, such as air or oxygen atmosphere.
  • the hydrogenation active metal in step (2), can be loaded on the H-type silica-alumina molecular sieve by conventional means (such as impregnation).
  • the step (2) loads the hydrogenation active metal on the H-type silicon aluminum molecular sieve by adding a solution of the hydrogenation active metal source to the H-type silica-alumina molecular sieve and drying it. on aluminum molecular sieves.
  • the hydrogenation active metal source is selected from soluble compounds of the metal, preferably chlorides, nitrates of the metal, or combinations thereof.
  • the solution of the hydrogenation active metal source may be a solution containing ruthenium prepared from ruthenium nitrate or ruthenium chloride.
  • the concentration of the solution of the hydrogenation active metal source is 1.5-50 g/L, preferably 2-45 g/L.
  • step (2) the solution of the hydrogenation active metal source is added dropwise to the H-type silica-alumina molecular sieve in step (1).
  • the present application has no special limitation on the conditions of the dropwise addition, for example, it can be mixed for 1-10 hours after the dropwise addition at room temperature.
  • the mass ratio of the mass of the hydrogenation active metal in the solution of the hydrogenation active metal source to the H-type silicon aluminum molecular sieve in step (1) is 0.002- 0.015:1, for example 0.005-0.02:1.
  • the drying in step (2), can be performed in a conventional manner, such as oven drying, and the drying conditions preferably include: a drying temperature of 40-90° C., and a drying time of 4-12 hours.
  • step (2) after the hydrogenation active metal is loaded on the H-type silica-alumina molecular sieve, one or both of hydrocarbylation treatment and reduction treatment can be optionally performed on the obtained product treatment, and when both hydrocarbylation treatment and reduction treatment are carried out, said reduction treatment may be performed before or after said hydrocarbylation treatment, preferably after hydrocarbylation treatment.
  • step (2) includes reducing the product after loading the hydrogenation active metal.
  • the reduction can be reduced with a reducing gas, preferably hydrogen reduction, and the reduction conditions preferably include: the reduction temperature is 300-550°C, the reduction time is 3-6 hours, and the volume space velocity of the reducing gas is 40-200h- 1 .
  • step (2) includes hydrocarbylating the product after loading the hydrogenation active metal, Preferably, the product after loading the hydrogenation active metal is firstly subjected to the reduction treatment and then the hydrocarbylation treatment.
  • the hydrocarbylating treatment in step (2) includes mixing and reacting the product loaded with hydrogenation active metal, preferably after reduction, with a hydrocarbylating agent in a solvent.
  • the hydrocarbylating agent is selected from methyltrimethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane, diethyldimethoxysilane, propyltrimethoxysilane Oxysilane, isopropyltrimethoxysilane, phenyltrimethoxysilane, tolyltrimethoxysilane, phenylsilanetriol, tolylsilanetriol, diphenylsilanediol, or combinations thereof, Preferably selected from dimethyldimethoxysilane, diethyldimethoxysilane, isopropyltrimethoxysilane, phenyltrimethoxysilane, tolyltrimethoxysilane, phenylsilanetriol, toluene silanetriols, or combinations thereof.
  • the solvent used in the hydrocarbylation treatment is selected from methyltrimethoxysilane
  • the mass ratio of the product loaded with hydrogenation active metal, the hydrocarbylating agent to the solvent is 1: (0.05-0.45): (5-55), Preferably it is 1:(0.06-0.40):(6-50), for example 1:(0.10-0.33):(8-50) or 1:(0.12-0.35):(7.5-52).
  • the reaction conditions include: the reaction temperature is 40-110°C, preferably 70-110°C, and the reaction time is 6-48h, preferably 8-24h Hour.
  • the resulting reaction product is separated (eg filtered), washed and dried.
  • the separation, washing and drying can be carried out in any manner conventionally known in the art.
  • the resulting product mixture can, for example, be simply suction-filtered as the filtration.
  • washing for example, washing with deionized water and/or ethanol is mentioned.
  • the drying temperature is, for example, 40-250°C, preferably 60-150°C; the drying time is, for example, 8-30 hours, preferably 10-20 hours. This drying may be performed under normal pressure or under reduced pressure.
  • the hydrogenation-acid catalysis bifunctional catalyst prepared by the method of the present application is provided.
  • the characteristics of the hydrogenation-acid catalysis dual-function catalyst obtained by the method of the present application are as described in the first aspect of the present application, and will not be repeated here.
  • the application of the catalyst of the present application in hydrocarbon hydroconversion reaction including the step of contacting and reacting hydrocarbon feedstock with the catalyst in the presence of hydrogen.
  • the hydrocarbon hydroconversion reaction is selected from benzene hydroalkylation reaction and alkane hydroisomerization reaction.
  • the present application provides a one-step method for preparing cyclohexylbenzene by hydrogenating benzene, comprising contacting and reacting benzene with the catalyst described in the present application in the presence of hydrogen to obtain cyclohexylbenzene.
  • the conditions of the reaction include: the mass ratio of benzene to the catalyst is 8-40, preferably 10-40; the reaction temperature is 100-220°C, preferably 120-200°C; the reaction time is 2 -8 hours, preferably 2.5-6 hours; the reaction hydrogen pressure is 0.8-2.5MPa, preferably 1.0-2.5MPa.
  • the present application provides a method for hydroisomerization of alkanes, comprising contacting and reacting linear alkanes with the catalyst of the present application in the presence of hydrogen to obtain isomerized products, wherein the linear alkanes It is a C8 or higher straight-chain alkane, preferably a C8-C20 straight-chain alkane, more preferably a C8-C12 straight-chain alkane, such as n-heptane, n-decane, and the like.
  • the reaction conditions include: the mass ratio of linear alkane to catalyst is 10-100, preferably 10-50; the reaction temperature is 250-400°C, preferably 300-400°C; the reaction time is 3 -10 hours, preferably 4-10 hours; the reaction hydrogen pressure is 2.5-5.0MPa, preferably 3.0-4.0MPa.
  • a catalyst for producing cyclohexylbenzene said catalyst having a schematic chemical composition as shown in the formula "xM ⁇ ySiO 2 ⁇ zAl 2 O 3 ";
  • M is a metal element, selected from one or more of ruthenium, platinum, palladium, copper and nickel metals;
  • the catalyst according to item A1 characterized in that, in the catalyst, based on the mass of the catalyst, the mass content of the metal M is 0.2%-2%.
  • the catalyst according to item A1 characterized in that, the catalyst has an X-ray diffraction spectrum as shown in the table below,
  • the catalyst according to item A1 characterized in that the total acid content of the catalyst is 500-1500 ⁇ mol ⁇ g -1 , preferably 800-1500 ⁇ mol ⁇ g -1 , the ratio of the acid content of B acid/L acid 3-10, preferably 5-7.
  • the catalyst according to item A1 characterized in that, in the catalyst, the crystals have elongated or rod-shaped morphology, the length of the crystals is 0.3-3 ⁇ m, and the aspect ratio is 2-20.
  • the catalyst according to item A1 characterized in that, the specific surface area of the catalyst is 200-600 m2 /g, preferably 250-500 m2 /g; the micropore volume of the catalyst is 0.05-0.30 cm3 /g, preferably 0.10-0.25 cm3 /g.
  • A8 a method for preparing a catalyst for the production of cyclohexylbenzene described in any one of item A1-7, comprising the steps:
  • step (2) Add the solution containing metal M to the sample B in step (1), dry and reduce to prepare the catalyst.
  • step (1) the added silicon source is calculated as SiO 2
  • the aluminum source is calculated as Al 2 O 3
  • the fluorine source is calculated as F -
  • the molar ratio of organic structure directing agent a and water is 1: (0.02-0.2): (0.5-2): (0.25-1.5): (3-15), preferably 1: (0.05-0.15): ( 0.5-1):(0.5-1):(5-10).
  • A10 according to the preparation method described in item A8 or A9, it is characterized in that, in step (1), the silicon source is selected from at least one of silicic acid, silica gel, silica sol, tetraethyl silicate, and water glass
  • the aluminum source is selected from at least one of pseudo-boehmite and aluminum isopropoxide
  • the fluorine source is selected from hydrofluoric acid
  • the organic structure-directing agent is selected from 4-pyrrole Alkylpyridine.
  • step (1) after the raw material mixture is preheated and pretreated, the molar ratio of silicon source to water in terms of SiO2 during crystallization It is 1:(1-10), preferably 1:(1.5-6.5).
  • step (1) the crystallization conditions: the temperature is 120-200 ° C, the time is 7-21 days, preferably, the temperature is 150- 200°C, the time is 7-15 days.
  • step (2) The preparation method according to item A8 or A9, characterized in that, in step (2), the concentration of the solution containing metal M is 2-50 g/L.
  • the catalyst described in any one of items A1-A7 is used in a method for producing cyclohexylbenzene by one-step hydrogenation of benzene.
  • A15 according to the method described in item A14, it is characterized in that, described method comprises raw material benzene and described catalyst contact reaction, makes cyclohexylbenzene with hydrogen as hydrogen source; Wherein, the mass ratio of raw material benzene and catalyst is 8 -40; the reaction temperature is 100-220°C, the reaction time is 2-8 hours, and the reaction hydrogen pressure is 0.8-2.5MPa.
  • a catalyst for producing cyclohexylbenzene is characterized in that, said catalyst comprises molecular sieve, active metal M and hydrocarbyl modifying group;
  • the active metal M is selected from one or more of ruthenium, platinum, palladium, copper and nickel;
  • hydrocarbyl modifying group is selected from at least one of C1-C4 alkanyl groups
  • the mass content of the active metal M is 0.2%-1.5%; the mass content of the metal M on the outer surface of the catalyst in the outer surface elements is less than 0.4%; the metal M distribution on the outer surface The coefficient is 1.2%-20%.
  • the catalyst according to item B1 characterized in that, in the catalyst, based on the mass of the catalyst, the mass content of the metal M is 0.2%-1.2%.
  • the catalyst according to item B1 characterized in that, in the catalyst, based on the mass of the catalyst, the mass content of the hydrocarbon-based modifying group is 1%-10%.
  • molecular sieve in described catalyst is selected from at least one in MWW, FAU, MOR, BEA, ATS molecular sieve; Molecular sieve accounts for 90%-98% of catalyst mass in described catalyst %, the ratio of silicon to aluminum is 2-50, preferably 4-40.
  • the catalyst according to item B1 characterized in that the specific surface area of the catalyst is 380-800m 2 /g, preferably 400-700m 2 /g; the total pore volume of the catalyst is not less than 0.15cm 3 / g, preferably 0.2-0.9 cm 3 /g.
  • step (i) The preparation method according to item B6, characterized in that, in step (i), the concentration of the solution containing metal M is 2-50 g/L.
  • step (ii) the alkylating agent is selected from methyltrimethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane One or more of base silane, diethyldimethoxysilane, propyltrimethoxysilane, isopropyltrimethoxysilane, preferably dimethyldimethoxysilane, diethyldimethylsilane One or more of oxysilane and isopropyltrimethoxysilane; the solvent is at least one of ethanol or toluene.
  • step (iii) the mass ratio of the added catalyst precursor, alkylating agent and solvent is 1: (0.05-0.40): (5- 50).
  • the catalyst described in any one of project B1-B5 is used for the method for benzene hydrogenation one-step system cyclohexylbenzene.
  • C1 a method for preparing cyclohexylbenzene by one-step hydrogenation of benzene, comprising contacting reaction of raw material benzene and a catalyst, using hydrogen as a hydrogen source to prepare cyclohexylbenzene;
  • the catalyst includes molecular sieves, active metal M and a hydrocarbon modification group;
  • the active metal M is selected from one or more of ruthenium, platinum, palladium, copper and nickel;
  • the hydrocarbyl modifying group is selected from at least one of phenyl, benzyl, and phenethyl;
  • the total acid content of the catalyst is 400-1500 ⁇ mol ⁇ g -1
  • the relative acid equivalent of the outer surface of the catalyst is 15%-35%.
  • molecular sieve in described catalyst is at least one in MWW, FAU, MOR, BEA, ATS molecular sieve;
  • Molecular sieve accounts for 80%-95% of catalyst mass in described catalyst %, the molar ratio of silicon to aluminum is 2-50, preferably 4-40.
  • the preparation method of described catalyst comprises the following steps:
  • step (A) characterized in that, in step (A), the concentration of the solution containing metal M is 1.5-45 g/L.
  • step (B) the arylation reagent is selected from the group consisting of, phenyltrimethoxysilane, tolyltrimethoxysilane, phenylsilanetriol, One or more of tolylsilanetriol and diphenylsilanediol; the solvent is at least one of ethanol or toluene.
  • step (B) the mass ratio of the added catalyst precursor, arylation reagent and solvent is 1: (0.06-0.45): (6-55 ).
  • C10 according to the method described in item C1, it is characterized in that, in described reaction, the mass ratio of raw material benzene and catalyst is 8-40, and reaction temperature is 100-220 °C, and reaction time is 2-8 hour, and hydrogen pressure is 0.8-2.5MPa.
  • the reagents and raw materials used are all commercially available products, and the purity is analytically pure.
  • the structure of the sample is determined by the X-ray diffraction spectrum (XRD), and the XRD spectrum is determined by the X-ray powder diffractometer, and the X-ray used
  • the model of the powder diffractometer is Panalytical X PERPRO X-ray powder diffractometer, and the following conditions are used to analyze the phase of the sample: CuK ⁇ ray source Nickel filter, 2 ⁇ scanning range 2-50°, operating voltage 40kV, current 40mA, scanning rate 10°/min.
  • the model of the scanning electron microscope (SEM) used is S-4800II field emission scanning electron microscope.
  • the method of measuring the crystal particle size of the sample is: use the scanning electron microscope to observe the molecular sieve at a magnification of 10,000 times, randomly select an observation field of view, calculate the average value of the sum of the particle diameters of all crystals in the observation field of view, and repeat the operation A total of 10 times. The average value of the sum of the average values of 10 times was used as the crystal grain size.
  • the measuring method of sample size is: use transmission electron microscope (Netherlands FEI company G2F30 transmission electron microscope, operating voltage 300kV) to observe molecular sieve under 100,000 times of magnification , randomly select an observation field of view, calculate the average value of the sum of the sizes of all particles in the observation field of view, repeat this operation a total of 10 times, and take the average value of the sum of the average values of the 10 times as the particle size.
  • transmission electron microscope Netherlands FEI company G2F30 transmission electron microscope, operating voltage 300kV
  • the acid content and the acid species of the sample are measured using the pyridine adsorption infrared method (Nicolet Model 710 spectrometer).
  • the specific operation steps are as follows: a. Sample pretreatment. The sample (about 30 mg) was compressed into a thin disc with a diameter of 13 mm, and loaded into an infrared sample cell. Afterwards, the samples were pretreated at 400 °C for 1 h under vacuum cell conditions. After the sample tank is cooled to room temperature, scan the infrared data of the sample as the background.
  • the pyridine vapor was passed into the original position until the adsorption reached equilibrium, and the adsorption time was 1 h. c, pyridine desorption. After the adsorption is completed, vacuumize at 100°C until the internal pressure does not change. The desorption time is 40 minutes, and the infrared absorption spectra are scanned and recorded respectively. The difference spectrum before and after pyridine adsorption is the obtained pyridine adsorption-infrared absorption spectrum. Calculate the acid content of the sample according to the spectrum:
  • r and w are the diameter (cm) and mass (g) of the thin catalyst disc
  • A is the absorbance integral value at the specified wavenumber peak according to the scanning pyridine adsorption-infrared absorption spectrum.
  • IMEC is the integral molar extinction coefficient
  • IMEC L is 2.22
  • IMEC B is 1.67.
  • the peak near 1545cm -1 is B acid
  • the peak near 1455cm -1 is L acid.
  • the characterization of the relative acid equivalent of the outer surface of the catalyst is determined by "probe reaction” tricumene cracking, and its specific operation is to prepare 50 mg of catalyst and 100 mg of quartz Sand-mixed column samples were then passed through gas chromatography (GC, Agilent 7890B) at 250 °C with 1 ⁇ L of tricumene liquid per injection, followed by comparison with unhydrocarbylated “metal- Molecular sieve structure, to evaluate the relative acidity and activity of the outer surface of the catalyst, the specific calculation method is as follows:
  • Relative acid equivalent of the outer surface (propene output of the alkylation group/(3 ⁇ tricumene addition amount of the alkylation group))/(propylene output of the non-hydrocarbylation group/(3 ⁇ tricumene addition amount of the non-hydrocarbylation group) ) ⁇ 100%.
  • the total pore volume, micropore pore volume, total specific surface area and external specific surface area of the sample are measured by nitrogen physical adsorption-desorption method (BET method): Use a physical adsorption instrument (such as Micromeretic ASAP2020M physical adsorption instrument) to measure the nitrogen physical adsorption-desorption isotherm of the molecular sieve, and then calculate it by BET equation and t-plot equation.
  • BET method nitrogen physical adsorption-desorption method
  • the used Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP) model is Varian 725-ES, and the analysis sample is dissolved with hydrofluoric acid to detect the content of the element (in the form of mole), including the hydrogenation active metal in the sample (hereinafter referred to as "metal M”), and then obtain the mass content by conversion.
  • ICP Inductively Coupled Plasma Atomic Emission Spectroscopy
  • X-ray photoelectron spectroscopy test catalyst surface element state to determine catalyst outer surface metal M accounts for the mass content of outer surface elements.
  • the metal M distribution coefficient on the outer surface of the catalyst is calculated by the following formula:
  • Metal M distribution coefficient (mass content of metal M on the outer surface of the catalyst in elements on the outer surface * specific surface area of the catalyst) / (total mass content of metal M in the catalyst * specific surface area of the catalyst) * 100%.
  • the metal reduction temperature is obtained by using H 2 -TPR test (hydrogen temperature programmed reduction).
  • the TPR tester is an AMI-3300 temperature-programmed adsorption instrument from Altamira Instruments.
  • the test method is to purge the sample with argon at 300°C for 1h, then cool down to 50°C, and then inject 10 %H 2 -Ar mixed gas, then the temperature was raised to 900°C at 10°C/min, the H 2 consumption curve was measured, and the peak temperature of the curve was recorded as the sample reduction temperature.
  • the mass content of the hydrocarbon-based modified component is determined by means of mass loss ratio under thermogravimetric-mass spectrometry (TG-MS), and confirmed by mass spectrometry Types of modified hydrocarbon groups.
  • TG-MS thermogravimetric-mass spectrometry
  • the analyzer is the STA449F3-QMS403 model of Netzsch Company. The thermogravimetric results of the samples at 25-1000°C were measured at a heating rate of 10°C/min.
  • FTIR Fourier transform infrared spectrometer
  • the reaction product cyclohexylbenzene is qualitatively analyzed by gas chromatography-mass chromatography (GC-MS), and the product cyclohexylbenzene yield and reaction substrate are analyzed by gas chromatography (GC) conversion rate.
  • the gas spectrometer is Agilent 7890A of Agilent Corporation of the United States
  • the chromatographic column is a HP-5 non-polar capillary column (30m, 0.53mm)
  • the gas chromatograph is Agilent 7890B
  • the detector is a hydrogen flame ionization detector (FID).
  • the chromatographic column is SE-54 capillary column (30m, 0.53mm).
  • the yield % of the product cyclohexylbenzene (the molar amount of cyclohexylbenzene generated by the reaction ⁇ 2)/(the molar amount of the reaction substrate benzene) ⁇ 100%.
  • the selectivity % of the product cyclohexylbenzene (the molar amount of cyclohexylbenzene produced by the reaction ⁇ 2)/(the molar amount of benzene reacted) ⁇ 100%.
  • Isomerization product yield% (the molar weight of the isomerized product generated by the reaction)/(the molar weight of the reaction substrate n-decane) ⁇ 100%
  • Isomerization product selectivity % (the molar amount of the isomerized product generated by the reaction)/(the molar amount of n-decane reacted) ⁇ 100%.
  • the XRD spectrum data of the catalyst are shown in Table I-1, the XRD spectrum is shown in Figure 1, and the TEM photos and SEM photos are shown in Figures 2 and 3, respectively.
  • n(SiO 2 ):n(Al 2 O 3 ) 10
  • the mass fraction of Ru is 0.3%
