CN111186883A - 一种新型七氧化四钛纳米管改性二氧化铅电极制备技术 - Google Patents

一种新型七氧化四钛纳米管改性二氧化铅电极制备技术 Download PDF

Info

Publication number
CN111186883A
CN111186883A CN202010023750.6A CN202010023750A CN111186883A CN 111186883 A CN111186883 A CN 111186883A CN 202010023750 A CN202010023750 A CN 202010023750A CN 111186883 A CN111186883 A CN 111186883A
Authority
CN
China
Prior art keywords
titanium
nanotube
pbo
tin
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010023750.6A
Other languages
English (en)
Other versions
CN111186883B (zh
Inventor
江波
王婧茹
苏晴
刘奕捷
关雨欣
宁亚男
罗思义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN202010023750.6A priority Critical patent/CN111186883B/zh
Priority to PCT/CN2020/075456 priority patent/WO2021138961A1/zh
Publication of CN111186883A publication Critical patent/CN111186883A/zh
Application granted granted Critical
Publication of CN111186883B publication Critical patent/CN111186883B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种新型七氧化四钛纳米管中间层高性能改性二氧化铅电极的制备技术。该制备技术以钛网为基底,采用阳极氧化法制备锐钛矿型二氧化钛纳米管,通过高温还原方法制备七氧化四钛纳米管,将锡盐、锑盐按照一定比例溶解形成涂覆液,经过涂覆热分解形成锡锑的氧化物为中间层,提高电极的稳定性。采用电沉积技术,在锡锑中间层上制备β‑PbO2或离子、纳米颗粒掺杂改性的β‑PbO2。所得到的新型纳米管状的改性β‑PbO2电极致密均匀,颗粒尺寸小,具有较大的催化活性面积。同时,表面活性层附着力强,不易脱落,可耐酸碱腐蚀,具有良好的催化活性及使用寿命,适合工业化生产,可广泛应用于电催化氧化技术处理污水领域,具有较好市场前景。