  • the properties of the resulting catalysts are listed in Table 1-13.
  • the crystals have a strip shape, the length of the crystals is 0.4-1.5 ⁇ m, and the aspect ratio is 2-10.
  • the XRD spectrum data of the catalyst are shown in Table I-2, and the XRD spectrum is similar to that shown in Figure 1.
  • n(SiO 2 ):n(Al 2 O 3 ) 10
  • the mass fraction of Ru is 0.6%
  • the properties of the resulting catalysts are listed in Table 1-13.
  • the SEM of the catalyst is similar to that shown in FIG. 3 .
  • the crystals have a strip shape, the length of the crystals is 0.4-1.5 ⁇ m, and the aspect ratio is 2-10.
  • the XRD spectrum data of the catalyst are shown in Table I-3, and the XRD spectrum is similar to that shown in Figure 1.
  • n(SiO 2 ):n(Al 2 O 3 ) 10
  • the mass fraction of Ru is 1.5%
  • the properties of the resulting catalysts are listed in Table 1-13.
  • the SEM of the catalyst is similar to that shown in FIG. 3 .
  • the crystals have a strip shape, the length of the crystals is 0.4-1.5 ⁇ m, and the aspect ratio is 2-10.
  • the XRD spectrum data of the catalyst are shown in Table I-4, and the XRD spectrum is similar to that shown in Figure 1.
  • n(SiO 2 ):n(Al 2 O 3 ) 10
  • the mass fraction of Ru is 0.3%
  • the properties of the resulting catalysts are listed in Table 1-13.
  • the SEM of the catalyst is similar to that shown in FIG. 3 .
  • the crystals have a strip shape, the length of the crystals is 0.4-2.0 ⁇ m, and the aspect ratio is 2-15.
  • the XRD spectrogram data of the catalyst are shown in Table I-5, and the XRD spectrogram is similar to that shown in Figure 1.
  • n(SiO 2 ):n(Al 2 O 3 ) 10
  • the mass fraction of Ru is 0.3%
  • the properties of the resulting catalysts are listed in Table 1-13.
  • the SEM of the catalyst is similar to that shown in FIG. 3 .
  • the crystals have a strip shape, the length of the crystals is 0.5-2.5 ⁇ m, and the aspect ratio is 3-20.
  • the XRD spectrum data of the catalyst are shown in Table I-6, and the XRD spectrum is similar to that in Figure 1.
  • n(SiO 2 ):n(Al 2 O 3 ) 10
  • the mass fraction of Pd is 0.3%
  • the properties of the resulting catalysts are listed in Table 1-13.
  • the SEM of the catalyst is similar to that shown in FIG. 3 .
  • the crystals have a strip shape, the length of the crystals is 0.4-1.5 ⁇ m, and the aspect ratio is 2-10.
  • the XRD spectrum data of the catalyst are shown in Table I-7, and the XRD spectrum is similar to that in Figure 1.
  • n(SiO 2 ):n(Al 2 O 3 ) 20
  • the mass fraction of Ru is 0.3%
  • the properties of the resulting catalysts are listed in Table 1-13.
  • the SEM of the catalyst is similar to that shown in FIG. 3 .
  • the crystals have a strip shape, the length of the crystals is 0.4-1.5 ⁇ m, and the aspect ratio is 2-12.
  • the XRD spectrum data of the catalyst are shown in Table I-8, and the XRD spectrum is similar to that in Figure 1.
  • the properties of the resulting catalysts are listed in Table 1-13.
  • the SEM of the catalyst is similar to that shown in FIG. 3 .
  • the crystals have a strip shape, the length of the crystals is 0.4-1.5 ⁇ m, and the aspect ratio is 2-12.
  • the XRD spectrum data of the catalyst are shown in Table I-9, and the XRD spectrum is similar to that shown in Figure 1.
  • the SEM of the catalyst is similar to that shown in FIG. 3 .
  • the crystals have a strip shape, the length of the crystals is 0.4-1.5 ⁇ m, and the aspect ratio is 2-10.
  • the XRD spectrum data of the catalyst are shown in Table I-10, and the XRD spectrum is similar to that shown in Figure 1.
  • the SEM of the catalyst is similar to that shown in FIG. 3 .
  • the crystals have a strip shape, the length of the crystals is 0.5-2.5 ⁇ m, and the aspect ratio is 3-20.
  • the XRD spectrum data of the catalyst are shown in Table I-11, and the XRD spectrum is similar to that shown in Figure 1.
  • the SEM of the catalyst is similar to that shown in FIG. 3 .
  • the crystals have a strip shape, the length of the crystals is 0.4-1.5 ⁇ m, and the aspect ratio is 2-10.
  • the XRD spectrum data of the catalyst are shown in Table I-12, and the XRD spectrum is similar to that shown in Figure 1.
  • the SEM of the catalyst is similar to that shown in FIG. 3 .
  • the crystals have a strip shape, the length of the crystals is 0.4-1.5 ⁇ m, and the aspect ratio is 2-12.
  • Example I-1 The catalyst evaluation method is shown in Example I-1, and the composition and evaluation results of the catalyst are listed in Table I-15.
  • Example I-1 The catalyst evaluation method is shown in Example I-1, and the composition and evaluation results of the catalyst are listed in Table I-15.
  • Example I-1 The catalyst evaluation method is shown in Example I-1, and the composition and evaluation results of the catalyst are listed in Table I-15.
  • Example I-1 The catalyst evaluation method is shown in Example I-1, and the composition and evaluation results of the catalyst are listed in Table I-15.
  • the catalyst prepared in Preparation Example I-1 was washed, dried, and put into the next reaction, and a total of 6 reactions were circulated.
  • the catalyst evaluation retains the reaction conditions in Example I-1, that is, 8 g of benzene is added into the autoclave, and hydrogen is charged to make the system pressure reach 1.2 MPa. Then the temperature of the system was raised to 150° C., and the reaction ended after 4 hours.
  • the catalyst evaluation results are listed in Table I-16.
  • catalyst evaluation retains the reaction condition among the embodiment I-12, promptly adds 8g benzene in autoclave, and fills with hydrogen to make system pressure reach 1.2MPa. Then the temperature of the system was raised to 150° C., and the reaction ended after 4 hours. Catalyst evaluation results are listed in Table I-17.
  • the Na-type MCM-22 molecular sieve with a silicon-aluminum molar ratio of 25:1 (with MWW structure) and 0.2mol/L NH 4 NO 3 solution (mass ratio 1:20) were subjected to ammonium ion exchange at 45°C for 2 hours, Then centrifuge and wash, repeat the ammonium ion exchange twice, dry the sample obtained at 100°C overnight, and roast in air at 550°C for 6 hours to obtain H-type silica-alumina molecular sieve.
  • the hydrocarbylated molecular sieve was reduced in a fixed-bed reactor at 450° C. and a hydrogen volume space velocity of 50 h ⁇ 1 for 3 h to prepare the target catalyst.
  • the XRD spectrum of the obtained catalyst is shown in Figure 4. According to XRD, it can be known that the catalyst retains the MWW molecular sieve structure as a whole.
  • the infrared absorption spectrum of the obtained catalyst is shown in Fig. 5, and the Si-C absorption peak appears near the visible wavenumber 2950 cm ⁇ 1 .
  • the hydrocarbyl group was determined to be methyl by TG-MS test, and the content is shown in Table II-1. Catalyst specific surface area, pore volume, acidic properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content are shown in Table II-1.
  • the Na-type MCM-22 molecular sieve with a silicon-aluminum molar ratio of 25:1 (with MWW structure) and 0.2mol/L NH 4 NO 3 solution (mass ratio 1:20) were subjected to ammonium ion exchange at 45°C for 2 hours, Then centrifuge and wash, repeat the ammonium ion exchange twice, dry the sample obtained at 100°C overnight, and roast in air at 550°C for 6 hours to obtain H-type silica-alumina molecular sieve.
  • Gained catalyst XRD spectrogram is the same as Fig. 1. Catalyst specific surface area, pore volume, acidic properties (including total acid content and external surface acid content), metal M content and external surface metal M content are shown in Table II-1.
  • the Na-type Y molecular sieve (with FAU structure) with a silicon-aluminum molar ratio of 10:1 and 0.2 mol/L NH4NO3 solution (mass ratio 1:20 ) were subjected to ammonium ion exchange at 45°C for 2 hours, and then centrifuged After washing and repeating the ammonium ion exchange twice, the sample obtained was dried overnight at 100°C and calcined in air at 550°C for 6 hours to obtain H-type silica-alumina molecular sieves.
  • the XRD spectrum of the obtained catalyst is shown in Figure 6, and the catalyst as a whole retains the FAU molecular sieve structure unchanged.
  • the specific surface area, pore volume, acidity properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content of the catalyst are shown in Table II-1.
  • the Na-type Y molecular sieve (with FAU structure) with a silicon-aluminum molar ratio of 5:1 and 0.2 mol/L NH 4 NO 3 solution (mass ratio 1:20) were subjected to ammonium ion exchange at 45°C for 2 hours, and then centrifuged After washing and repeating the ammonium ion exchange twice, the sample obtained was dried overnight at 100°C and calcined in air at 550°C for 6 hours to obtain H-type silica-alumina molecular sieves.
  • the XRD of the obtained catalyst generally retains the FAU molecular sieve structure unchanged.
  • the specific surface area, pore volume, acidity properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content of the catalyst are shown in Table II-1.
  • the Na-type Y molecular sieve (with FAU structure) with a silicon-aluminum molar ratio of 5:1 and 0.2 mol/L NH 4 NO 3 solution (mass ratio 1:20) were subjected to ammonium ion exchange at 45°C for 2 hours, and then centrifuged After washing and repeating the ammonium ion exchange twice, the sample obtained was dried overnight at 100°C and calcined in air at 550°C for 6 hours to obtain H-type silica-alumina molecular sieves.
  • the XRD of the obtained catalyst generally retains the FAU molecular sieve structure unchanged.
  • the specific surface area, pore volume, acidity properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content of the catalyst are shown in Table II-1.
  • H-type ATS molecular sieve precursor Take 1.5 mL of 3.2 g/L ruthenium chloride solution and add dropwise on 1 g of the obtained H-type ATS molecular sieve precursor. After drying at 80°C for 2h, it was reduced for 3h in a fixed-bed reactor at 450°C and a hydrogen volume space velocity of 50h -1 to obtain a catalyst precursor. Take 0.2g of isopropyltrimethoxysilane, mix with 1g of catalyst precursor and 10mL of toluene solvent, reflux at 110°C for 24h, centrifuge with water, wash, and dry at 80°C for 12h to obtain the catalyst.
  • the obtained catalyst XRD as a whole retains the ATS molecular sieve structure unchanged.
  • the specific surface area, pore volume, acidity properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content of the catalyst are shown in Table II-1.
  • the catalyst was prepared with reference to Preparation Example II-1, except that the raw material was changed to Na-type MCM-22 molecular sieve with a silicon-aluminum molar ratio of 50:1, and the remaining steps remained unchanged. Catalyst properties are shown in Table II-1.
  • the obtained catalyst XRD pattern is similar to that shown in Figure 1. Catalyst specific surface area, pore volume, acidic properties (including total acid content and external surface acid content), metal M content and external surface metal M content are shown in Table II-1.
  • the catalyst was prepared with reference to Preparation Example II-1, except that the step of treating with methyltrimethoxysilane was omitted.
  • the properties of the obtained catalyst are shown in Table II-1.
  • the catalyst evaluation method is the same as in Example II-5, and the catalyst evaluation results are listed in Table II-2.
  • the catalyst was prepared with reference to Preparation Example II-1, except that the amount of the added ruthenium chloride solution of the same concentration was increased to 8mL, that is, only the metal content in the catalyst was increased. Catalyst properties are shown in Table II-1.
  • the catalyst evaluation method is the same as in Example II-5, and the catalyst evaluation results are listed in Table II-2.
  • the catalyst evaluation method is the same as in Example II-5, and the catalyst evaluation results are listed in Table II-2.
  • the catalyst prepared in Preparation Example II-1 was washed, dried, and put into the next reaction, and a total of 6 reactions were circulated.
  • the evaluation of the catalyst is to add 8 g of benzene into the autoclave, and fill in hydrogen to make the system pressure reach 1.2 MPa. Then the temperature of the system was raised to 150° C., and the reaction ended after 4 hours.
  • the catalyst evaluation results are shown in Table II-3.
  • MCM-22 molecular sieves (with MWW structure) with a silicon-aluminum molar ratio of 20:1 and 0.2 mol/L NH 4 NO 3 solution (mass ratio 1:20) were subjected to ammonium ion exchange at 45°C for 2 hours, and then centrifuged After washing and repeating the ammonium ion exchange twice, the sample obtained was dried overnight at 100°C and calcined in air at 550°C for 6 hours to obtain H-type silica-alumina molecular sieves.
  • the XRD spectrum of the obtained catalyst is shown in Figure 7, and the catalyst as a whole retains the MWW molecular sieve structure unchanged.
  • Catalyst specific surface area, pore volume, acidity properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content are shown in Table III-1.
  • the preparation process is the same as that of Preparation Example III-1, except that the Na-type MCM-22 molecular sieve with a silicon-aluminum molar ratio of 25:1 is selected.
  • the XRD pattern of the catalyst obtained is the same as in Figure 7. Catalyst specific surface area, pore volume, acidic properties (including total acid content and external surface acid content), metal M content and external surface metal M content are shown in Table III-1.
  • the preparation process is the same as that of Preparation Example III-1, except that Na-type mordenite (with a MOR structure) with a silicon-aluminum molar ratio of 10:1 is selected.
  • the obtained catalyst retains the MOR molecular sieve structure as a whole.
  • the specific surface area, pore volume, acidic properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content of the catalyst are shown in Table III-1.
  • the preparation process is the same as that of Preparation Example III-1, except that the Na-type mordenite (having a MOR structure) with a silicon-aluminum molar ratio of 15:1 is selected.
  • the obtained catalyst retains the MOR molecular sieve structure as a whole.
  • the specific surface area, pore volume, acidic properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content of the catalyst are shown in Table III-1.
  • the obtained catalyst retains the ATS molecular sieve structure as a whole.
  • the specific surface area, pore volume, acidity properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content of the catalyst are shown in Table III-1.
  • the catalyst was prepared with reference to Preparation Example III-1, except that the raw material was changed to Na-type MCM-22 molecular sieve (with MWW structure) with a silicon-aluminum molar ratio of 50:1, and the remaining steps remained unchanged.
  • the XRD pattern of the obtained catalyst is the same as that in Figure 7. Catalyst specific surface area, pore volume, acidity properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content are shown in Table III-1.
  • the catalyst was prepared with reference to Preparation Example III-1, except that the part treated with phenyltrimethoxysilane was omitted.
  • Catalyst evaluation method is the same as embodiment III-4, and catalyst evaluation result is listed in table III-2.
  • the catalyst was prepared with reference to Preparation Example III-1, the difference being that the amount of the added ruthenium chloride solution of the same concentration was increased to 8mL, that is, only the metal content in the catalyst was increased.
  • Catalyst evaluation method is the same as embodiment III-4, and catalyst evaluation result is listed in table III-2.
  • the catalyst was prepared with reference to Preparation Example III-1, except that the condition of the arylation step was changed from adding 0.3 g of phenyltrimethoxysilane to adding 0.8 g of phenyltrimethoxysilane.
  • Catalyst evaluation method is the same as embodiment III-4, and catalyst evaluation result is listed in table III-2.
  • the catalyst obtained in Preparation Example III-1 is evaluated according to the method of Example III-4, wherein the partial pressure of hydrogen in the reaction conditions is changed to 4.0MPa, and all the other operations remain unchanged.
  • the catalyst evaluation results are listed in Table III-2.
  • the catalyst prepared in Preparation Example III-1 was washed, dried, and put into the next reaction, and a total of 6 reactions were circulated.
  • the evaluation of the catalyst is to add 8 g of benzene into the autoclave, and fill in hydrogen to make the system pressure reach 1.2 MPa. Then the temperature of the system was raised to 150° C., and the reaction ended after 4 hours.
  • the Na-type Y molecular sieve (with FAU structure) with a silicon-aluminum molar ratio of 10:1 and 0.2 mol/L NH4NO3 solution (mass ratio 1:20 ) were subjected to ammonium ion exchange at 45°C for 2 hours, and then centrifuged After washing and repeating the ammonium ion exchange twice, the sample obtained was dried overnight at 100°C and calcined in air at 550°C for 6 hours to obtain H-type silica-alumina molecular sieves.
  • the XRD spectrum pattern of the obtained catalyst is the same as that in Fig. 6.
  • the specific surface area, pore volume, acidity properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content of the catalyst are shown in Table IV-1.
  • the Na-type Y molecular sieve (with FAU structure) with a silicon-aluminum molar ratio of 10:1 and 0.2 mol/L NH 4 NO 3 solution (mass ratio 1:20) were subjected to ammonium ion exchange at 45°C for 2 hours, and then centrifuged After washing and repeating the ammonium ion exchange twice, the sample obtained was dried overnight at 100°C and calcined in air at 550°C for 6 hours to obtain H-type silica-alumina molecular sieves.
  • the XRD of the obtained catalyst generally retains the FAU molecular sieve structure unchanged.
  • the specific surface area, pore volume, acidity properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content of the catalyst are shown in Table IV-1.
  • the Na-type Y molecular sieve (with FAU structure) with a silicon-aluminum molar ratio of 10:1 and 0.2 mol/L NH4NO3 solution (mass ratio 1:20 ) were subjected to ammonium ion exchange at 45°C for 2 hours, and then centrifuged After washing and repeating the ammonium ion exchange twice, the sample obtained was dried overnight at 100°C and calcined in air at 550°C for 6 hours to obtain H-type silica-alumina molecular sieves.
  • the XRD of the obtained catalyst generally retains the FAU molecular sieve structure unchanged.
  • the specific surface area, pore volume, acidity properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content of the catalyst are shown in Table IV-1.
  • the Na-type Y molecular sieve (with FAU structure) with a silicon-aluminum molar ratio of 5:1 and 0.2 mol/L NH 4 NO 3 solution (mass ratio 1:20) were subjected to ammonium ion exchange at 45°C for 2 hours, and then centrifuged After washing and repeating the ammonium ion exchange twice, the sample obtained was dried overnight at 100°C and calcined in air at 550°C for 6 hours to obtain H-type silica-alumina molecular sieves.
  • the XRD of the obtained catalyst generally retains the FAU molecular sieve structure unchanged.
  • the specific surface area, pore volume, acidity properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content of the catalyst are shown in Table IV-1.
  • the Na-type Y molecular sieve (with FAU structure) with a silicon-aluminum molar ratio of 10:1 and 0.2 mol/L NH4NO3 solution (mass ratio 1:20 ) were subjected to ammonium ion exchange at 45°C for 2 hours, and then centrifuged After washing and repeating the ammonium ion exchange twice, the sample obtained was dried overnight at 100°C and calcined in air at 550°C for 6 hours to obtain H-type silica-alumina molecular sieves.
  • the XRD of the obtained catalyst generally retains the FAU molecular sieve structure unchanged.
  • the specific surface area, pore volume, acidity properties (including total acid content and external surface acid equivalent), metal M content and external surface metal M content of the catalyst are shown in Table IV-1.
  • the Na-type Y molecular sieve (with FAU structure) with a silicon-aluminum molar ratio of 10:1 and 0.2 mol/L NH4NO3 solution (mass ratio 1:20 ) were subjected to ammonium ion exchange at 45°C for 2 hours, and then centrifuged After washing and repeating the ammonium ion exchange twice, the sample obtained was dried overnight at 100°C and calcined in air at 550°C for 6 hours to obtain H-type silica-alumina molecular sieves.
  • Example IV-1 The catalyst evaluation method is shown in Example IV-1, and the composition and evaluation results of the catalyst are listed in Table IV-2.
  • the Na-type Y molecular sieve (with FAU structure) with a silicon-aluminum molar ratio of 10:1 and 0.2 mol/L NH4NO3 solution (mass ratio 1:20 ) were subjected to ammonium ion exchange at 45°C for 2 hours, and then centrifuged After washing and repeating the ammonium ion exchange twice, the sample obtained was dried overnight at 100°C and calcined in air at 550°C for 6 hours to obtain H-type silica-alumina molecular sieves.
  • Example IV-1 The catalyst evaluation method is shown in Example IV-1, and the composition and evaluation results of the catalyst are listed in Table IV-2.
  • any combination of various implementations of the present application can also be made, as long as they do not violate the idea of the present application, they should also be regarded as the content of the invention of the present application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种加氢-酸催化双功能催化剂,以催化剂的质量为基准,包含80-99.8%的硅铝分子筛组分,0.2-2%的负载在所述分子筛上的具有加氢活性的金属组分,和0-20%的烃基改性组分,其中所述加氢活性金属选自钌、铂、钯、铜、镍,或者它们的组合;所述烃基改性组分为C 1-20烃基。所述催化剂具有加氢和酸催化双重功能,适用于苯加氢烷基化反应和烷烃加氢异构化反应。并且,当用于苯加氢烷基化生产环己基苯中,所述催化剂具有苯转化率高、产品选择性好、副产物环己烷少的特点。

Description

加氢-酸催化双功能催化剂及其制备方法和应用 技术领域
本申请涉及催化剂领域,具体涉及一种加氢-酸催化双功能催化剂及其制备方法和应用。
背景技术
环己基苯是一种重要的化工产品,在液晶、充电电池领域均有着重要应用。其中环己基苯类液晶具有极高的化学稳定性、光化学稳定性以及优良的物理性能,是液晶显示器的理想材料之一。环己基苯同样可以用于锂离子电池电解液中添加剂成分,具有防过充作用可以有效提高电池安全性。此外,以环己基苯为中间体经进一步过氧化、分解反应可以制得重要化工产品苯酚与环己酮,进而用于酚醛树脂、己内酰胺与尼龙的生产,因此环己基苯的制备和生产受到广泛的关注。环己基苯基本信息如下:无色液体,CAS号为827-52-1,密度0.95g/cm 3,沸点238-240℃,熔点5℃,闪点98℃。
根据反应原料不同,制备环己基苯的主要方法包括:己烯烷基苯环化方法,及苯加氢烷基化方法。其中,苯加氢烷基化法基本原理为:以苯与氢气为原料,使部分苯在金属活性中心加氢得到6元环烯烃结构(如环己烯等),进一步与苯在酸性活性中心位置发生烷基化反应得到环己基苯产物。因此,同时具有加氢中心与烷基化活性中心的双功能催化剂可以用于环己基苯的生产工艺。
苯加氢烷基化制备环己基苯的研究最早始于上世纪八十年代。目前开发的催化剂主要以金属负载于分子筛为主,大多具有催化效率较慢且选择性较低的问题。如基于MCM-22系列分子筛的催化剂(US2011/0015457A1,CN104105679A)具有催化速率慢,且对副产物环己烷选择性偏高的问题。其他诸如以Ni-稀土处理的HY分子筛为载体的催化剂(US4219689)则具有苯转化率不高且产物环己基苯收率偏低的问题。随后报道(Molecular Catalysis 2017,442,27-38)利用Pd/HY负载型分子筛为催化剂,一步催化苯加氢烷基化制备环己基苯,苯的初始转化率为42.2%,环己基苯选择性维持为75%左右,过度加氢副产物环己烷选择性高达20%左右。由此来看,现有技术主要存在产品选 择性差、副产物环己烷较多的问题,这对工业实际应用带来较大问题。
相似地,其他加氢-固体酸双功能催化反应同样面临着副产物众多、目标产品选择性下降的问题。如专利CN112934251A公开了一种加氢金属-丝光沸石用于正庚烷加氢异构化反应的方案,其异庚烷选择性为60%-70%左右。而更早期的US5643440、US5302279、US6190532等则公开了采用贵金属-低酸性分子筛催化重油异构化的方案,然而整体上缺乏对加氢与酸催化中心位点的位置调控,未表现出双活性中心的优选匹配效果。
发明内容
本申请的目的是提供一种加氢-酸催化双功能催化剂及其制备方法和应用,所述催化剂具有加氢和酸催化双重功能,适用于苯加氢烷基化反应和烷烃加氢异构化反应。并且,当用于苯加氢烷基化生产环己基苯中,所述催化剂具有苯转化率高、产品选择性好、副产物环己烷少的特点。
为了实现上述目的,一方面,本申请提供了一种加氢-酸催化双功能催化剂,以催化剂的质量为基准,包含80-99.8%的硅铝分子筛组分,0.2-2%的负载在所述分子筛上的具有加氢活性的金属组分,和0-20%的烃基改性组分,其中所述加氢活性金属选自钌、铂、钯、铜、镍,或者它们的组合,所述烃基改性组分为C 1-20烃基。
另一方面,提供了制备本申请的催化剂的方法,包括如下步骤:
(1)提供H型硅铝分子筛;以及
(2)在所述H型硅铝分子筛上负载所述加氢活性金属,任选对所得产物进行烃基化处理和/或还原,得到所述催化剂。
再一方面,提供了本申请的催化剂在烃类加氢转化反应中的应用,包括在氢气存在下,使烃类原料与所述催化剂接触反应的步骤。
再一方面,本申请供了一种苯加氢一步法制环己基苯的方法,包括在氢气存在下,使苯与本申请的催化剂接触反应,得到环己基苯。
又一方面,本申请供了一种烷烃加氢异构化方法,包括在氢气存在下,使直链烷烃与本申请的催化剂接触反应,得到异构化产物,其中,所述直链烷烃为C8以上的直链烷烃。
与现有技术相比,本申请的催化剂的有益效果在于:
1、本申请的催化剂具有加氢与固体酸双功能,可以实现在温和反应条件下,使苯发生加氢烷基化反应生成环己基苯,苯转化率和主产物环己基苯选择性均非常高,且反应体系具有很好的稳定性;特别地,当采用具有ATS结构的硅铝分子筛作为分子筛组分时,本申请的催化剂具有特殊的孔道结构及酸性特征,对于减少苯加氢烷基化反应中的环己烷、二环己基苯副产物具有明显效果;
2、本申请的催化剂具有特定的组成,尤其是其活性金属组分主要集中分布在分子筛孔道内,外表面所含金属含量低,由此保证了过度加氢副产物(如环己烷)含量较少;而且该催化剂的外表面具有较强疏水性,因此与各类烷烃、芳烃等非极性物质具有更佳亲和性,确保了苯转化率保持在较高水平;以及
3、本申请的催化剂用于直链烷烃的异构化时,由于金属主要分散于分子筛孔道内与强酸位点空间距离较小,且外表面酸量较少,由此在烷烃加氢异构化反应中,具有底物转化率较高、加氢异构化产物选择性较好的优势。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1为制备例I-1制备得到的催化剂XRD谱图;
图2为制备例I-1制备得到的催化剂TEM图;
图3为制备例I-1制备得到的催化剂SEM图;
图4为制备例II-1制备得到的催化剂XRD谱图;
图5为制备例II-1制备得到的催化剂的红外吸收谱图;
图6为制备例II-3制备得到的催化剂XRD谱图;以及
图7为制备例III-1制备得到的催化剂XRD谱图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解 的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值,例如在该精确值±5%范围内的所有可能的数值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
在本说明书的上下文中,所谓“硅铝比”或“硅铝摩尔比”是指分子筛中以SiO 2计的硅和以Al 2O 3计的铝之间的摩尔比例。
在本说明书的上下文中,在分子筛的XRD数据中,w、m、s、vs、w-m、m-s和s-vs等代表基于衍射峰强度(以峰高计)计算得到的相应2θ角处的衍射峰相对于最强衍射峰(即强度最大的衍射峰)的相对强度I/I 0,其中I表示相应衍射峰的峰强度而I 0表示最强衍射峰的峰强度,w代表弱,m代表中等,s代表强,vs代表非常强,w-m代表弱到中等,m-s代表中等到强,且s-vs代表强到非常强,这种表示方式是本领域技术人员所熟知的。一般而言,w代表小于20;m代表20-40;s代表40-70;vs代表大于70,w-m代表小于40,m-s代表20-70,而s-vs代表大于40。
根据本申请,分子筛的XRD衍射谱图中各衍射峰的晶面间距可以基于衍射峰的2θ值通过布拉格公式:λ=2dsinθ(其中λ为入射波的波长,
Figure PCTCN2022127278-appb-000001
d为晶面间距,θ是入射光与散射平面间的夹角)计算得到。
在本说明书的上下文中,所谓“孔容”或“孔体积”,是指单位质量催化剂所具有的孔的容积。所谓“总孔容”,是指单位质量催化剂所具有的全部孔的容积。所谓“微孔孔容”,是指单位质量催化剂所具有的全部微孔(一般指的是孔道直径小于2纳米的孔)的容积。
在本说明书的上下文中,所谓“比表面积”,是指单位质量样品所具有的总面积,包括内表面积和外表面积。非孔性样品只具有外表面积,如硅酸盐水泥、一些粘土矿物粉粒等;有孔和多孔样品具有外表面积和内表面积,如石棉纤维、硅藻土和分子筛等。有孔和多孔样品中孔径小于2纳米的微孔内的表面积是内表面积,扣除内表面积后 的表面积称为外表面积,单位质量样品具有的外表面积即外比表面积。相应地,本申请所述的“催化剂外表面”即是指催化剂中除孔径小于2纳米的微孔的内表面之外的表面。
在本说明书的上下文中,所述“H型硅铝分子筛”具有本领域通常所理解的含义,特别指具有活性酸位点的硅铝分子筛。其通常可以通过采用酸性体系直接制备得到,或者通过使碱性金属型硅铝分子筛如Na型硅铝分子筛经过铵离子交换和焙烧得到。
在本申请中,如无相反表示,所述具有加氢活性的金属组分的用量和含量是以金属计的。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本申请原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
如上所述,在第一方面,本申请提供了一种加氢-酸催化双功能催化剂,以催化剂的质量为基准,包含80-99.8%的硅铝分子筛组分,0.2-2%的负载在所述分子筛上的具有加氢活性的金属组分,和0-20%的烃基改性组分。
在本申请的催化剂中,所述烃基改性组分通过共价键作用、例如烃基-Si-O-分子筛的共价键作用连接在分子筛表面。在某些具体实施方式中,可以硅烷化试剂为原料,通过与硅相连的硅氧键与分子筛表面的活性羟基反应,来将所述烃基改性组分连接在分子筛表面上。
在优选的实施方式中,所述加氢活性金属选自钌、铂、钯、铜、镍,或者它们的组合,更优选为钌、钯或者它们的组合。
在优选的实施方式中,所述烃基改性组分为C 1-20烃基,优选为C 1-10烃基,更优选选自甲基、乙基、丙基、异丙基、丁基、苯基、苯甲基、 苯乙基,或者它们的组合。
在优选的实施方式中,所述催化剂中,以催化剂的质量为基准,所述硅铝分子筛的质量含量为90-99.8%,例如91%、92%、93%、94%、95%、96%、97%、98%、99%、99.5%等等。进一步优选地,所述硅铝分子筛的质量含量为90-98%。
在优选的实施方式中,所述催化剂中,以催化剂的质量为基准,所述加氢活性金属的质量含量为0.2-1.5%,优选为0.2-1.2%,更优选为0.3-1.0%,例如0.4%、0.5%、0.6%、0.7%、0.8%、0.9%等等。
在优选的实施方式中,所述催化剂中,所述硅铝分子筛选自具有MWW、FAU、MOR、BEA或ATS结构的分子筛,或者它们的组合,优选为具有ATS结构的分子筛。作为所述具有MWW结构的分子筛的具体例子,可以提及SCM-1分子筛,MCM-22分子筛等;作为所述具有FAU结构的分子筛的具体例子,可以提及X分子筛、Y分子筛;作为所述具有MOR结构的分子筛的具体例子,可以提及LZ-211分子筛;作为所述具有BEA结构的分子筛的具体例子,可以提及β分子筛。在某些具体实施方式中,所述硅铝分子筛为H型硅铝分子筛。
在优选的实施方式中,所述硅铝催化剂中分子筛的硅铝比为2-50,优选为2-40,更优选为2-20。
在某些优选的实施方式中,在所述催化剂中,所述分子筛为具有ATS结构的硅铝分子筛,并且所述催化剂的X-射线衍射谱图显示出如下表所示的衍射峰相对强度特征:
2θ(°) 相对强度(I/I 0×100)
7.588-8.188 vs
16.286-16.886 m-s
18.927-19.527 s
20.492-21.092 s
22.096-22.696 m-s
26.983-27.583 m-s
在进一步优选的实施方式中,所述催化剂的X-射线衍射谱图显示出如下表中任一行所示的衍射峰相对强度特征:
2θ(°) 相对强度(I/I 0×100)
21.600-22.200 m
28.224-28.824 w-m
28.975-29.575 w-m
30.255-30.855 w-m
31.794-32.394 m
34.607-35.207 m
在更进一步优选的实施方式中,所述催化剂中,晶体具有长条状或棒状形貌,晶体的长度为0.3-3μm,长宽比为2-20,优选为5-20。
根据本申请,所述催化剂可以任选地经过烃基化处理和还原处理中的一种或者两种处理,其中所述烃基化处理和还原处理可以在所述催化剂的制备过程中在加氢活性金属负载步骤之后进行,也可以在所述催化剂使用之前进行;并且,当经过烃基化处理和还原处理两者时,所述还原处理可以在所述烃基化处理之前或之后进行,优选在烃基化处理之后进行。在优选的实施方式中,所述催化剂经过还原处理。此外,当所述硅铝分子筛为具有MWW、FAU、MOR或BEA结构的分子筛时,所述催化剂优选经过烃基化处理。
根据本申请,在所述催化剂中,所述加氢活性金属可以各种形式,例如选自金属单质、氧化物、氯化物、硝酸盐,或者它们的组合的形式存在。在优选的实施方式中,所述加氢活性金属主要以金属单质的形式存在,例如在所述催化剂经过还原处理的情况下。优选地,所述催化剂中,加氢活性金属的颗粒的粒径为0.5-10nm,优选为1-5nm。
在某些优选的实施方式中,在所述催化剂中,所述硅铝分子筛为具有ATS结构的分子筛,特别是具有上述XRD谱图特征的ATS分子筛,并且以催化剂的质量为基准,所述硅铝分子筛的质量含量为80-99.8%、优选为90-99.8%,所述加氢活性金属的质量含量为0.2-2%,优选为0.2-1.5%,且所述催化剂不含所述烃基改性组分。
在另一些优选的实施方式中,特别是当所述硅铝分子筛为具有MWW、FAU、MOR或BEA结构的分子筛时,所述催化剂中,以催化剂的质量为基准,所述硅铝分子筛的质量含量为80-98%、优选为90-98%,所述加氢活性金属的质量含量为0.2-1.5%,优选为0.2-1.2%,更优选为0.3-1.0%,且所述烃基改性组分的质量含量为1-20%、优选为 1-10%,更优选为2-10%,例如2%、3%、4%、5%、6%、7%、8%、9%等。
在进一步优选的实施方式中,通过X射线光电子能谱分析(XPS)测试,所述催化剂外表面的加氢活性金属占外表面元素的质量含量在0.5%以下,优选0.4%以下,更优选0.01-0.35%,例如0.01-0.2%。
在更进一步优选的实施方式中,所述催化剂外表面的加氢活性金属的分布系数为1-20%、优选1.5-18%、更优选1.5-12%,例如1.5-10%。
在本申请中,所述催化剂外表面的加氢活性金属分布系数由以下公式计算得到:
外表面加氢活性金属的分布系数=(催化剂外表面加氢活性金属占外表面元素的质量含量*催化剂外比表面积)/(催化剂中加氢活性金属的总质量含量*催化剂比表面积)*100%,
其中催化剂外表面加氢活性金属占外表面元素的质量含量通过X射线光电子能谱分析(XPS)测试得到,而所述催化剂中加氢活性金属的总质量含量可以通过电感耦合等离子体原子发射光谱(ICP)分析得到。
根据本申请,所述催化剂外表面的加氢活性金属分布系数可以用来表征该催化剂的外表面加氢活性金属含量占总加氢活性金属含量的比例。具体而言,当催化剂中加氢活性金属采用简单浸渍法负载到分子筛内外表面上时,外表面加氢活性金属含量占总加氢活性金属含量的比例除与外表面加氢活性金属的相对分布成正比外,还与催化剂外表面积占比成正比关系。
在优选的实施方式中,所述催化剂的比表面积为200-800m 2/g,优选为250-700m 2/g,例如为300m 2/g、380m 2/g、385m 2/g、410m 2/g、490m 2/g或500m 2/g。
在优选的实施方式中,所述催化剂的总孔容不低于0.15cm 3/g,优选为0.18-1.0cm 3/g、更优选为0.2-1.0cm 3/g,例如为0.2-0.9cm 3/g。
在优选的实施方式中,所述催化剂的微孔孔容为0.05-0.30cm 3/g,优选为0.10-0.25cm 3/g。
在优选的实施方式中,所述催化剂的总酸量为400-1500μmol·g -1,优选为600-1500μmol·g -1,例如为800μmol·g -1、1250μmol·g -1、1300μmol·g -1或1500μmol·g -1
在某些优选的实施方式中,例如当所述催化剂经过烃基化处理时 (即催化剂中的烃基改性组分含量在1-20%,优选1-10%范围内时),所述催化剂的外表面相对酸当量为15-50%,优选为15-40%,例如为20%、30%或35%。
在某些优选的实施方式中,例如当所述催化剂经过烃基化处理时,所述催化剂的B酸/L酸的酸量之比为0.2-8.0,优选为0.4-6.0,更优选为3.0-6.0,例如为5.0或5.5。
在另一些优选的实施方式中,例如当所述催化剂基于ATS分子筛且未经烃基化处理时,所述催化剂的B酸/L酸的酸量之比为3-10,优选为5-7。
在优选的实施方式中,在经过烃基化处理但未经还原处理的情况下,所述催化剂的金属H 2-TPR测试还原温度为470-500℃,优选为480-500℃。
在第二方面,提供了制备本申请的催化剂的方法,包括如下步骤:
(1)提供H型硅铝分子筛;以及
(2)在所述H型硅铝分子筛上负载所述加氢活性金属,任选对所得产物进行烃基化处理和/或还原,得到所述催化剂。
在优选的实施方式中,所述H型硅铝分子筛选自具有MWW、FAU、MOR、BEA或ATS结构的分子筛,或者它们的组合,优选为具有ATS结构的分子筛。
在某些优选的实施方式中,所述步骤(1)包括将硅铝分子筛原料经过铵离子交换和焙烧,得到所述H型硅铝分子筛。
在进一步优选的实施方式中,所述硅铝分子筛原料选自具有MWW、FAU、MOR或BEA结构的硅铝分子筛,或者它们的组合。
在某些具体实施方式中,在步骤(1)中,所述铵离子交换为将碱性金属型分子筛中的Na +、K +等碱金属或碱土金属阳离子交换成NH 4 +,在20-60℃下交换0.5-4h,可以交换一次或多次,铵离子交换中的铵盐选自氨水、氯化铵、硝酸铵、碳酸铵中的一种或多种。铵盐的浓度为0.1-1.0mol/L,铵离子交换之后在60-120℃下干燥4-24h,再进行焙烧,焙烧温度为400-650℃,焙烧时间为1-12小时,焙烧气氛为氧气或空气,得到所述H型硅铝分子筛。
在其他优选的实施方式中,所述步骤(1)包括将硅源、铝源、氟源、有机结构导向剂和水混合,加热预处理后,再进行晶化处理和焙 烧,得到H型ATS硅铝分子筛。
在进一步优选的实施方式中,在步骤(1)中,所加入的硅源以SiO 2计、铝源以Al 2O 3计、氟源以F -计、有机结构导向剂和水的摩尔配比为1∶(0.02-0.2)∶(0.5-2)∶(0.25-1.5)∶(3-15),优选为1∶(0.05-0.15)∶(0.5-1)∶(0.5-1)∶(5-10)。
在进一步优选的实施方式中,在步骤(1)中,所述硅源选自硅酸、硅胶、硅溶胶、硅酸四乙酯、水玻璃,或者它们的组合,所述铝源选自拟薄水铝石、异丙醇铝,或者它们的组合,所述氟源选择氢氟酸,所述有机结构导向剂为4-吡咯烷基吡啶。在该实施方式中,采用4-吡咯烷基吡啶为有机结构导向剂,反应过程中不需要加碱,所得分子筛无需进行铵离子交换即可作为催化剂使用。
在进一步优选的实施方式中,在步骤(1)中,所述加热预处理的方法为旋蒸除水或敞口加热除水,敞口加热的处理条件为在50-100℃下加热搅拌,优选在70-90℃下加热搅拌。
在进一步优选的实施方式中,在步骤(1)中,所述原料混合物经过加热预处理后,晶化时硅源以SiO 2计和水的摩尔配比为1∶(1-10),优选1∶(1.5-6.5)。
在进一步优选的实施方式中,在步骤(1)中,所述晶化的条件包括:晶化温度为120-200℃、优选150-200℃,晶化时间为7-21天、优选为7-15天。
在进一步优选的实施方式中,在步骤(1)中,所述晶化可以按照本领域常规已知的任何方式进行,比如可以举出使所述硅源、铝源、氟源、有机结构导向剂和水按照预定的比例混合,并使所获得的混合物在晶化条件下加热晶化的方法。
在进一步优选的实施方式中,在步骤(1)中,在晶化步骤结束之后,可以通过常规已知的任何分离方式和焙烧处理从所获得的混合物中得到产品。作为所述分离方式,比如可以举出对所述获得的混合物进行过滤、洗涤和干燥的方法。在此,所述过滤、洗涤和干燥可以按照本领域常规已知的任何方式进行。具体举例而言,作为所述过滤,比如可以简单地抽滤所述获得的产物混合物。作为所述洗涤,比如可以举出使用去离子水和/或乙醇进行洗涤。作为所述干燥温度,比如可以举出40-250℃,优选60-150℃,作为所述干燥的时间,比如可以举 出8-30小时,优选10-20小时。该干燥可以在常压下进行,也可以在减压下进行。
在进一步优选的实施方式中,在步骤(1)中,所述焙烧可以按照本领域常规已知的任何方式进行,比如焙烧温度一般为300-800℃,优选为400-650℃,而焙烧时间一般为1-12小时,优选2-6小时。另外,所述焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
根据本申请,在步骤(2)中,所述加氢活性金属可以通过常规方式(如浸渍)负载到所述H型硅铝分子筛上。在优选的实施方式中,所述步骤(2)通过将加氢活性金属源的溶液加入到所述H型硅铝分子筛中并干燥,来将所述加氢活性金属负载到所述H型硅铝分子筛上。
在进一步优选的实施方式中,在步骤(2)中,所述加氢活性金属源选自所述金属的可溶性化合物,优选选自所述金属的氯化物、硝酸盐,或者它们的组合。以钌为例,所述加氢活性金属源的溶液可以为由硝酸钌或氯化钌配制得到含钌的溶液。
在进一步优选的实施方式中,在步骤(2)中,以加氢活性金属的质量计,所述加氢活性金属源的溶液的浓度为1.5-50g/L,优选为2-45g/L。
在进一步优选的实施方式中,在步骤(2)中,所述加氢活性金属源的溶液采用滴加的方式加入步骤(1)的H型硅铝分子筛中。本申请对所述滴加的条件没有特别的限定,比如可以在室温下滴加后混合1-10小时。
在进一步优选的实施方式中,在步骤(2)中,所述加氢活性金属源的溶液中所述加氢活性金属的质量与步骤(1)的H型硅铝分子筛的质量比为0.002-0.015∶1,例如为0.005-0.02∶1。
在进一步优选的实施方式中,在步骤(2)中,所述干燥可以采用常规方式进行,例如烘箱烘干,干燥条件优选包括:干燥温度为40-90℃,干燥时间为4-12小时。
根据本申请,在步骤(2)中,在所述H型硅铝分子筛上负载所述加氢活性金属之后,可以任选地对所得产物进行烃基化处理和还原处理中的一种或者两种处理,并且当进行烃基化处理和还原处理两者时,所述还原处理可以在所述烃基化处理之前或之后进行,优选在烃基化处理之后进行。
在优选的实施方式中,步骤(2)包括对负载加氢活性金属之后的产物进行还原处理。进一步优选地,所述还原可以采用还原性气体还原,优选为氢气还原,还原条件优选包括:还原温度为300-550℃,还原时间3-6小时,还原气体的体积空速为40-200h -1
在优选的实施方式中,特别是当所述H型硅铝分子筛为具有MWW、FAU、MOR或BEA结构的分子筛时,步骤(2)包括对负载加氢活性金属之后的产物进行烃基化处理,优选包括对负载加氢活性金属之后的产物先进行所述还原处理再进行烃基化处理。
在进一步优选的实施方式中,步骤(2)的所述烃基化处理包括将负载加氢活性金属后的产物,优选在经过还原后,与烃基化试剂在溶剂中混合反应来进行。
在进一步优选的实施方式中,所述烃基化试剂选自甲基三甲氧基硅烷、二甲基二甲氧基硅烷、乙基三甲氧基硅烷、二乙基二甲氧基硅烷、丙基三甲氧基硅烷、异丙基三甲氧基硅烷,苯基三甲氧基硅烷、甲苯基三甲氧基硅烷、苯基硅烷三醇、甲苯基硅烷三醇、二苯基硅烷二醇,或者它们的组合,优选选自二甲基二甲氧基硅烷、二乙基二甲氧基硅烷、异丙基三甲氧基硅烷、苯基三甲氧基硅烷、甲苯基三甲氧基硅烷、苯基硅烷三醇、甲苯基硅烷三醇,或者它们的组合。进一步优选地,所述烃基化处理中所用的溶剂选自乙醇、甲苯或者它们的组合。
在进一步优选的实施方式中,在所述烃基化处理中,所述负载加氢活性金属后的产物、烃基化试剂与溶剂的质量比为1∶(0.05-0.45)∶(5-55)、优选为1∶(0.06-0.40)∶(6-50),例如为1∶(0.10-0.33)∶(8-50)或1∶(0.12-0.35)∶(7.5-52)。
在进一步优选的实施方式中,在所述烃基化处理中,所述反应的条件包括:反应温度为40-110℃,优选为70-110℃,反应时间为6-48h、优选为8-24小时。
在某些进一步优选的实施方式中,在所述烃基化处理后,对所得的反应产物进行分离(如过滤)、洗涤和干燥。根据本申请,所述分离、洗涤和干燥可以按照本领域常规已知的任何方式进行。具体举例而言,作为所述过滤,比如可以简单地抽滤所得的产物混合物。作为所述洗涤,比如可以举出使用去离子水和/或乙醇进行洗涤。作为所述 干燥温度,比如可以举出40-250℃,优选60-150℃;作为所述干燥的时间,比如可以举出8-30小时,优选10-20小时。该干燥可以在常压下进行,也可以在减压下进行。
在第三方面,提供了通过本申请的方法制备得到的加氢-酸催化双功能催化剂。
在具体实施方式中,通过本申请方法得到的加氢-酸催化双功能催化剂的各项特征如本申请的第一方面中所述,在此不再赘述。
在第四方面,提供了本申请的催化剂在烃类加氢转化反应中的应用,包括在氢气存在下,使烃类原料与所述催化剂接触反应的步骤。
在优选的实施方式中,所述烃类加氢转化反应选自苯加氢烷基化反应和烷烃加氢异构化反应。
在第五方面,本申请提供了苯加氢一步法制环己基苯的方法,包括在氢气存在下,使苯与本申请所述的催化剂接触反应,得到环己基苯。
在优选的实施方式中,所述反应的条件包括:苯与催化剂的质量比为8-40、优选为10-40;反应温度为100-220℃、优选为120-200℃;反应时间为2-8小时、优选为2.5-6小时;反应氢气压力为0.8-2.5MPa,优选为1.0-2.5MPa。
在第六方面,本申请提供了一种烷烃加氢异构化方法,包括在氢气存在下,使直链烷烃与本申请的催化剂接触反应,得到异构化产物,其中,所述直链烷烃为C8以上的直链烷烃,优选为C8-C20直链烷烃,更优选为C8-C12直链烷烃,例如正庚烷、正癸烷等。
在优选的实施方式中,所述反应条件包括:直链烷烃与催化剂质量比为10-100、优选为10-50;反应温度为250-400℃、优选为300-400℃;反应时间为3-10小时、优选为4-10小时;反应氢气压力为2.5-5.0MPa,优选为3.0-4.0MPa。
在某些优选的实施方式中,提供了如下的技术方案:
A1、一种用于生产环己基苯的催化剂,所述催化剂具有如式“xM·ySiO 2·zAl 2O 3”所示的示意性化学组成;
其中,M为金属元素,选自钌、铂、钯、铜和镍金属中的一种或几种;
其中,所述化学组成中,0·001≤x/y≤0.02,8≤y/z≤80。
A2、根据项目A1所述的催化剂,其特征在于,所述催化剂中,以催化剂的质量为基准,金属M的质量含量为0.2%-2%。
A3、根据项目A1所述的催化剂,其特征在于,所述催化剂,具有如下表所示的X-射线衍射图谱,
2θ(°) 相对强度(I/I 0×100)
7.888±0.3 vs
16.586±0.3 m-s
19.227±0.3 s
20.792±0.3 s
22.396±0.3 m-s
27.283±0.3 m-s
A4、根据项目A1或A3所述的催化剂,其特征在于,所述催化剂,还包括如下表所示的X-射线衍射图谱,
2θ(°) (a) 相对强度(I/I 0×100)
21.900±0.3 m
28.524±0.3 w-m
29.275±0.3 w-m
30.555±0.3 w-m
32.094±0.3 m
34.907±0.3 m
A5、根据项目A1所述的催化剂,其特征在于,所述催化剂的总酸量为500-1500μmol·g -1,优选为800-1500μmol·g -1,B酸/L酸的酸量之比为3-10,优选为5-7。
A6、根据项目A1所述的催化剂,其特征在于,所述催化剂中,晶体具有长条状或棒状形貌,晶体的长度为0.3-3μm,长宽比为2-20。
A7、根据项目A1所述的催化剂,其特征在于,所述催化剂的比表面积为200-600米 2/克,优选250-500米 2/克;所述催化剂的微孔孔容为0.05-0.30厘米 3/克,优选0.10-0.25厘米 3/克。
A8、一种项目A1-7任一项所述的用于生产环己基苯的催化剂的制 备方法,包含如下步骤:
(1)将硅源、铝源、氟源、有机结构导向剂和水混合,加热预处理后,再进行晶化处理,焙烧,得到样品B;
(2)将含金属M的溶液加入到步骤(1)样品B中,经干燥和还原,制得所述催化剂。
A9、根据项目A8所述的制备方法,其特征在于,在步骤(1)中,所加入的硅源以SiO 2为计、铝源以Al 2O 3为计、氟源以F -为计、有机结构导向剂a和水的摩尔配比为1∶(0.02-0.2)∶(0.5-2)∶(0.25-1.5)∶(3-15),优选为1∶(0.05-0.15)∶(0.5-1)∶(0.5-1)∶(5-10)。
A10、根据项目A8或A9所述的制备方法,其特征在于,在步骤(1)中,所述硅源选自硅酸、硅胶、硅溶胶、硅酸四乙酯、水玻璃中的至少一种;所述铝源选自拟薄水铝石和异丙醇铝中的至少一种;在步骤(1)中,所述氟源选择氢氟酸;所述有机结构导向剂选自4-吡咯烷基吡啶。
A11、根据项目A8或A9所述的制备方法,其特征在于,在步骤(1)中,所述原料混合物经过加热预处理后,晶化时硅源以SiO 2为计和水的摩尔配比为1∶(1-10),优选1∶(1.5-6.5)。
A12、根据项目A8或A9所述的制备方法,其特征在于,在步骤(1)中,所述晶化条件:温度为120-200℃,时间为7-21天,优选,温度为150-200℃,时间为7-15天。
A13、根据项目A8或A9所述的制备方法,其特征在于,在步骤(2)中,含金属M的溶液的浓度为2-50g/L。
A14、一种项目A1-A7任一项所述的催化剂用于苯加氢一步法制环己基苯的方法。
A15、根据项目A14所述的方法,其特征在于,所述方法,包括原料苯和所述催化剂接触反应,以氢气为氢源制得环己基苯;其中,原料苯与催化剂的质量比为8-40;反应温度为100-220℃,反应时间为2-8小时,反应氢气压力为0.8-2.5MPa。
B1、一种用于生产环己基苯的催化剂,其特征在于,所述催化剂包括分子筛、活性金属M和烃基改性基团;
其中,活性金属M选自钌、铂、钯、铜和镍中的一种或几种;
其中,所述烃基改性基团选自C1-C4的链烷基中的至少一种;
其中,以催化剂的质量为基准,所述活性金属M的质量含量为0.2%-1.5%;所述催化剂外表面的金属M占外表面元素的质量含量为0.4%以下;外表面的金属M分布系数为1.2%-20%。
B2、根据项目B1所述的催化剂,其特征在于,所述催化剂中,以催化剂的质量为基准,金属M的质量含量为0.2%-1.2%。
B3、根据项目B1所述的催化剂,其特征在于,所述催化剂中,以催化剂的质量为基准,所述烃基改性基团的质量含量为1%-10%。
B4、根据项目B1所述的催化剂,其特征在于,所述催化剂中分子筛选自MWW、FAU、MOR、BEA、ATS分子筛中的至少一种;所述催化剂中分子筛占催化剂质量的90%-98%,硅铝比为2-50,优选为4-40。
B5、根据项目B1所述的催化剂,其特征在于,所述催化剂的比表面积为380-800m 2/g,优选400-700m 2/g;所述催化剂的总孔容不低于0.15cm 3/g,优选为0.2-0.9cm 3/g。
B6、一种项目B1-B5任一项所述的用于生产环己基苯的催化剂的制备方法,包含如下步骤:
(i)将分子筛原料经过铵离子交换、焙烧,得到H型分子筛;
(ii)将含金属M的溶液加入到步骤(1)的H型分子筛中,经干燥和还原,制得催化剂前驱体;
(iii)将催化剂前驱体、烷基化试剂与溶剂混合反应,经过滤、洗涤和干燥,制得所述催化剂。
B7、根据项目B6所述的制备方法,其特征在于,在步骤(i)中,含金属M的溶液的浓度为2-50g/L。
B8、根据项目B6所述的制备方法,其特征在于,在步骤(ii)中,所述烷基化试剂选自甲基三甲氧基硅烷、二甲基二甲氧基硅烷、乙基三甲氧基硅烷、二乙基二甲氧基硅烷、丙基三甲氧基硅烷、异丙基三甲氧基硅烷中的一种或几种,优选为二甲基二甲氧基硅烷、二乙基二甲氧基硅烷、异丙基三甲氧基硅烷中的一种或几种;所述溶剂为乙醇或甲苯中的至少一种。
B9、根据项目B6所述的制备方法,其特征在于,在步骤(iii)中,所加入的催化剂前驱体、烷基化试剂和溶剂的质量比为1∶(0.05-0.40)∶(5-50)。
B10、项目B1-B5任一项所述的催化剂用于苯加氢一步法制环己基 苯的方法。
C1、一种苯加氢一步法制环己基苯的方法,包括原料苯和催化剂接触反应,以氢气为氢源制得环己基苯;所述催化剂包括分子筛、活性金属M和烃基改性基团;
其中,活性金属M选自钌、铂、钯、铜和镍中的一种或几种;
其中,所述烃基改性基团选自苯基、苯甲基、苯乙基中的至少一种;
其中,所述催化剂的总酸量为400-1500μmol·g -1,所述催化剂的外表面相对酸当量为15%-35%。
C2、根据项目C1所述的方法,其特征在于,所述金属M优选为钌或/和钯金属元素。
C3、根据项目C1所述的方法,其特征在于,所述催化剂中,以催化剂的质量为基准,烃基改性基团的质量含量为2%-20%。
C4、根据项目C1所述的方法,其特征在于,所述催化剂中分子筛选自MWW、FAU、MOR、BEA、ATS分子筛中的至少一种;所述催化剂中分子筛占催化剂质量的80%-95%,硅铝摩尔比为2-50,优选为4-40。
C5、根据项目C1所述的方法,其特征在于,所述催化剂的比表面积为385-500m 2/g,优选410-490m 2/g;所述催化剂的总孔容不低于0.18cm 3/g,优选为0.18-1.0cm 3/g。
C6、根据项目C1所述的方法,其特征在于,所述催化剂的制备方法,包含如下步骤:
(A)将含金属M的溶液与H型分子筛混合,经干燥和还原,制得催化剂前驱体;
(B)将催化剂前驱体、芳基化试剂与溶剂混合反应,经过滤、洗涤和干燥,制得所述催化剂。
C7、根据项目C6所述的方法,其特征在于,在步骤(A)中,含金属M的溶液的浓度为1.5-45g/L。
C8、根据项目C6所述的方法,其特征在于,在步骤(B)中,所述芳基化试剂选自、苯基三甲氧基硅烷、甲苯基三甲氧基硅烷、苯基硅烷三醇、甲苯基硅烷三醇、二苯基硅烷二醇中的一种或几种;所述溶剂为乙醇或甲苯中的至少一种。
C9、根据项目C6所述的方法,其特征在于,在步骤(B)中,所加入的催化剂前驱体、芳基化试剂和溶剂的质量比为1∶(0.06-0.45)∶(6-55)。
C10、根据项目C1所述的方法,其特征在于,所述反应中,原料苯与催化剂的质量比为8-40,反应温度为100-220℃,反应时间为2-8小时,氢气压力为0.8-2.5MPa。
实施例
下面通过实施例进一步详细地说明本申请的技术方案,但本申请的保护范围并不限于这些实施例。
以下实施例和对比例中,如无明确说明,所用试剂和原料均为市售产品,纯度为分析纯。
以下实施例和对比例中未注明具体条件的实验方法,按照常规方式和条件,或按照商品说明书选择。
在本申请中,包括在以下的实施例和对比例中,样品的结构是由X-射线衍射谱图(XRD)确定的,而XRD谱图由X-射线粉末衍射仪测定,所用X-射线粉末衍射仪的型号为Panalytical X PERPRO型X-射线粉末衍射仪,采用如下条件分析样品的物相:CuKα射线源
Figure PCTCN2022127278-appb-000002
镍滤光片,2θ扫描范围2-50°,操作电压40kV,电流40mA,扫描速率10°/min。
在本申请中,包括在以下的实施例和对比例中,所用扫描电子显微镜(SEM)的型号为S-4800II型场发射扫描电镜。样品的晶体粒径的测量方法是:使用该扫描电镜在1万倍的放大倍率下观测分子筛,随机选取一个观测视野,计算该观测视野中所有晶体的粒径之和的平均值,重复该操作共计10次。以10次的平均值之和的平均值作为晶体粒径。
在本申请中,包括在以下的实施例和对比例中,样品尺寸的测量方法是:使用透射电子显微镜(荷兰FEI公司G2F30透射电子显微镜,工作电压300kV)在10万倍的放大倍率下观测分子筛,随机选取一个观测视野,计算该观测视野中所有颗粒的大小之和的平均值,重复该操作共计10次,以10次的平均值之和的平均值作为颗粒的尺寸。
在本申请中,包括在以下的实施例和对比例中,采用吡啶吸附红外方法(Nicolet Model 710光谱仪)对样品的酸量、酸种类进行测定。具体操作步骤如下:a、样品预处理。将样品(约30mg)压片成型为直径 13mm的薄圆片,并装入红外样品槽中。之后,样品在真空池条件和400℃下预处理1h。待样品槽冷却至室温,扫描样品红外数据作为背景。b、吡啶吸附。在室温下和真空环境下,将吡啶蒸气通入至原位直至吸附达到平衡,吸附时间为1h。c、吡啶脱附。吸附结束后,在100℃下抽真空至内部压力不再变化,脱附时间为40min,并分别扫描记录红外吸收光谱。吡啶吸附前后的差谱即为所得的吡啶吸附-红外吸收光谱图。根据谱图对样品的酸量进行计算:
Figure PCTCN2022127278-appb-000003
其中r和w为催化剂薄圆片的直径(cm)和质量(g),A为根据扫描吡啶吸附-红外吸收光谱图在指定波数峰的吸光度积分数值。IMEC为积分摩尔消光系数,IMEC L为2.22,IMEC B为1.67。1545cm -1附近的峰为B酸,1455cm -1附近的峰为L酸。
在本申请中,包括在以下的实施例和对比例中,对催化剂外表面相对酸当量的表征采用“探针反应”三异丙苯裂解加以测定,其具体操作为制取50mg催化剂与100mg石英砂混合的色谱柱样品,随后在250℃下通过气相色谱(GC,Agilent 7890B)每次注入1μL三异丙苯液体,随后根据色谱中环己烯的产率,对比未烃基化处理的“金属-分子筛”结构,评价催化剂外表面相对酸量及活性,具体计算方法如下:
外表面相对酸当量=(烃基化组丙烯产量/(3×烃基化组三异丙苯加入量))/(未烃基化组丙烯产量/(3×未烃基化组三异丙苯加入量))×100%。
在本申请中,包括在以下的实施例和对比例中,样品的总孔容、微孔孔容、总比表面积和外比表面积是通过氮气物理吸脱附法(BET法)测得的:利用物理吸附仪(如Micromeretic ASAP2020M物理吸附仪)测得分子筛的氮气物理吸脱附等温线,再经BET方程式和t-plot方程式进行计算。
在本申请中,包括在以下的实施例和对比例中,所用的电感耦合等离子体原子发射光谱(ICP)型号为Varian 725-ES,将分析样品用氢氟酸溶解检测得到元素的含量(以摩尔计),包括样品中加氢活性金属(下文简称“金属M”),而后通过换算得到质量含量。
在本申请中,包括在以下的实施例和对比例中,根据X射线光电 子能谱分析(XPS)测试催化剂表面元素状态来测定催化剂外表面金属M占外表面元素的质量含量。所用X射线光电子能谱仪的型号为Thermo公司的ESCA LAB-250型X射线光电子能谱仪,其中采用Al Ka=1486.6eV为X射线源,工作电压为12KV,工作电流为20mA,检测厚度为3nm,采用C1s=284.6eV为内标校正所测元素信号。
在本申请中,包括在以下的实施例和对比例中,催化剂外表面的金属M分布系数由以下公式计算:
金属M分布系数=(催化剂外表面金属M占外表面元素的质量含量*催化剂外比表面积)/(催化剂中金属M的总质量含量*催化剂比表面积)*100%。
在本申请中,包括在以下的实施例和对比例中,金属还原温度采用H 2-TPR测试(氢气程序升温还原)得到。TPR测试仪为Altamira Instruments公司的AMI-3300型号的程序升温吸附仪,测试方法为装入样品后在300℃氩气吹扫1h,随后降温至50℃,随后通入总流量30mL/min的10%H 2-Ar混合气体,之后以10℃/min条件升温至900℃,测得H 2消耗曲线,将曲线峰值温度记录为样品还原温度。
在本申请中,包括在以下的实施例和对比例中,采用热重-质谱联用分析(TG-MS)下质量流失比例的方式测定烃基改性组分的质量含量,同时用质谱法确认改性烃基的种类。其中所分析仪为Netzsch公司的STA449F3-QMS403型号。以10℃/min的升温速率测定样品在25-1000℃下热重结果。
在本申请中,包括在以下的实施例和对比例中,采用傅立叶红外光谱仪(FTIR)测定催化剂的红外吸收谱图。其中所分析仪为Thermofisher Scientific公司的Nicolet 5700型号。测试范围为400-4000cm -1波数下的吸收谱图。
在本申请中,包括在以下的实施例和对比例中,反应产物环己基苯用气质联用(GC-MS)分析定性,用气相色谱(GC)分析产物环己基苯收率和反应底物的转化率。气质联用仪为美国安捷伦公司的Agilent 7890A,色谱柱为HP-5非极性毛细管柱(30m,0.53mm),气相色谱仪为Agilent 7890B,检测器为氢焰离子化检测器(FID),色谱柱为SE-54毛细管柱(30m,0.53mm)。
产物环己基苯的收率与选择性计算公式为:
产物环己基苯的收率%=(反应生成的环己基苯摩尔量×2)/(反应底物苯的摩尔量)×100%。
产物环己基苯的选择性%=(反应生成的环己基苯摩尔量×2)/(反应的苯摩尔量)×100%。
相似地,在本申请中,包括在以下的实施例和对比例中,对于正癸烷加氢异构化反应,异构化产物的收率与选择性公式为:
异构化产物收率%=(反应生成的异构化产物摩尔量)/(反应底物正癸烷的摩尔量)×100%
异构化产物选择性%=(反应生成的异构化产物摩尔量)/(反应的正癸烷摩尔量)×100%。
制备例I-1
将4g去离子水、0.75g4-吡咯烷基吡啶、0.42g异丙醇铝、1.5g硅溶胶、0.5g氢氟酸,混合均匀得到组成为1SiO 2∶0.1Al 2O 3∶1F -∶29H 2O∶0.5OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2计)和水的摩尔配比为1∶5,随后于晶化釜中170℃条件下晶化15天。取出产物后去离子水洗涤3次,干燥后于550℃下焙烧6h得所需H型硅铝分子筛(具有ATS结构)。
取用3.2g/L的氯化钌溶液1.2mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在350℃、氢气流速10mL/min条件下还原3h,即制得所需催化剂。
催化剂的XRD谱图数据如表I-1所示,XRD谱图如图1所示,TEM照片和SEM照片分别如图2和图3所示。催化剂组成中,n(SiO 2)∶n(Al 2O 3)=10,Ru质量分数为0.3%,以“xM·ySiO 2·zAl 2O 3”表示催化剂化学组成,则x/y=0.0021,y/z=10。所得催化剂的性质列于表I-13中。
根据SEM图3,所述催化剂中,晶体具有长条状形貌,晶体的长度为0.4-1.5μm,长宽比为2-10。
表I-1制备例I-1所得催化剂的XRD谱图数据
Figure PCTCN2022127278-appb-000004
制备例I-2
将4g去离子水、0.75g4-吡咯烷基吡啶、0.42g异丙醇铝、1.5g硅溶胶、0.5g氢氟酸,混合均匀得到组成为1SiO 2∶0.1Al 2O 3∶1F -∶29H 2O∶0.5OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2为计)和水的摩尔配比为1∶5,随后于晶化釜中170℃条件下晶化15天。取出产物后去离子水洗涤3次,干燥后于550℃下焙烧6h得所需H型硅铝分子筛(具有ATS结构)。
取用3.2g/L的氯化钌溶液2.5mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在350℃、氢气流速10mL/min条件下还原3h,即制得所需催化剂。
催化剂的XRD谱图数据如表I-2所示,XRD谱图与图1相似。催化剂组成中n(SiO 2)∶n(Al 2O 3)=10,Ru质量分数为0.6%,以“xM·ySiO 2·zAl 2O 3”表示催化剂化学组成,则x/y=0.0041,y/z=10。所得催化剂的性质列于表I-13中。
催化剂的SEM与图3相似,所述催化剂中,晶体具有长条状形貌, 晶体的长度为0.4-1.5μm,长宽比为2-10。
表I-2制备例I-2所得催化剂的XRD谱图数据
Figure PCTCN2022127278-appb-000005
制备例I-3
将4g去离子水、0.75g4-吡咯烷基吡啶、0.42g异丙醇铝、1.5g硅溶胶、0.5g氢氟酸,混合均匀得到组成为1SiO 2∶0.1Al 2O 3∶1F -∶29H 2O∶0.5OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2为计)和水的摩尔配比为1∶5,随后于晶化釜中170℃条件下晶化15天。取出产物后去离子水洗涤3次,干燥后于550℃下焙烧6h得所需H型硅铝分子筛(具有ATS结构)。
取用3.2g/L的氯化钌溶液6mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在350℃、氢气流速10mL/min条件下还原3h,即制得所需催化剂。
催化剂的XRD谱图数据如表I-3所示,XRD谱图与图1相似。催化剂组成中n(SiO 2)∶n(Al 2O 3)=10,Ru质量分数为1.5%,以“xM·ySiO 2·zAl 2O 3”表示催化剂化学组成,则x/y=0.0104,y/z=10。所得 催化剂的性质列于表I-13中。
催化剂的SEM与图3相似,所述催化剂中,晶体具有长条状形貌,晶体的长度为0.4-1.5μm,长宽比为2-10。
表I-3制备例I-3所得催化剂的XRD谱图数据
Figure PCTCN2022127278-appb-000006
制备例I-4
将4g去离子水、1.1g4-吡咯烷基吡啶、0.42g异丙醇铝、1.5g硅溶胶、0.75g氢氟酸,混合均匀得到组成为1SiO 2∶0.1Al 2O 3∶1.5F -∶29H 2O∶0.75OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2为计)和水的摩尔配比为1∶4.5。随后于晶化釜中170℃条件下晶化15天。取出产物后去离子水洗涤3次,干燥后于550℃下焙烧6h得所需H型硅铝分子筛(具有ATS结构)。
取用3.2g/L的氯化钌溶液1.2mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在350℃、氢气流速10mL/min条件下还原3h,即制得所需催化剂。
催化剂的XRD谱图数据如表I-4所示,XRD谱图与图1相似。催 化剂组成中n(SiO 2)∶n(Al 2O 3)=10,Ru质量分数为0.3%,以“xM·ySiO 2·zAl 2O 3”表示催化剂化学组成,则x/y=0.0021,y/z=10。所得催化剂的性质列于表I-13中。
催化剂的SEM与图3相似,所述催化剂中,晶体具有长条状形貌,晶体的长度为0.4-2.0μm,长宽比为2-15。
表I-4制备例I-4所得催化剂的XRD谱图数据
Figure PCTCN2022127278-appb-000007
制备例I-5
将4g去离子水、1.5g4-吡咯烷基吡啶、0.42g异丙醇铝、1.5g硅溶胶、1g氢氟酸,混合均匀得到组成为1SiO 2∶0.1Al 2O 3∶2F -∶30H 2O∶1OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2为计)和水的摩尔配比为1∶4.5。随后于晶化釜中170℃条件下晶化15天。取出产物后去离子水洗涤3次,干燥后于550℃下焙烧6h得所需H型硅铝分子筛(具有ATS结构)。