Description

一种新型七氧化四钛纳米管改性二氧化铅电极制备技术
技术领域
本专利属于水处理技术领域,涉及一种新型七氧化四钛纳米管中间层高性能改性二氧化铅电极的制备技术。
背景技术
污水处理问题,一直以来都是研究的热点。随着农业技术的发展,越来越多的农药用于作物生产,这些污染物中大多数都是有机污染物,当其排到水中时,会对生态环境产生破坏。在污水处理技术中,电催化氧化法对设备要求低、处理速度快、操作简便、清洁无污染且易于大规模应用,是一种环境友好型技术。近年来一直受到广泛关注,是未来污水处理领域的一个重要发展方向。阳极电极材料的性质对电催化氧化法的效率有关键的影响。
目前,电催化氧化是高级氧化法的一种,其拥有无需添加化学药品,设备小,适用与其他方法联合使用等优点。电催化氧化的阳极在污水处理过程中会产生氧化性极强的羟基自由基(·OH),使有机物开环或断链后转化为小分子有机酸,甚至完全氧化成CO2和H2O。作为生物难降解有机物一种有效的处理废水的工艺非常值得推广与流行性。在众多电极中掺硼金刚石(boron-doped diamond BDD)薄膜作为电极材料,而掺硼金刚石薄膜特殊的sp3键结构及其具有的导电性,赋予了金刚石薄膜电极优异的电化学特性,如较低的背景电流、较好的物理化学稳定性以及低吸附特性等。此外,金刚石对于羟基自由基是一种物理吸附,不与电极表面发生化学反应,因此极化过程中产生的自由基能够更高效率的催化氧化降解有机物,而较少的发生析氧副反应。但是BDD电极造价昂贵,如果大规模投入废水处理,会造成很大的经济投入,影响企业的盈利。PbO2电极具有析氧电位高、价格低廉等优点,很早就有人将其作为阳极应用于工业生产中。但是与BDD电极比较而言,PbO2产生的羟基自由基量较少,而且PbO2镀层内部具有较大的内应力,在电解过程中所产生的新生态氧极易透过表面层扩散到基底上,从而会使得基底钝化,镀层脱落,降低电极的电化学稳定性及使用寿命。针对此问题,本专利提出在钛基底表面引入强耐腐蚀、高电导率的Ti4O7纳米管以提升PbO2与钛基底的结合力、电子传输效率、以及稳定性。测试发现所制得的新型铅基电极增强了氧化铅电极的机械强度,扩大了其比表面积,提升了电极的电催化活性。
发明内容
根据目前氧化铅电极的技术的不足,本发明提供一种造价低、活性高、化学性质稳定的纳米管状的改性PbO2电极的制备方法。
本发明的技术方案是:以钛网为基底,采用阳极氧化法制备锐钛矿型二氧化钛纳米管,采用高温还原方法,对锐钛矿型二氧化钛纳米管进行高温还原,得到七氧化四钛纳米管。再将可溶性锑和锡盐溶解在醇溶剂中制成中间层前驱体涂覆液,利用涂覆-烘干-热烧结的方法制备锡锑中间层,利用电沉积方法电镀β-PbO2或纳米粒子改性的β-PbO2催化层。
其中,优选方案如下:
所述的锐钛矿型二氧化钛纳米管的制备方法,采用二电极体系,取经预处理过的钛网为阳极,铂片或石墨板为阴极,在30~60V电压下电解保持1~4h,电解质溶液中含有15~20mL的水,85~80mL的乙二醇和0.5~1g的氟化铵。电解后的钛网置于马弗炉中350~600℃下煅烧1~4h最终制得锐钛矿型二氧化钛纳米管。
所述的七氧化四钛纳米管制备方法,将锐钛矿型二氧化钛纳米管在管式炉中还原,还原剂为H2、Ti、Zr、Al等,还原温度为700~1200℃,还原处理时间为0.5~6h,得到七氧化四钛纳米管。
所述的锡锑中间层制备方法,涂覆液溶剂为乙醇、丁醇、异丙醇等,涂覆液中四氯化锡浓度为0.5~1.0mol/L,三氯化锑浓度为0.05~0.1mol/L,在七氧化四钛纳米管基底上涂锡锑醇溶液5~10次,烘干温度选择80~100℃,煅烧温度为400~600℃,煅烧时间为10~60min。
所述的β-PbO2或改性β-PbO2制备方法,电解质溶液可以为硝酸盐、硫酸盐、或者氨基磺酸盐、四氢呋喃和苯等有机物,沉积温度60~70℃,电流密度20~40mA/cm2,沉积时间0.5~1h,电沉积过程中以约300~500转/分钟速度搅拌,极板间距1.5~5cm,pH为1~3,改性剂可以为纳米金刚石、Zr2+、ZrO2等,电沉积液中改性剂的浓度为0.5~2mol/L。
本发明所具有的优点在于:
(1)七氧化四钛纳米管状的改性二氧化铅电极拥有单向、均一的中空二维结构,不但能够增加PbO2与基底的结合力,同时电沉积产生的PbO2颗粒致密均匀、粒径更细小。
(2)高温还原后的七氧化四钛纳米管可有效降低电极电阻,提升电极内电荷转移效率,且PbO2展现更高的析氧过电位。
(3)经电化学还原后七氧化四钛纳米管作为基底,能够增强电极内部的电子传输效率,从而提升电极的电流效率。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
电解液配制:以18mL水作为溶剂,用量筒量取82mL乙二醇,缓慢加入到水溶液中,形成均匀的透明状液体,后向溶液中加入0.55g氟化铵,充分搅拌直至溶解,静置一段时间后备用。
利用阳极氧化法制备二氧化钛纳米管,该实验采用二电极体系,取经预处理过的钛网作为阳极,铂片或石墨板作为阴极,在恒压下(60V)保持1h,实验期间转子保持低速搅拌。反应结束后,取出钛网,在乙醇中浸泡1h后除去纳米管内的残余F-。浸泡完毕后,将二氧化钛纳米管放入无水乙醇中超声处理,除去纳米管产生的残屑。后将二氧化钛纳米管二次清洗,将清洗干净的钛网置于马弗炉中450℃下煅烧2h,升温速度控制在2°min-1,自然冷却至室温。该步骤使二氧化钛纳米管由板钛矿型转变为锐钛矿型。
将锐钛矿型二氧化钛纳米管在管式炉中还原,还原剂为H 2:N2=1:5,还原温度为850℃,还原处理时间为1h,得到七氧化四钛纳米管。
称取3.506g四氯化锡和0.261g三氯化锑溶于20mL异丙醇中,后量取1mL盐酸与该溶液混合均匀,采用磁力搅拌待溶液均一稳定时,通过毛笔蘸取涂覆液将其涂覆在钛网上然后置于电热恒温干燥箱中在100℃条件下烘干15min,后经马弗炉450℃条件下煅烧10min。然后取出再次进行刷涂。如此反复进行9次之后,在马弗炉中500℃的条件下煅烧1h得到中间层。
通过电沉积得到β-PbO2表面活性层,所用的电沉积液为0.5mol/L Pb(NO3)2、0.1mol/L HNO3、0.04mol/L NaF,1.5g/L纳米金刚石粉末,所用的电流密度为30mA/cm2。温度为65℃,电沉积0.5h,得到七氧化四钛纳米管为中间层的金刚石掺杂二氧化铅电极。
采用此电极作为阳极氧化水中的苯达松,苯达松的初始浓度为100mg/L,在室温条件和pH值为酸性条件下,工作面积为24cm2,反应进行到120min,苯达松的去除率达到90%左右。在电流密度为1A/cm2,浓硫酸浓度为1mol/L的条件下测得电极的加速寿命高达80个小时,其寿命是无七氧化四钛纳米管为基底的二氧化铅电极的3倍。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (5)