取用3.2g/L的氯化钌溶液1.2mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在350℃、氢气流速10mL/min 条件下还原3h,即制得所需催化剂。
催化剂的XRD谱图数据如表I-5所示,XRD谱图与图1相似。催化剂组成中n(SiO 2)∶n(Al 2O 3)=10,Ru质量分数为0.3%,以“xM·ySiO 2·zAl 2O 3”表示催化剂化学组成,则x/y=0.0021,y/z=10。所得催化剂的性质列于表I-13中。
催化剂的SEM与图3相似,所述催化剂中,晶体具有长条状形貌,晶体的长度为0.5-2.5μm,长宽比为3-20。
表I-5制备例I-5所得催化剂的XRD谱图数据
Figure PCTCN2022127278-appb-000008
制备例I-6
将4g去离子水、0.75g4-吡咯烷基吡啶、0.42g异丙醇铝、1.5g硅溶胶、0.5g氢氟酸,混合均匀得到组成为1SiO 2∶0.1Al 2O 3∶1F -∶29H 2O∶0.5OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2为计)和水的摩尔配比为1∶5随后于晶化釜中170℃条件下晶化15天。取出产物后去离子水洗涤3次,干燥后于550℃下焙烧6h得所需H型硅铝分子筛(具有ATS结构)。
取用2.7g/L的氯化钯溶液1.2mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在350℃、氢气流速10mL/min条件下还原3h,即制得所需催化剂。
催化剂的XRD谱图数据如表I-6所示,XRD谱图与图1相似。催化剂组成中n(SiO 2)∶n(Al 2O 3)=10,Pd质量分数为0.3%,以“xM·ySiO 2·zAl 2O 3”表示催化剂化学组成,则x/y=0.0021,y/z=10。所得催化剂的性质列于表I-13中。
催化剂的SEM与图3相似,所述催化剂中,晶体具有长条状形貌,晶体的长度为0.4-1.5μm,长宽比为2-10。
表I-6制备例I-6所得催化剂的XRD谱图数据
Figure PCTCN2022127278-appb-000009
制备例I-7
将4g去离子水、0.75g4-吡咯烷基吡啶、0.21g异丙醇铝、1.5g硅溶胶、0.5g氢氟酸,混混合均匀得到组成为1SiO 2∶0.05Al 2O 3∶1F -∶29H 2O∶0.5OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2为计)和水的摩尔配比为1∶5。随后于晶化釜中170℃条件下晶化15天。取出产物 后去离子水洗涤3次,干燥后于550℃下焙烧6h得所需H型硅铝分子筛(具有ATS结构)。
取用3.2g/L的氯化钌溶液1.2mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在350℃、氢气流速10mL/min条件下还原3h,即制得所需催化剂。
催化剂的XRD谱图数据如表I-7所示,XRD谱图与图1相似。催化剂组成中n(SiO 2)∶n(Al 2O 3)=20,Ru质量分数为0.3%,以“xM·ySiO 2·zAl 2O 3”表示催化剂化学组成,则x/y=0.0021,y/z=20。所得催化剂的性质列于表I-13中。
催化剂的SEM与图3相似,所述催化剂中,晶体具有长条状形貌,晶体的长度为0.4-1.5μm,长宽比为2-12。
表I-7制备例I-7所得催化剂的XRD谱图数据
Figure PCTCN2022127278-appb-000010
制备例I-8
将4g去离子水、0.75g4-吡咯烷基吡啶、0.08g异丙醇铝、1.5g硅溶胶、0.5g氢氟酸,混合均匀得到组成为1SiO 2∶0.02Al 2O 3∶1F -∶29H 2O∶0.5OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2为计)和水的 摩尔配比为1∶5。随后于晶化釜中170℃条件下晶化15天。取出产物后去离子水洗涤3次,干燥后于550℃下焙烧6h得所需H型硅铝分子筛(具有ATS结构)。
取用3.2g/L的氯化钌溶液1.2mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在350℃、氢气流速10mL/min条件下还原3h,即制得所需催化剂。
催化剂的XRD谱图数据如表I-8所示,XRD谱图与图1相似。催化剂组成中n(SiO 2)∶n(Al 2O 3)=50,Ru质量分数为0.3%,以“xM·ySiO 2·zAl 2O 3”表示催化剂化学组成,则x/y=0.0021,y/z=50。所得催化剂的性质列于表I-13中。
催化剂的SEM与图3相似,所述催化剂中,晶体具有长条状形貌,晶体的长度为0.4-1.5μm,长宽比为2-12。
表I-8制备例I-8所得催化剂的XRD谱图数据
Figure PCTCN2022127278-appb-000011
制备例I-9
将4g去离子水、0.75g4-吡咯烷基吡啶、0.42g异丙醇铝、1.5g硅溶胶、0.5g氢氟酸,混合均匀得到组成为1SiO 2∶0.1Al 2O 3∶1F -∶29H 2O∶ 0.5OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2计)和水的摩尔配比为1∶5,随后于晶化釜中170℃条件下晶化15天。取出产物后去离子水洗涤3次,干燥后于550℃下焙烧6h得所需H型硅铝分子筛(具有ATS结构)。
取用3.2g/L的氯化钌溶液1.2mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气流速10mL/min条件下还原3h,得到催化剂前驱体。取用0.3g二甲基二甲氧基硅烷与1g催化剂前驱体、及20mL乙醇溶剂混合,于75℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。所得催化剂的性质列于表I-13中。
催化剂的XRD谱图数据如表I-9所示,XRD谱图与图1相似。催化剂的SEM与图3相似,所述催化剂中,晶体具有长条状形貌,晶体的长度为0.4-1.5μm,长宽比为2-10。
表I-9制备例I-9所得催化剂的XRD谱图数据
Figure PCTCN2022127278-appb-000012
制备例I-10
将4g去离子水、1.5g4-吡咯烷基吡啶、0.42g异丙醇铝、1.5g硅溶胶、1g氢氟酸,混合均匀得到组成为1SiO 2∶0.1Al 2O 3∶2F -∶30H 2O∶1OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2计)和水的摩尔配比为1∶4.5。随后于晶化釜中170℃条件下晶化15天。取出产物后去离子水洗涤3次,干燥后于550℃下焙烧6h得所需H型硅铝分子筛(具有ATS结构)。
取用3.2g/L的氯化钌溶液2.5mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气流速10mL/min条件下还原3h,得到催化剂前驱体。取用0.3g苯基三甲氧基硅烷与1g催化剂前驱体、及20mL乙醇溶剂混合,于75℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。所得催化剂的性质列于表I-13中。
催化剂的XRD谱图数据如表I-10所示,XRD谱图与图1相似。催化剂的SEM与图3相似,所述催化剂中,晶体具有长条状形貌,晶体的长度为0.5-2.5μm,长宽比为3-20。
表I-10制备例I-10所得催化剂的XRD谱图数据
Figure PCTCN2022127278-appb-000013
制备例I-11
将4g去离子水、0.75g4-吡咯烷基吡啶、0.42g异丙醇铝、1.5g硅溶胶、0.5g氢氟酸,混合均匀得到组成为1SiO 2∶0.1Al 2O 3∶1F -∶29H 2O∶0.5OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2计)和水的摩尔配比为1∶5随后于晶化釜中170℃条件下晶化15天。取出产物后去离子水洗涤3次,干燥后于550℃下焙烧6h得H型硅铝分子筛(具有ATS结构)。
取用2.7g/L的氯化钯溶液1.2mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气流速10mL/min条件下还原3h,得到催化剂前驱体。取用0.3g苯基三甲氧基硅烷与1g催化剂前驱体、及20mL乙醇溶剂混合,于75℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。所得催化剂的性质列于表I-13中。
催化剂的XRD谱图数据如表I-11所示,XRD谱图与图1相似。催化剂的SEM与图3相似,所述催化剂中,晶体具有长条状形貌,晶体的长度为0.4-1.5μm,长宽比为2-10。
表I-11制备例I-11所得催化剂的XRD谱图数据
Figure PCTCN2022127278-appb-000014
Figure PCTCN2022127278-appb-000015
制备例I-12
将4g去离子水、0.75g4-吡咯烷基吡啶、0.21g异丙醇铝、1.5g硅溶胶、0.5g氢氟酸,混混合均匀得到组成为1SiO 2∶0.05Al 2O 3∶1F -∶29H 2O∶0.5OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2计)和水的摩尔配比为1∶5。随后于晶化釜中170℃条件下晶化15天。取出产物后去离子水洗涤3次,干燥后于550℃下焙烧6h得所需H型硅铝分子筛(具有ATS结构)。
取用3.2g/L的氯化钌溶液1.2mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气流速10mL/min条件下还原3h,得到催化剂前驱体。取用0.3g苯基三甲氧基硅烷与1g催化剂前驱体、及20mL乙醇溶剂混合,于75℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。所得催化剂的性质列于表I-13中。
催化剂的XRD谱图数据如表I-12所示,XRD谱图与图1相似。催化剂的SEM与图3相似,所述催化剂中,晶体具有长条状形貌,晶体的长度为0.4-1.5μm,长宽比为2-12。
表I-12制备例I-12所得催化剂的XRD谱图数据
Figure PCTCN2022127278-appb-000016
Figure PCTCN2022127278-appb-000017
实施例I-1
取0.25g制备例I-1中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-2
取0.25g制备例I-1中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.6MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-3
取0.25g制备例I-1中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到2.0MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-4
取0.25g制备例I-1中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至180℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-5
取0.25g制备例I-1中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至200℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-6
取0.25g制备例I-2中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至 150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-7
取0.25g制备例I-3中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-8
取0.25g制备例I-4中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-9
取0.25g制备例I-5中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-10
取0.25g制备例I-6中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-11
取0.25g制备例I-7中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-12
取0.25g制备例I-9中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-13
取0.25g制备例I-9中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.6MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-14
取0.25g制备例I-9中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到2.0MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-15
取0.25g制备例I-9中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至180℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-16
取0.25g制备例I-9中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至200℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-17
取0.25g制备例I-10中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-18
取0.25g制备例I-11中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
实施例I-19
取0.25g制备例I-12中合成的催化剂加入高压反应釜,随后向釜 内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表I-14中。
表I-13各制备例所得催化剂的物化性质
Figure PCTCN2022127278-appb-000018
表I-13(续)各制备例所得催化剂的物化性质
Figure PCTCN2022127278-appb-000019
Figure PCTCN2022127278-appb-000020
表I-14各实施例的催化评价条件和结果
Figure PCTCN2022127278-appb-000021
Figure PCTCN2022127278-appb-000022
对比例I-1
1.催化剂制备:
参照制备例I-1制备催化剂,区别在于将所述H型硅铝分子筛改为n(Si):n(Al)=10的H型Y分子筛(具有FAU结构)。
取用3.2g/L的氯化钌溶液1.2mL,滴加于1g上述分子筛上。在80℃干燥2h后,于固定床反应器在350℃、氢气流速10mL/min条件下还原3h,即制得所需催化剂。
2.催化剂评价:
催化剂评价方法见实施例I-1,催化剂的组成和评价结果列于表I-15。
对比例I-2
1.催化剂制备:
参照制备例I-1制备催化剂,区别在于将所述H型硅铝分子筛改为n(Si):n(Al)=20的H型Y分子筛(具有FAU结构)。
取用3.2g/L的氯化钌溶液1.2mL,滴加于1g上述分子筛上。在80℃干燥2h后,于固定床反应器在350℃、氢气流速10mL/min条件下还原3h,即制得所需催化剂。
2.催化剂评价:
催化剂评价方法见实施例I-1,催化剂的组成和评价结果列于表I-15。
对比例I-3
1.催化剂制备:
参照制备例I-1制备催化剂,区别在于将所述H型硅铝分子筛改为n(Si):n(Al)=20的H型MCM-22分子筛(具有MWW结构)。
取用3.2g/L的氯化钌溶液1.2mL,滴加于1g上述分子筛上。在80℃干燥2h后,于固定床反应器在350℃、氢气流速10mL/min条件下还原3h,即制得所需催化剂。
2.催化剂评价:
催化剂评价方法见实施例I-1,催化剂的组成和评价结果列于表I-15。
对比例I-4
1.催化剂制备:
参照制备例I-1制备催化剂,区别在于将所述H型硅铝分子筛改为n(Si):n(Al)=30的H型MCM-22分子筛(具有MWW结构)。
取用3.2g/L的氯化钌溶液1.2mL,滴加于1g上述分子筛上。在80℃干燥2h后,于固定床反应器在350℃、氢气流速10mL/min条件下还原3h,即制得所需催化剂。
2.催化剂评价:
催化剂评价方法见实施例I-1,催化剂的组成和评价结果列于表I-15。
表I-15对比例I-1至I-4的催化剂组成和评价结果
Figure PCTCN2022127278-appb-000023
实施例I-20
将制备例I-1制备得到的催化剂经洗涤后烘干后投入下一个反应,共循环6次反应。其中,催化剂评价保留实施例I-1中的反应条件,即向高压反应釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。催化剂评价结果列于表I-16。
表I-16实施例I-20的催化剂评价结果
循环套用次数 环己基苯的收率(%) 环己基苯的选择性(%)
1 59 93.7
2 59 93.2
3 60 93.4
4 59 93.8
5 59 92.9
6 59 93.5
实施例I-21
将制备例I-9制备得到的催化剂经洗涤后烘干后投入下一个反应,共循环6次反应。其中,催化剂评价保留实施例I-12中的反应条件,即向高压反应釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。催化剂评价结果列于表I-17。
表I-17实施例I-21的催化剂评价结果
循环套用次数 环己基苯的收率(%) 环己基苯的选择性(%)
1 60 94.7
2 60 94.3
3 59 93.8
4 60 94.5
5 59 93.9
6 60 94.4
制备例II-1
将硅铝摩尔比为25∶1的Na型MCM-22分子筛(具有MWW结构)与0.2mol/L的NH 4NO 3溶液(质量比1∶20)在45℃下进行铵离子交换2小时,然后离心洗涤,重复铵离子交换两次后得到的样品在100℃下过夜烘干,在550℃空气中焙烧6小时制得H型硅铝分子筛。
取用3.2g/L的氯化钌溶液(溶液浓度以钌元素计,以下同)1.5mL,滴加于1g所述H型硅铝分子筛上,在80℃干燥2h后得到负载钌的分子筛。对该负载钌的分子筛进行H 2-TPR测试,得到其还原温度为451℃。
取用0.2g甲基三甲氧基硅烷与该负载钌的分子筛、及10mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到经烃基化处理的分子筛。对所得经烃基化处理的分子筛进行H 2-TPR测试,得到其还原温度为476℃。该结果表明所述经烃基化处理的分子筛上负载的活性金属M主要分布于分子筛孔道。
随后将所述经烃基化处理的分子筛于固定床反应器在450℃、氢气体积空速为50h -1条件下还原3h,制得目标催化剂。
所得催化剂的XRD谱图如图4所示,根据XRD可知,催化剂整体上保留MWW分子筛结构不变。所得催化剂的红外吸收图谱如图5所示,可见波数2950cm -1附近出现Si-C吸收峰。此外,通过TG-MS测试确定烃基为甲基,含量如表II-1中所示。催化剂比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表II-1所示。
制备例II-2
将硅铝摩尔比为25∶1的Na型MCM-22分子筛(具有MWW结构)与0.2mol/L的NH 4NO 3溶液(质量比1∶20)在45℃下进行铵离子交换2小时,然后离心洗涤,重复铵离子交换两次后得到的样品在100℃下过夜烘干,在550℃空气中焙烧6小时制得H型硅铝分子筛。
取用3.2g/L的氯化钌溶液1.5mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气体积空速为50h -1条件下还原3h,得到催化剂前驱体。取用0.3g二甲基二甲氧基硅烷与1g催化剂前驱体、及15mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。
所得催化剂XRD谱图同图1。催化剂比表面积,孔容,酸性性质(包含总酸量和外表面酸量),金属M含量及外表面金属M含量如表II-1所示。
制备例II-3
将硅铝摩尔比为10∶1的Na型Y分子筛(具有FAU结构)与0.2mol/L的NH 4NO 3溶液(质量比1∶20)在45℃下进行铵离子交换2小时,然后离心洗涤,重复铵离子交换两次后得到的样品在100℃下过夜烘干,在550℃空气中焙烧6小时制得H型硅铝分子筛。
取用3.2g/L的氯化钌溶液2.5mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气体积空速为100h -1条件下还原3h,得到催化剂前驱体。取用0.3g乙基三甲氧基硅烷与1g催化剂前驱体、及15mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。
所得催化剂的XRD谱图如图6所示,所述催化剂整体上保留FAU分子筛结构不变。催化剂的比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表II-1所示。
制备例II-4
将硅铝摩尔比为5∶1的Na型Y分子筛(具有FAU结构)与0.2mol/L的NH 4NO 3溶液(质量比1∶20)在45℃下进行铵离子交换2小时,然后离心洗涤,重复铵离子交换两次后得到的样品在100℃下过夜烘干,在550℃空气中焙烧6小时制得H型硅铝分子筛。
取用2.6g/L的氯化钯溶液(溶液浓度以钯元素计,以下同)1.5mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气体积空速为100h -1条件下还原3h,得到催化剂前驱体。取用0.2g异丙基三甲氧基硅烷与1g催化剂前驱体、及10mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。
所得催化剂XRD整体上保留FAU分子筛结构不变。催化剂的比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表II-1所示。
制备例II-5
将硅铝摩尔比为5∶1的Na型Y分子筛(具有FAU结构)与0.2mol/L的NH 4NO 3溶液(质量比1∶20)在45℃下进行铵离子交换2小时,然后离心洗涤,重复铵离子交换两次后得到的样品在100℃下过夜烘干,在550℃空气中焙烧6小时制得H型硅铝分子筛。
取用硝酸镍(6.0g/L)-硝酸铜混合(3.0g/L)溶液(溶液浓度以金属元素计,以下同)1.5mL,滴加于1g所述H型硅铝分子筛上。80℃干燥2h后,于固定床反应器在450℃、氢气体积空速为100h -1条件下还原3h,得到催化剂前驱体。取用0.2g异丙基三甲氧基硅烷与1g催化剂前驱体、及10mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。
所得催化剂XRD整体上保留FAU分子筛结构不变。催化剂的比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表II-1所示。
制备例II-6
将4g去离子水、0.75g 4-吡咯烷基吡啶、0.42g异丙醇铝、1.5g硅溶胶、0.5g氢氟酸,混合均匀得到组成为1SiO 2∶0.1Al 2O 3∶1F -∶29H 2O∶0.5OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2计)和水的摩尔配比为1∶5,随后于晶化釜中170℃条件下晶化15天。取出产物后去离子水洗涤3次,干燥后于550℃下焙烧6h得到H型ATS分子筛。
取用3.2g/L的氯化钌溶液1.5mL,滴加于1g所得H型ATS分子筛前驱体上。在80℃干燥2h后,于固定床反应器在450℃、氢气体积空速为50h -1条件下还原3h,得到催化剂前驱体。取用0.2g异丙基三甲氧基硅烷与1g催化剂前驱体、及10mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。
所得催化剂XRD整体上保留ATS分子筛结构不变。催化剂的比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表II-1所示。
制备例II-7
参照制备例II-1制备催化剂,区别在于将原料改为硅铝摩尔比为50∶1的Na型MCM-22分子筛,其余步骤保持不变。催化剂性质见表II-1。
所得催化剂XRD谱图与图1类似。催化剂比表面积,孔容,酸性性质(包含总酸量和外表面酸量),金属M含量及外表面金属M含量如表II-1所示。
实施例II-1至II-4
取0.25g制备例II-1中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气反应4h后结束,具体评价条件和评价数据参见表II-2。
实施例II-5
取0.25g制备例II-2中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表2中。
实施例II-6
取0.25g制备例II-3中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表II-2中。
实施例II-7
取0.25g制备例II-4中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表II-2中。
实施例II-8
取0.25g制备例II-5中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表II-2中。
实施例II-9
取0.25g制备例II-6中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表II-2中。
实施例II-10
取0.25g制备例II-7中合成的催化剂加入高压反应釜,随后向釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。评价数据总结于表II-2中。
对比例II-1
1.催化剂制备:
参照制备例II-1制备催化剂,区别在于省去用甲基三甲氧基硅烷处理步骤。所得催化剂性质见表II-1。
2.催化剂评价:
催化剂评价方法同实施例II-5,催化剂评价结果列于表II-2。
对比例II-2
1.催化剂制备:
参照制备例II-1制备催化剂,区别在于将加入的同浓度氯化钌溶液的量提升至8mL,即仅提升催化剂中金属含量。催化剂性质见表II-1。
2.催化剂评价:
催化剂评价方法同实施例II-5,催化剂评价结果列于表II-2。
对比例II-3
1.催化剂制备:
参照制备例II-2制备催化剂,区别在于将加入“0.3g二甲基二甲氧基硅烷”提升至加入1.0g二甲基二甲氧基硅烷,其余步骤保持不变。催化剂性质见表II-1。
2.催化剂评价:
催化剂评价方法同实施例II-5,催化剂评价结果列于表II-2。
对比例II-4
参照实施例II-5的方法对制备例II-1所得的催化剂进行评价,其中将反应条件中氢气分压改为4.0MPa,其余操作保持不变。催化剂评价结果列于表II-2。
表II-1各制备例及对比例所得催化剂的物化性质
Figure PCTCN2022127278-appb-000024
Figure PCTCN2022127278-appb-000025
表II-1(续)各制备例及对比例所得催化剂的物化性质
Figure PCTCN2022127278-appb-000026
表II-2各实施例及对比例的催化评价条件和结果
Figure PCTCN2022127278-appb-000027
Figure PCTCN2022127278-appb-000028
实施例II-10
将制备例II-1制备得到的催化剂经洗涤后烘干后投入下一个反应,共循环6次反应。其中,催化剂评价为向高压反应釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。催化剂评价结果如表II-3所示。
表II-3实施例II-10的催化剂评价结果
循环套用次数 环己基苯的收率(%) 环己基苯的选择性(%)
1 57 84.1
2 56 84.7
3 57 84.3
4 57 83.8
5 55 84.2
6 57 84.4
制备例III-1
(1)H型MWW分子筛的制备
将硅铝摩尔比为20∶1的MCM-22分子筛(具有MWW结构)与0.2mol/L的NH 4NO 3溶液(质量比1∶20)在45℃下进行铵离子交换2小时,然后离心洗涤,重复铵离子交换两次后得到的样品在100℃下过夜烘干,在550℃空气中焙烧6小时制得H型硅铝分子筛。
(2)催化剂制备
取用8g/L的氯化钌溶液0.5mL,滴加于1g硅铝比20∶1的所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在500℃、氢气体积空速80h -1条件下还原2h,得到催化剂前驱体。取用0.3g苯基三甲氧基硅烷与1g催化剂前驱体、及20mL乙醇溶剂混合,于75℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。
所得催化剂XRD谱图如图7所示,所述催化剂整体上保留MWW分子筛结构不变。催化剂比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表III-1所示。
制备例III-2
(1)H型MWW分子筛的制备
制备过程同制备例III-1,区别在于选用硅铝摩尔比为25∶1的Na型MCM-22分子筛。
(2)催化剂的制备
取用8g/L的氯化钌溶液lmL,滴加于1g硅铝比25∶1的H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在500℃、氢气体积空速80h -1条件下还原3h,得到催化剂前驱体。取用0.2g甲苯基三甲氧基硅烷与1g催化剂前驱体、及20mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。
所得催化剂XRD谱图同图7。催化剂比表面积,孔容,酸性性质(包含总酸量和外表面酸量),金属M含量及外表面金属M含量如表III-1所示。
制备例III-3
(1)H型MOR分子筛的制备
制备过程同制备例III-1,区别在于选用硅铝摩尔比为10∶1的Na型丝光沸石(具有MOR结构)。
(2)催化剂的制备
取用8g/L的氯化钌溶液0.5mL,滴加于1g硅铝比10∶1的H型MOR分子筛上。在80℃干燥2h后于固定床反应器在500℃、氢气体积空速150h -1条件下还原3h,得到催化剂前驱体。取用0.3g苯基硅烷三醇与1g催化剂前驱体、及30mL甲苯溶剂混合,于110℃回流24h后,用 水离心,洗涤,在80℃下干燥12h,得到所述催化剂。
所得催化剂整体上保留MOR分子筛结构不变。催化剂的比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表III-1所示。
制备例III-4
(1)H型MOR分子筛的制备
制备过程同制备例III-1,区别在于选用硅铝摩尔比为15∶1的Na型丝光沸石(具有MOR结构)
(2)催化剂的制备
取用8g/L的氯化钯溶液0.5mL,滴加于1g硅铝比15∶1的H型MOR分子筛上。在80℃干燥2h后,于固定床反应器在500℃、氢气体积空速80h -1条件下还原3h,得到催化剂前驱体。取用0.2g二苯基硅烷二醇与1g催化剂前驱体、及20mL乙醇溶剂混合,于75℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。
所得催化剂整体上保留MOR分子筛结构不变。催化剂的比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表III-1所示。
制备例III-5
将4g去离子水、0.75g 4-吡咯烷基吡啶、0.42g异丙醇铝、1.5g硅溶胶、0.5g氢氟酸,混合均匀得到组成为1SiO 2∶0.1Al 2O 3∶1F -∶29H 2O∶0.5OSDA的组分,随后于80℃敞口加热预处理后,得到块状混合物,所述原料混合物经过加热预处理后,晶化时硅源(以SiO 2计)和水的摩尔配比为1∶5,随后于晶化釜中170℃条件下晶化15天。取出产物后去离子水洗涤3次,干燥后于550℃下焙烧6h得到H型ATS分子筛。
取用8g/L的氯化钌溶液0.5mL,滴加于1g所述H型ATS分子筛上。在80℃干燥2h后,于固定床反应器在500℃、氢气体积空速80h -1条件下还原3h,得到催化剂前驱体。取用0.2g苯基三甲氧基硅烷与1g催化剂前驱体、及10mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。
所得催化剂整体上保留ATS分子筛结构不变。催化剂的比表面积, 孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表III-1所示。
制备例III-6
参照制备例III-1制备催化剂,区别在于将原料改为硅铝摩尔比为50∶1的Na型MCM-22分子筛(具有MWW结构),其余步骤保持不变。
所得催化剂的XRD谱图同图7。催化剂比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表III-1所示。
实施例III-1至III-3
取0.25g制备例III-1中合成的催化剂加入高压反应釜,随后向釜内加入10g苯,并充入氢气反应4h后结束,具体评价条件和评价数据参见表III-2。
实施例III-4
取0.25g制备例III-2中合成的催化剂加入高压反应釜,随后向釜内加入10g苯,并充入氢气使体系压力达到1.0MPa。随后将体系升温至180℃,至反应4h后结束。评价数据总结于表III-2中。
实施例III-5
取0.25g制备例III-3中合成的催化剂加入高压反应釜,随后向釜内加入10g苯,并充入氢气使体系压力达到1.0MPa。随后将体系升温至180℃,至反应4h后结束。评价数据总结于表III-2中。
实施例III-6
取0.25g制备例III-4中合成的催化剂加入高压反应釜,随后向釜内加入10g苯,并充入氢气使体系压力达到1.0MPa。随后将体系升温至180℃,至反应4h后结束。评价数据总结于表III-2中。
实施例III-7
取0.25g制备例III-5中合成的催化剂加入高压反应釜,随后向釜内加入10g苯,并充入氢气使体系压力达到1.0MPa。随后将体系升温至180℃,至反应4h后结束。评价数据总结于表III-2中。
实施例III-8
取0.25g制备例III-6中合成的催化剂加入高压反应釜,随后向釜内加入10g苯,并充入氢气使体系压力达到1.0MPa。随后将体系升温至180℃,至反应4h后结束。评价数据总结于表III-2中。
对比例III-1
1.催化剂制备:
参照制备例III-1制备催化剂,区别在于省去用苯基三甲氧基硅烷处理部分。
2.催化剂评价:
催化剂评价方法同实施例III-4,催化剂评价结果列于表III-2。
对比例III-2
1.催化剂制备:
参照制备例III-1制备催化剂,区别在于将加入的同浓度氯化钌溶液的用量提升至8mL,即仅提升催化剂中金属含量。
2.催化剂评价:
催化剂评价方法同实施例III-4,催化剂评价结果列于表III-2。
对比例III-3
1.催化剂制备:
参照制备例III-1制备催化剂,区别在于将芳基化步骤条件由加入“0.3g苯基三甲氧基硅烷”改为加入0.8g苯基三甲氧基硅烷。
2.催化剂评价:
催化剂评价方法同实施例III-4,催化剂评价结果列于表III-2。
对比例III-4
按照实施例III-4的方法对制备例III-1所得的催化剂进行评价,其 中将反应条件中氢气分压改为4.0MPa,其余操作保持不变。催化剂评价结果列于表III-2。
表III-1各制备例和对比例所得的催化剂物化性质
Figure PCTCN2022127278-appb-000029
表III-1(续)各制备例和对比例所得的催化剂物化性质
Figure PCTCN2022127278-appb-000030
表III-2各实施例及对比例的催化剂评价条件和结果
Figure PCTCN2022127278-appb-000031
实施例III-9
将制备例III-1制备得到的催化剂经洗涤后烘干后投入下一个反应,共循环6次反应。其中,催化剂评价为向高压反应釜内加入8g苯,并充入氢气使体系压力达到1.2MPa。随后将体系升温至150℃,至反应4h后结束。
表III-3实施例III-9的催化剂评价结果
循环套用次数 环己基苯的收率(%) 环己基苯的选择性(%)
1 58 87.8
2 57 87.2
3 57 87.0
4 58 87.7
5 56 87.1
6 58 87.0
制备例IV-1
将硅铝摩尔比为10∶1的Na型Y分子筛(具有FAU结构)与0.2mol/L的NH 4NO 3溶液(质量比1∶20)在45℃下进行铵离子交换2小时,然后离心洗涤,重复铵离子交换两次后得到的样品在100℃下过夜烘干,在550℃空气中焙烧6小时制得H型硅铝分子筛。
取用3.0g/L的氯化钯溶液4.0mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气体积空速为100h-1条件下还原3h,得到催化剂前驱体。取用0.2g甲基三甲氧基硅烷与1g催化剂前驱体、及15mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所需催化剂。
所得催化剂的XRD谱图同图6。催化剂的比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表IV-1所示。
制备例IV-2
将硅铝摩尔比为10∶1的Na型Y分子筛(具有FAU结构)与0.2mol/L的NH 4NO 3溶液(质量比1∶20)在45℃下进行铵离子交换2小时, 然后离心洗涤,重复铵离子交换两次后得到的样品在100℃下过夜烘干,在550℃空气中焙烧6小时制得H型硅铝分子筛。
取用3.0g/L的氯化钯溶液4.0mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气体积空速为100h-1条件下还原3h,得到催化剂前驱体。取用0.3g二甲基二甲氧基硅烷与1g催化剂前驱体、及15mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所需催化剂。
所得催化剂XRD整体上保留FAU分子筛结构不变。催化剂的比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表IV-1所示。
制备例IV-3
将硅铝摩尔比为10∶1的Na型Y分子筛(具有FAU结构)与0.2mol/L的NH 4NO 3溶液(质量比1∶20)在45℃下进行铵离子交换2小时,然后离心洗涤,重复铵离子交换两次后得到的样品在100℃下过夜烘干,在550℃空气中焙烧6小时制得H型硅铝分子筛。
取用2.5g/L的氯化铂溶液4.0mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气体积空速为100h-1条件下还原3h,得到催化剂前驱体。取用0.3g二甲基二甲氧基硅烷与1g催化剂前驱体、及15mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所需催化剂。
所得催化剂XRD整体上保留FAU分子筛结构不变。催化剂的比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表IV-1所示。
制备例IV-4
将硅铝摩尔比为5∶1的Na型Y分子筛(具有FAU结构)与0.2mol/L的NH 4NO 3溶液(质量比1∶20)在45℃下进行铵离子交换2小时,然后离心洗涤,重复铵离子交换两次后得到的样品在100℃下过夜烘干,在550℃空气中焙烧6小时制得H型硅铝分子筛。
取用3.0g/L的氯化钯溶液4.0mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气体积空速为 100h-1条件下还原3h,得到催化剂前驱体。取用0.3g二甲基二甲氧基硅烷与1g催化剂前驱体、及15mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所需催化剂。
所得催化剂XRD整体上保留FAU分子筛结构不变。催化剂的比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表IV-1所示。
制备例IV-5
将硅铝摩尔比为10∶1的Na型Y分子筛(具有FAU结构)与0.2mol/L的NH 4NO 3溶液(质量比1∶20)在45℃下进行铵离子交换2小时,然后离心洗涤,重复铵离子交换两次后得到的样品在100℃下过夜烘干,在550℃空气中焙烧6小时制得H型硅铝分子筛。
取用3.0g/L的氯化钯溶液4.0mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气体积空速为100h-1条件下还原3h,得到催化剂前驱体。取用0.3g苯基三甲氧基硅烷与1g催化剂前驱体、及15mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所需催化剂。
所得催化剂XRD整体上保留FAU分子筛结构不变。催化剂的比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表IV-1所示。
实施例IV-1
取0.25g制备例IV-1中合成的催化剂加入高压反应釜,随后向釜内加入10g正癸烷,并充入氢气使体系压力达到3.0MPa。随后将体系升温至350℃,至反应3h后结束。评价数据总结于表IV-2中。
实施例IV-2
取0.25g制备例IV-1中合成的催化剂加入高压反应釜,随后向釜内加入10g正癸烷,并充入氢气使体系压力达到3.5MPa。随后将体系升温至350℃,至反应3h后结束。评价数据总结于表IV-2中。
实施例IV-3
取0.25g制备例IV-1中合成的催化剂加入高压反应釜,随后向釜内加入10g正癸烷,并充入氢气使体系压力达到3.0MPa。随后将体系升温至380℃,至反应3h后结束。评价数据总结于表IV-2中。
实施例IV-4
取0.25g制备例IV-2中合成的催化剂加入高压反应釜,随后向釜内加入10g正癸烷,并充入氢气使体系压力达到3.0MPa。随后将体系升温至350℃,至反应3h后结束。评价数据总结于表IV-2中。
实施例IV-5
取0.25g制备例IV-3中合成的催化剂加入高压反应釜,随后向釜内加入10g正癸烷,并充入氢气使体系压力达到3.0MPa。随后将体系升温至350℃,至反应3h后结束。评价数据总结于表IV-2中。
实施例IV-6
取0.25g制备例IV-4中合成的催化剂加入高压反应釜,随后向釜内加入10g正癸烷,并充入氢气使体系压力达到3.0MPa。随后将体系升温至350℃,至反应3h后结束。评价数据总结于表IV-2中。
实施例IV-7
取0.25g制备例IV-5中合成的催化剂加入高压反应釜,随后向釜内加入10g正癸烷,并充入氢气使体系压力达到3.0MPa。随后将体系升温至350℃,至反应3h后结束。评价数据总结于表IV-2中。
对比例IV-1
将硅铝摩尔比为10∶1的Na型Y分子筛(具有FAU结构)与0.2mol/L的NH 4NO 3溶液(质量比1∶20)在45℃下进行铵离子交换2小时,然后离心洗涤,重复铵离子交换两次后得到的样品在100℃下过夜烘干,在550℃空气中焙烧6小时制得H型硅铝分子筛。
取用3.0g/L的氯化钯溶液4.0mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气体积空速为100h-1条件下还原3h,得到所需催化剂。
催化剂的比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表IV-1所示。
催化剂评价方法见实施例IV-1,催化剂的组成和评价结果列于表IV-2。
对比例IV-2
将硅铝摩尔比为10∶1的Na型Y分子筛(具有FAU结构)与0.2mol/L的NH 4NO 3溶液(质量比1∶20)在45℃下进行铵离子交换2小时,然后离心洗涤,重复铵离子交换两次后得到的样品在100℃下过夜烘干,在550℃空气中焙烧6小时制得H型硅铝分子筛。
取用3.0g/L的氯化钯溶液4.0mL,滴加于1g所述H型硅铝分子筛上。在80℃干燥2h后,于固定床反应器在450℃、氢气体积空速为100h-1条件下还原3h,得到催化剂前驱体。取用0.8g苯基三甲氧基硅烷与1g催化剂前驱体、及15mL甲苯溶剂混合,于110℃回流24h后,用水离心,洗涤,在80℃下干燥12h,得到所述催化剂。
催化剂的比表面积,孔容,酸性性质(包含总酸量和外表面酸量当量),金属M含量及外表面金属M含量如表IV-1所示。
催化剂评价方法见实施例IV-1,催化剂的组成和评价结果列于表IV-2。
表IV-1各制备例及对比例所得催化剂的物化性质
Figure PCTCN2022127278-appb-000032
Figure PCTCN2022127278-appb-000033
表IV-1(续)各制备例及对比例所得催化剂的物化性质
Figure PCTCN2022127278-appb-000034
表IV-2各实施例及对比例的催化剂评价条件和结果
Figure PCTCN2022127278-appb-000035
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所发明的内容。

Claims (15)

  1. 一种加氢-酸催化双功能催化剂,以催化剂的质量为基准,包含80-99.8%的硅铝分子筛组分,0.2-2%的负载在所述分子筛上的具有加氢活性的金属组分,和0-20%的烃基改性组分,其中所述加氢活性金属选自钌、铂、钯、铜、镍,或者它们的组合,更优选为钌、钯或者它们的组合;所述烃基改性组分为C 1-20烃基,优选为C 1-10烃基,更优选选自甲基、乙基、丙基、异丙基、丁基、苯基、苯甲基、苯乙基,或者它们的组合。
  2. 根据权利要求1所述的催化剂,其中所述硅铝分子筛选自具有MWW、FAU、MOR、BEA或ATS结构的分子筛,或者它们的组合,优选为具有ATS结构的分子筛;
    优选地,所述硅铝分子筛的硅铝比为2-50、优选为2-40、更优选为2-20。
  3. 根据权利要求1或2所述的催化剂,其中所述硅铝分子筛为具有ATS结构的硅铝分子筛,并且所述催化剂的X-射线衍射谱图显示出如下表所示的衍射峰相对强度特征:
    2θ(°) 相对强度(I/I 0×100) 7.588-8.188 vs 16.286-16.886 m-s 18.927-19.527 s 20.492-21.092 s 22.096-22.696 m-s 26.983-27.583 m-s
  4. 根据权利要求3所述的催化剂,其中所述催化剂的X-射线衍射谱图显示出如下表中任一行所示的衍射峰相对强度特征:
    2θ(°) 相对强度(I/I 0×100) 21.600-22.200 m 28.224-28.824 w-m 28.975-29.575 w-m
    30.255-30.855 w-m 31.794-32.394 m 34.607-35.207 m
  5. 根据权利要求1-4中任一项所述的催化剂,其中,以催化剂的质量为基准,所述催化剂包含80-98%的所述硅铝分子筛组分,0.2-2%的所述具有加氢活性的金属组分,和1-20%的所述烃基改性组分,并且根据X射线光电子能谱分析(XPS)测试,所述催化剂外表面的加氢活性金属占外表面元素的质量含量在0.5%以下、优选0.4%以下;
    优选地,以催化剂的质量为基准,所述催化剂包含90-98%的所述硅铝分子筛组分,0.2-1.5%的所述具有加氢活性的金属组分,和1-10%的所述烃基改性组分;
    进一步优选地,所述催化剂外表面的加氢活性金属分布系数为1-20%、优选1.5-18%。
  6. 根据权利要求1-5中任一项所述的催化剂,具有以下特征中的一个或多个:
    所述催化剂的比表面积为200-800m 2/g,优选250-700m 2/g;
    所述催化剂的总孔容不低于0.15cm 3/g,优选为0.18-1.0cm 3/g;
    所述催化剂的微孔孔容为0.05-0.30cm 3/g,优选为0.10-0.25cm 3/g;
    所述催化剂的总酸量为400-1500μmol·g -1,优选为600-1500μmol·g -1
    所述催化剂的外表面相对酸当量为15-50%,优选为15-40%;
    所述催化剂的金属H 2-TPR测试还原温度为470-500℃,优选为480-500℃;
    所述催化剂的B酸/L酸的酸量之比为0.2-8.0,优选为0.4-6.0;以及
    所述催化剂中,晶体具有长条状或棒状形貌,晶体的长度为0.3-3μm,长宽比为2-20,优选为5-20。
  7. 制备权利要求1-6中任一项所述的催化剂的方法,包括如下步骤:
    (1)提供H型硅铝分子筛;以及
    (2)在所述H型硅铝分子筛上负载所述加氢活性金属,任选对所 得产物进行烃基化处理和/或还原,得到所述催化剂。
  8. 根据权利要求7所述的方法,其中所述步骤(1)包括将硅铝分子筛原料经过铵离子交换和焙烧,得到所述H型硅铝分子筛,
    优选地,所述硅铝分子筛原料选自具有MWW、FAU、MOR或BEA结构的硅铝分子筛,或者它们的组合。
  9. 根据权利要求7所述的方法,其中所述步骤(1)包括将硅源、铝源、氟源、有机结构导向剂和水混合,加热预处理后,再进行晶化处理和焙烧,得到H型ATS硅铝分子筛,其中所述硅源选自硅酸、硅胶、硅溶胶、硅酸四乙酯、水玻璃,或者它们的组合,所述铝源选自拟薄水铝石、异丙醇铝,或者它们的组合,所述氟源选择氢氟酸,所述有机结构导向剂为4-吡咯烷基吡啶;
    优选地,步骤(1)具有以下特征中的一个或多个:
    所加入的硅源以SiO 2计、铝源以Al 2O 3计、氟源以F-计、有机结构导向剂和水的摩尔配比为1∶(0.02-0.2)∶(0.5-2)∶(0.25-1.5)∶(3-15),优选为1∶(0.05-0.15)∶(0.5-1)∶(0.5-1)∶(5-10);
    所述晶化处理中,硅源以SiO 2计和水的摩尔配比为1∶(1-10),优选1∶(1.5-6.5);以及
    所述晶化处理的条件包括:晶化温度为120-200℃、优选150-200℃,晶化时间为7-21天、优选为7-15天。
  10. 根据权利要求7-9中任一项所述的方法,其中,在步骤(2)中,通过将加氢活性金属源的溶液加入到所述H型硅铝分子筛中并干燥来将所述加氢活性金属负载到所述H型硅铝分子筛上,
    优选地,所述步骤(2)具有以下特征中的一个或多个:
    所述加氢活性金属源选自所述金属的可溶性化合物,优选选自所述金属的氯化物、硝酸盐,或者它们的组合;
    以加氢活性金属的质量计,所述加氢活性金属源的溶液的浓度为1.5-50g/L,优选为2-45g/L;
    所述加氢活性金属源的溶液采用滴加的方式加入所述H型硅铝分子筛中;以及
    所述加氢活性金属源的溶液中所述加氢活性金属的质量与所述H型硅铝分子筛的质量比为0.002-0.015∶1,例如为0.005-0.02∶1。
  11. 根据权利要求7-10中任一项所述的方法,其中所述烃基化处 理包括将负载加氢活性金属后的产物与烃基化试剂在溶剂中混合反应来进行,其中所述烃基化试剂选自甲基三甲氧基硅烷、二甲基二甲氧基硅烷、乙基三甲氧基硅烷、二乙基二甲氧基硅烷、丙基三甲氧基硅烷、异丙基三甲氧基硅烷,苯基三甲氧基硅烷、甲苯基三甲氧基硅烷、苯基硅烷三醇、甲苯基硅烷三醇、二苯基硅烷二醇,或者它们的组合,优选选自二甲基二甲氧基硅烷、二乙基二甲氧基硅烷、异丙基三甲氧基硅烷、苯基三甲氧基硅烷、甲苯基三甲氧基硅烷、苯基硅烷三醇、甲苯基硅烷三醇,或者它们的组合;
    优选地,所述烃基化处理包括以下特征中的一个或多个:
    所述溶剂为乙醇、甲苯或者它们的组合;
    所述负载加氢活性金属后的产物、烃基化试剂与溶剂的质量比为1∶(0.05-0.45)∶(5-55)、优选为1∶(0.06-0.40)∶(6-50);以及
    所述烃基化处理的反应条件包括:反应温度为40-110℃、优选为70-110℃,反应时间为6-48h、优选为8-24小时。
  12. 根据权利要求7-11中任一项所述的方法,其中所述还原采用还原性气体、优选氢气进行,所述还原的条件优选包括:还原温度为300-450℃,还原时间3-6小时,还原气体的体积空速为40-200h -1
  13. 权利要求1-6中任一项所述的加氢-酸催化双功能催化剂在烃类加氢转化反应中的应用,包括在氢气存在下,使烃类原料与所述催化剂接触反应的步骤,
    优选地,所述加氢转化反应选自苯加氢烷基化反应和烷烃加氢异构化反应。
  14. 苯加氢一步法制环己基苯的方法,包括在氢气存在下,使苯与权利要求1-6中任一项所述的加氢-酸催化双功能催化剂接触反应,得到环己基苯;
    优选地,所述反应的条件包括:苯与催化剂的质量比为8-40、优选为10-40;反应温度为100-220℃、优选为120-200℃;反应时间为2-8小时、优选为2.5-6小时;反应氢气压力为0.8-2.5MPa、优选为1.0-2.5MPa。
  15. 烷烃加氢异构化方法,包括在氢气存在下,使直链烷烃与权利要求1-6中任一项所述的加氢-酸催化双功能催化剂接触反应,得到异构化产物;
    其中,所述直链烷烃为C8以上的直链烷烃,优选为C8-C20直链烷烃,更优选为C8-C12直链烷烃;
    优选地,所述反应条件包括:直链烷烃与催化剂质量比为10-100、优选为10-50;反应温度为250-400℃、优选为300-400℃;反应时间为3-10小时、优选为4-10小时;反应氢气压力为2.5-5.0MPa,优选为3.0-4.0MPa。
PCT/CN2022/127278 2021-10-26 2022-10-25 加氢-酸催化双功能催化剂及其制备方法和应用 WO2023072041A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247017468A KR20240090988A (ko) 2021-10-26 2022-10-25 수소화-산 촉매작용 이관능성 촉매 및 이의 제조 방법 및 응용
EP22885918.7A EP4424418A1 (en) 2021-10-26 2022-10-25 Hydrogenation-acid catalysis bifunctional catalyst, and preparation method therefor and application thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202111250651.2A CN116020541A (zh) 2021-10-26 2021-10-26 一种用于生产环己基苯的催化剂及其制备方法和应用
CN202111250651.2 2021-10-26
CN202210754110.1 2022-06-28
CN202210754110.1A CN117358295A (zh) 2022-06-28 2022-06-28 一种用于生产环己基苯的催化剂及其制备方法和应用
CN202210754120.5A CN117342911A (zh) 2022-06-28 2022-06-28 一种苯加氢一步法制环己基苯的方法
CN202210754120.5 2022-06-28

Publications (1)

Publication Number Publication Date
WO2023072041A1 true WO2023072041A1 (zh) 2023-05-04

Family

ID=86160387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127278 WO2023072041A1 (zh) 2021-10-26 2022-10-25 加氢-酸催化双功能催化剂及其制备方法和应用

Country Status (3)

Country Link
EP (1) EP4424418A1 (zh)
KR (1) KR20240090988A (zh)
WO (1) WO2023072041A1 (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219689A (en) 1978-09-08 1980-08-26 Phillips Petroleum Company Aromatic hydroalkylation catalyst using iridium on zeolites
US4268699A (en) * 1978-07-21 1981-05-19 Phillips Petroleum Company Hydroalkylation using nickel-ruthenium catalyst on zeolite type support
US5302279A (en) 1992-12-23 1994-04-12 Mobil Oil Corporation Lubricant production by hydroisomerization of solvent extracted feedstocks
US5643440A (en) 1993-02-12 1997-07-01 Mobil Oil Corporation Production of high viscosity index lubricants
US6190532B1 (en) 1998-07-13 2001-02-20 Mobil Oil Corporation Production of high viscosity index lubricants
US20110015457A1 (en) 2008-04-14 2011-01-20 Cheng Jane C Process for Producing Cyclohexylbenzene
CN104105679A (zh) 2012-02-08 2014-10-15 埃克森美孚化学专利公司 生产环己基苯的方法
CN105439802A (zh) * 2014-08-27 2016-03-30 中国石油化工股份有限公司 加氢烷基化制备环己基苯的方法
CN106518602A (zh) * 2015-09-15 2017-03-22 中国石油化工股份有限公司 加氢烷基化制备环己基苯的方法
CN107303512A (zh) * 2016-04-25 2017-10-31 中国石化扬子石油化工有限公司 一种双功能催化剂及其在苯加氢烷基化反应中的应用
CN107930681A (zh) * 2016-10-13 2018-04-20 中国石油化工股份有限公司 适于环己基苯合成的催化剂及其制备方法
CN109999893A (zh) * 2019-04-03 2019-07-12 郑州大学 一种苯加氢制环己基苯用催化剂的制备方法
CN110563543A (zh) * 2018-06-06 2019-12-13 中国石油化工股份有限公司 合成环己基苯的方法
CN110563534A (zh) * 2018-06-06 2019-12-13 中国石油化工股份有限公司 加氢烷基化合成环己基苯的方法
CN111085250A (zh) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 一种负载金属的催化剂的制备方法
CN111085249A (zh) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 一种负载金属的含酸性材料催化剂的制备方法
CN111250148A (zh) * 2020-03-25 2020-06-09 厦门大学 一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和应用
CN112934251A (zh) 2019-12-11 2021-06-11 中国科学院大连化学物理研究所 一种催化正庚烷加氢异构化的双功能催化剂及其制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268699A (en) * 1978-07-21 1981-05-19 Phillips Petroleum Company Hydroalkylation using nickel-ruthenium catalyst on zeolite type support
US4219689A (en) 1978-09-08 1980-08-26 Phillips Petroleum Company Aromatic hydroalkylation catalyst using iridium on zeolites
US5302279A (en) 1992-12-23 1994-04-12 Mobil Oil Corporation Lubricant production by hydroisomerization of solvent extracted feedstocks
US5643440A (en) 1993-02-12 1997-07-01 Mobil Oil Corporation Production of high viscosity index lubricants
US6190532B1 (en) 1998-07-13 2001-02-20 Mobil Oil Corporation Production of high viscosity index lubricants
US20110015457A1 (en) 2008-04-14 2011-01-20 Cheng Jane C Process for Producing Cyclohexylbenzene
CN104105679A (zh) 2012-02-08 2014-10-15 埃克森美孚化学专利公司 生产环己基苯的方法
CN105439802A (zh) * 2014-08-27 2016-03-30 中国石油化工股份有限公司 加氢烷基化制备环己基苯的方法
CN106518602A (zh) * 2015-09-15 2017-03-22 中国石油化工股份有限公司 加氢烷基化制备环己基苯的方法
CN107303512A (zh) * 2016-04-25 2017-10-31 中国石化扬子石油化工有限公司 一种双功能催化剂及其在苯加氢烷基化反应中的应用
CN107930681A (zh) * 2016-10-13 2018-04-20 中国石油化工股份有限公司 适于环己基苯合成的催化剂及其制备方法
CN110563543A (zh) * 2018-06-06 2019-12-13 中国石油化工股份有限公司 合成环己基苯的方法
CN110563534A (zh) * 2018-06-06 2019-12-13 中国石油化工股份有限公司 加氢烷基化合成环己基苯的方法
CN111085250A (zh) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 一种负载金属的催化剂的制备方法
CN111085249A (zh) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 一种负载金属的含酸性材料催化剂的制备方法
CN109999893A (zh) * 2019-04-03 2019-07-12 郑州大学 一种苯加氢制环己基苯用催化剂的制备方法
CN112934251A (zh) 2019-12-11 2021-06-11 中国科学院大连化学物理研究所 一种催化正庚烷加氢异构化的双功能催化剂及其制备方法
CN111250148A (zh) * 2020-03-25 2020-06-09 厦门大学 一种用于苯加氢烷基化制环己基苯的催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOLECULAR CATALYSIS, vol. 442, no. 827-52-1, 2017, pages 27 - 38

Also Published As

Publication number Publication date
KR20240090988A (ko) 2024-06-21
EP4424418A1 (en) 2024-09-04

Similar Documents

Publication Publication Date Title
TWI513682B (zh) 封裝在結構崩塌沸石內且具有金屬簇之催化劑及其用途
US7538065B2 (en) Noble metal-containing catalyst containing a specific ratio of silica to aluminum in the framework
US6767859B2 (en) Non-zeolitic nanocomposite materials of solid acid catalysis
Lou et al. Refinery oil upgrading under methane environment over PdOx/H-ZSM-5: Highly selective olefin cyclization
WO1993002156A1 (en) Paraffin isomerization process
US20130299388A1 (en) Method of preparing a hydroconversion catalyst based on silica or silica-alumina having an interconnected mesoporous texture
Wang et al. Hierarchical nano-sized ZnZr-Silicalite-1 multifunctional catalyst for selective conversion of ethanol to butadiene
GB2160517A (en) Synthetic zeolites
US20240326027A1 (en) Nickel-Based Oligomerization Catalysts and Method for Oligomerizing Light Olefins Using the Same
Bi et al. Hydroisomerization of long chain n-paraffins: the role of the acidity of the zeolite
Rodrıguez-Castellón et al. Textural and structural properties and surface acidity characterization of mesoporous silica-zirconia molecular sieves
Jaroszewska et al. Conversion of decalin and 1-methylnaphthalene over AlSBA-15 supported Pt catalysts
Zhou et al. Development and catalytic mechanism of a highly efficient Pt/Kβ catalyst for n-heptane aromatization
Zhu et al. Propane dehydrogenation over PtZn localized at Ti sites on TS-1 zeolite
CN1854252A (zh) 石油烃类裂化催化剂及其制备方法
JP5426983B2 (ja) Zsm−5型ゼオライトの製造方法
JP2019514828A (ja) 分子篩、その製造方法および応用
US20060281957A1 (en) Dual functional catalyst for selective opening of cyclic paraffins and process for using the catalyst
US20030017937A1 (en) Process for preparing metal containing bi-functional catalysts for dewaxing
WO2023072041A1 (zh) 加氢-酸催化双功能催化剂及其制备方法和应用
KR101815852B1 (ko) 전이금속 담지 결정형 제올라이트 l 개질 다공성 촉매, 이를 제조하는 방법 및 이를 이용한 방향족화 방법
US12083509B2 (en) Beta-type zeolite and catalyst containing same
JP2024538254A (ja) 水素化-酸触媒二元機能触媒、並びにその調製方法およびその使用
Cao et al. Comparison of surface passivation modification of two mordenite zeolites and their application on the isomerisation of o-ethyltoluene
JP2011509172A (ja) 芳香族水素添加触媒および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18703749

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2024525085

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247017468

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022885918

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022885918

Country of ref document: EP

Effective date: 20240527