1.一种新型七氧化四钛纳米管中间层高性能改性二氧化铅电极的制备技术,其特征在于,以钛网为基底,采用阳极氧化法制备锐钛矿型二氧化钛纳米管,采用高温还原方法制备七氧化四钛纳米管,再将可溶性锑和锡盐溶解在醇溶剂中制成中间层前驱体涂覆液,利用涂覆-烘干-热烧结的方法制备锡锑中间层,利用电沉积方法电镀β-PbO2或改性β-PbO2催化层。
2.一种权利要求1所述锐钛矿型二氧化钛纳米管的制备方法,其特征在于,采用二电极体系,取经预处理过的钛网为阳极,铂片或石墨板为阴极,在30~60V电压下电解保持1~4h,电解质溶液中含有15~20mL的水,85~80mL的乙二醇和0.5~1g的氟化铵,电解后的钛网置于马弗炉中350~600℃下煅烧1~4h最终制得锐钛矿型二氧化钛纳米管。
3.一种权利要求1所述的七氧化四钛纳米管制备方法,其特征在于,将锐钛矿型二氧化钛纳米管在管式炉中还原,还原剂为H2、Ti、Zr、Al等,还原温度为700~1200℃,还原处理时间为0.5~6h,得到七氧化四钛纳米管。
4.一种权利要求1所述的锡锑中间层制备方法,其特征在于,涂覆液溶剂为乙醇、丁醇、异丙醇等,涂覆液中四氯化锡浓度为0.5~1.0mol/L,三氯化锑浓度为0.05~0.1mol/L,在七氧化四钛纳米管基底上涂锡锑醇溶液5~10次,烘干温度选择80~100℃,煅烧温度为400~600℃,煅烧时间为10~60min。
5.一种权利要求1所述的β-PbO2或改性β-PbO2制备方法,其特征在于,电解质溶液可以为硝酸盐、硫酸盐、或者氨基磺酸盐、四氢呋喃和苯等有机物,沉积温度60~70℃,电流密度20~40mA/cm2,沉积时间0.5~1h,电沉积过程中以约300~500转/分钟速度搅拌,极板间距1.5~5cm,pH为1~3,改性剂可以为纳米金刚石、Zr2+、ZrO2等,电沉积液中改性剂的浓度为0.5~2mol/L。
CN202010023750.6A 2020-01-09 2020-01-09 一种新型七氧化四钛纳米管改性二氧化铅电极制备技术 Active CN111186883B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010023750.6A CN111186883B (zh) 2020-01-09 2020-01-09 一种新型七氧化四钛纳米管改性二氧化铅电极制备技术
PCT/CN2020/075456 WO2021138961A1 (zh) 2020-01-09 2020-02-17 一种新型七氧化四钛纳米管改性二氧化铅电极制备技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010023750.6A CN111186883B (zh) 2020-01-09 2020-01-09 一种新型七氧化四钛纳米管改性二氧化铅电极制备技术

Publications (2)

Publication Number Publication Date
CN111186883A true CN111186883A (zh) 2020-05-22
CN111186883B CN111186883B (zh) 2021-08-24

Family

ID=70703471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010023750.6A Active CN111186883B (zh) 2020-01-09 2020-01-09 一种新型七氧化四钛纳米管改性二氧化铅电极制备技术

Country Status (2)

Country Link
CN (1) CN111186883B (zh)
WO (1) WO2021138961A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250145A (zh) * 2020-10-30 2021-01-22 南京理工大学 一种多孔钛基亚氧化钛纳米管二氧化铅电极的制备与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106277042A (zh) * 2016-08-29 2017-01-04 湖南科莱新材料有限公司 一种制备Ti4O7的方法
JP2017043521A (ja) * 2015-08-28 2017-03-02 国立大学法人弘前大学 Ti4O7の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2938164B2 (ja) * 1990-07-26 1999-08-23 ペルメレック電極株式会社 電解用電極及びその製造方法
CN100580143C (zh) * 2007-02-07 2010-01-13 浙江工业大学 一种在钛基体上制备含氟二氧化铅电极的方法
CN102043004B (zh) * 2009-10-14 2013-10-30 同济大学 一种高析氧电位长寿命的PbO2电极的制备方法
CN101956194A (zh) * 2010-09-20 2011-01-26 北京师范大学 一种TiO2薄膜修饰的钛基β-PbO2光电极的制备方法
CN102173449A (zh) * 2011-01-14 2011-09-07 同济大学 一种纳米二氧化铅电极的制备方法
CN104591342B (zh) * 2014-11-10 2017-04-05 牛军峰 用于污水深度处理的Ti/Ebonex/PbO2电极的制备方法
CN105110425A (zh) * 2015-09-01 2015-12-02 上海应用技术学院 一种碳纳米管改性三维多孔钛基体二氧化铅电极的制备方法
CN106958033B (zh) * 2017-03-17 2019-03-26 南开大学 Magnéli相TinO2n-1纳米管电极的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043521A (ja) * 2015-08-28 2017-03-02 国立大学法人弘前大学 Ti4O7の製造方法
CN106277042A (zh) * 2016-08-29 2017-01-04 湖南科莱新材料有限公司 一种制备Ti4O7的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIA WU ET AL.: ""Fabrication and characterization of β-PbO2/α-PbO2/Sb–SnO2/TiO2 nanotube array electrode and its application in electrochemical degradation of Acid Red", 《THE ROYAL SOCIETY OF CHEMISTRY》 *
TONG SUN ET AL.: "A Comprehensive Study on Nano-Diamond Doped β-PbO2 Electrode: Preparation, Properties and Electrocatalytic Performance", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250145A (zh) * 2020-10-30 2021-01-22 南京理工大学 一种多孔钛基亚氧化钛纳米管二氧化铅电极的制备与应用

Also Published As

Publication number Publication date
CN111186883B (zh) 2021-08-24
WO2021138961A1 (zh) 2021-07-15

Similar Documents

Publication Publication Date Title
CN101857288B (zh) 钛基二氧化钛纳米管二氧化锡电极的制备方法
CN108842169B (zh) 一种负载金属氧化物的钒酸铋复合材料及其制备和应用
CN107020074A (zh) 一种具有微纳结构的电催化多孔钛滤膜及其制备方法
CN106894024B (zh) 储能型三氧化钨/钛酸锶/二氧化钛纳米复合膜光阳极的制备方法
CN105110425A (zh) 一种碳纳米管改性三维多孔钛基体二氧化铅电极的制备方法
CN110042407B (zh) 磷酸钴-聚多巴胺-钒酸铋三元复合光电极的制备方法及应用
CN107967997A (zh) 一种三维高导热导电复合材料、其制备方法与应用
CN108017120A (zh) 一种采用新型阳极电催化氧化处理苯酚有机废水的方法
CN104313663B (zh) 一种N、Ti3+共掺杂的可见光催化TiO2纳米管阵列的制备方法
CN105239095A (zh) 一种Ti/Sb-SnO2/Nd-nanoTiO2-PbO2电极的制备及其降解活性蓝117的方法
CN111254435A (zh) 一种Ti/Sb-SnO2/PVDF-CNT-PbO2电极及其制备方法
CN106048690A (zh) 一种钛基二氧化钛纳米管复合阳极及其制备方法
CN105914375B (zh) 一种钼或钨的二硫化物与石墨烯复合材料的制备方法
CN102899683A (zh) 一种Ti基纳米CeO2/PbO2修饰电极的制备方法
CN106086989A (zh) 一种银改性二氧化钛纳米管复合阳极及其制备方法
CN108866563A (zh) 一种硼化钴修饰的钒酸铋膜光电阳极、其制备方法与用途
CN104928713B (zh) 导电聚合物包覆的镍基产氢电极的制备方法及其用途
CN111186883B (zh) 一种新型七氧化四钛纳米管改性二氧化铅电极制备技术
CN108772054A (zh) 一种二氧化钛-钒酸铋复合光催化材料及其制备方法
CN111924941A (zh) 一种改性PbO2电极的制备方法及电催化去除BPA的方法
CN114196985B (zh) 一种BiVO4/NiF2光阳极在光催化水裂解方面的应用
JP7133661B2 (ja) 水分解酸素発生用のポリチオフェン系化合物/炭素繊維布電極及びその製造方法
CN112429813B (zh) 一种掺杂碳纳米管的Blue-TiO2/CNT-PbO2电极材料的制备方法
CN109553162A (zh) 一种以有序多孔ZnO为模板的不锈钢基纳米阵列β-PbO2电极的制备方法
CN113233549A (zh) 一种纳米二氧化铅电极及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant