CN110698189A - 一种镧离子掺杂的深低温热敏电阻材料及制备方法 - Google Patents

一种镧离子掺杂的深低温热敏电阻材料及制备方法 Download PDF

Info

Publication number
CN110698189A
CN110698189A CN201911117201.9A CN201911117201A CN110698189A CN 110698189 A CN110698189 A CN 110698189A CN 201911117201 A CN201911117201 A CN 201911117201A CN 110698189 A CN110698189 A CN 110698189A
Authority
CN
China
Prior art keywords
powder
ion doped
deep low
low temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911117201.9A
Other languages
English (en)
Other versions
CN110698189B (zh
Inventor
张惠敏
常爱民
范庆梅
孙家林
王强
刘思学
代树武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN201911117201.9A priority Critical patent/CN110698189B/zh
Publication of CN110698189A publication Critical patent/CN110698189A/zh
Application granted granted Critical
Publication of CN110698189B publication Critical patent/CN110698189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • H01C7/046Iron oxides or ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

本发明公开了一种镧离子掺杂的深低温热敏电阻材料及制备方法,该电阻材料以锰、镍、铁、镧的氧化物为原料,采用固相法进行制备,将混合后的粉体经过煅烧、研磨、烧结制得。与市面上现有的NTC热敏电阻相比,该电阻材料可以在15 K条件下工作。其电性能参数为:R70K=160 KΩ∙cm,R90K=680 KΩ∙cm。测温区间在15 K‑280 K之间,解决了低温热敏电阻测温范围较窄,应用范围不够广泛的问题。由该材料制得的热敏电阻期间可以应用于航空航天等深低温领域。

Description

一种镧离子掺杂的深低温热敏电阻材料及制备方法
技术领域
本发明涉及一种镧离子掺杂的深低温热敏电阻材料及制备方法,基于该新型材料电性能参数,其适用于深低温、航天、外太空温度探测领域。
背景技术
负温度系数(NTC)热敏电阻按照实际医用温区可以分为以下三种:低温区(0-213.15K),常温区(213.15-623.15K)和高温区(623.15-1273.15K)。目前市面上绝大部分所售卖的负温度系数(NTC)热敏电阻为常温型,至于低温型的电阻器少之又少,即便有那么几种产品具有低温探测功能仍然不能够满足航空航天以及深海测温的需求,其根本原因在于,当外部温度环境极低时大部分电阻器中阻值趋于无穷大,难以实现电学信号的传输。
发明内容
本发明目的在于,提供一种镧离子掺杂的深低温热敏电阻材料及制备方法,该材料是由MnO2,NiO,Fe2O3和La2O3为原料进行混合,通过球磨、煅烧、研磨、成型、高温烧结制成La离子掺杂的深低温热敏电阻材料,通过增加La离子含量,降低电阻器件的低温电阻以及低温测温范围内的B值。当La离子含量达到最大时,测试温度可低至15K,R77K=160KΩ·cm,B77/90=290.38K,由此实现了测量温度,阻值,B值的最低值。同时制得的热敏电阻测温区间可从15K到280K,从而解决了MF5602型产品测温区间较窄,应用范围较小的核心问题。该材料B值波动范围小,即B77/90=290.38-311.63K,材料体系十分稳定,与军工需求相一致。
本发明所述的一种镧离子掺杂的深低温热敏电阻材料,该材料是由MnO2、NiO、Fe2O3和La2O3为原料,按摩尔比MnO2:NiO:Fe2O3:La2O3=0.45-2:0.8-3:0.1-0.6:1-4.15,通过球磨、煅烧、研磨、成型、高温烧结制成。
所述一种镧离子掺杂的深低温热敏电阻材料的制备方法,按下列步骤进行:
a、粉体配比:以MnO2、NiO、Fe2O3和La2O3为原料,按摩尔比MnO2:NiO:Fe2O3:La2O3=0.45-2:0.8-3:0.1-0.6:1-4.15分别进行称量,置入聚四氟乙烯罐中进行球磨,时间8h-12h,于温度100℃-150℃下干燥,得到Mn-Ni-Fe-La-O混合粉体,其中聚四氟乙烯罐中的玛瑙球、粉体、分散剂丙酮与乙醚的混合质量比为1-4:1:1,分散剂丙酮与乙醚混合体积比为1:9-9:1;
b、煅烧:将步骤a中得到的Mn-Ni-Fe-La-O混合粉体置于温度900℃-1100℃下煅烧1-4h,得到尖晶石结构的Mn-Ni-Fe-La-O粉体;
c、混合研磨:将步骤b煅烧后的尖晶石Mn-Ni-Fe-La-O粉体置入玛瑙研钵中研磨2-6h;
d、成型:将步骤c复合后的粉体于280MP-350MP下冷等静压140s-175s后成型;
e、烧结:将步骤d成型块体置入含有MnO2、Fe2O3、La2O3中一种或两种或三种的Al2O3粉体中,于温度1150-1300℃下烧结1-4h,得到镧离子掺杂的深低温热敏电阻材料。
本发明所述的一种镧离子掺杂的深低温热敏电阻材料及制备方法,该材料具有以下特点:
1、最低测试温度可达15K;
2、温度测试适用范围广:15-280K;
3、B77/90值及其波动范围小:B77/90=290.38-311.63K,材料体系稳定;
4、低温下阻值较低R77K=160KΩ·cm。
具体实施方式
以下结合实施例对本发明作进一步详细说明,在不仅限于所给出的实施例。
实施例1
a、粉体配比:按摩尔比MnO2:NiO:Fe2O3:La2O3=1.15:1.3:0.55:3分别进行称量,置入聚四氟乙烯罐中,控制玛瑙球、粉体、分散剂丙酮与乙醚混合质量比为1:1:1,进行球磨,时间8h,,于温度100℃下干燥,得到Mn-Ni-Fe-La-O混合粉体,其中分散剂丙酮与乙醚混合体积比为1:9;
b、煅烧:将步骤a中得到的Mn-Ni-Fe-La-O混合粉体置于温度900℃下煅烧4h,得到尖晶石结构的Mn-Ni-Fe-La-O粉体;
c、混合研磨:将步骤b煅烧后的尖晶石Mn-Ni-Fe-La-O粉体置入玛瑙研钵中研磨2h;
d、成型:将步骤c复合后的粉体于280MP下冷等静压140s后成型;
e、烧结:将步骤d成型块体置入含有MnO2的Al2O3粉体中,于温度1150℃下烧结4h,得到La离子掺杂的深低温热敏电阻材料;
电极制备:将银浆涂覆于镧离子掺杂的深低温热敏电阻材料正反两面,置入钟罩炉中在温度800℃下烧结60min;将经过电极制备的镧离子掺杂的深低温热敏电阻材料进行电学性能测试,电学参数为:R90K=680KΩ·cm,R77K=1.2MΩ·cm,B77/90=302.78K。
实施例2
a、粉体配比:按摩尔比MnO2:NiO:Fe2O3:La2O3=2:1.9:0.1:2.5分别进行称量,置入聚四氟乙烯罐中,控制玛瑙球、粉体、分散剂丙酮与乙醚混合质量比为1.5:1:1,进行球磨,时间9h,于温度110℃下干燥,得到Mn-Ni-Fe-La-O混合粉体,其中分散剂丙酮与乙醚混合体积比为2:8;
b、煅烧:将步骤a中得到的Mn-Ni-Fe-La-O混合粉体置于温度950℃下煅烧3.5h,得到尖晶石结构的Mn-Ni-Fe-La-O粉体;
c、混合研磨:将步骤b煅烧后的尖晶石Mn-Ni-Fe-La-O粉体置入玛瑙研钵中研磨2.5h;
d、成型:将步骤c复合后的粉体于290MP下冷等静压145s后成型;
e、烧结:将步骤d成型块体置入含有Fe2O3的Al2O3粉体中,于温度1175℃下烧结3.5h,得到La离子掺杂的深低温热敏电阻材料;
电极制备:将银浆涂覆于镧离子掺杂的深低温热敏电阻材料正反两面,置入钟罩炉中在温度800℃下烧结60min;将经过电极制备的镧离子掺杂的深低温热敏电阻材料进行电学性能测试,电学参数为:R90K=1.3MΩ·cm,R77K=2.3MΩ·cm,B77/90=303.21K。
实施例3
a、粉体配比:按摩尔比MnO2:NiO:Fe2O3:La2O3=1:1:0.6:4分别进行称量,置入聚四氟乙烯罐中,控制玛瑙球、粉体、分散剂丙酮与乙醚混合质量比为2:1:1,进行球磨,时间9h,于温度110℃下干燥,得到Mn-Ni-Fe-La-O混合粉体,其中分散剂丙酮与乙醚混合体积比为3:7;
b、煅烧:将步骤a中得到的Mn-Ni-Fe-La-O混合粉体置于温度950℃下煅烧3h,得到尖晶石结构的Mn-Ni-Fe-La-O粉体;
c、混合研磨:将步骤b煅烧后的尖晶石Mn-Ni-Fe-La-O粉体置入玛瑙研钵中研磨3h;
d、成型:将步骤c复合后的粉体于300MP下冷等静压150s后成型;
e、烧结:将步骤d成型块体置入含有La2O3的Al2O3粉体中,于温度1225℃下烧结3h,得到La离子掺杂的深低温热敏电阻材料;
电极制备:将银浆涂覆于镧离子掺杂的深低温热敏电阻材料正反两面,置入钟罩炉中在温度800℃下烧结60min;将经过电极制备的镧离子掺杂的深低温热敏电阻材料进行电学性能测试,电学参数为:R90K=160.69KΩ·cm,R77K=280.35KΩ·cm,B77/90=296.7K。
实施例4
a、粉体配比:按摩尔比MnO2:NiO:Fe2O3:La2O3=0.45:1.3:0.55:3.5分别进行称量,置入聚四氟乙烯罐中,控制玛瑙球、粉体、分散剂丙酮与乙醚混合质量比为2.5:1:1,进行球磨,时间10h,于温度125℃下干燥,得到Mn-Ni-Fe-La-O混合粉体,其中分散剂丙酮与乙醚混合体积比为5:5;
b、煅烧:将步骤a中得到的Mn-Ni-Fe-La-O混合粉体置于温度1000℃下煅烧2.5h,得到尖晶石结构的Mn-Ni-Fe-La-O粉体;
c、混合研磨:将步骤b煅烧后的尖晶石Mn-Ni-Fe-La-O粉体置入玛瑙研钵中研磨4h;
d、成型:将步骤c复合后的粉体于315MP下冷等静压160s后成型;
e、烧结:将步骤d成型块体置入含有Fe2O3和La2O3的Al2O3粉体中,于温度1200℃下烧结2.5h,得到La离子掺杂的深低温热敏电阻材料;
电极制备:将银浆涂覆于镧离子掺杂的深低温热敏电阻材料正反两面,置入钟罩炉中在温度800℃下烧结60min;将经过电极制备的镧离子掺杂的深低温热敏电阻材料进行电学性能测试,电学参数为:R90K=543.66KΩ·cm,R77K=953.4KΩ·cm,B77/90=299.43K。
实施例5
a、粉体配比:按摩尔比MnO2:NiO:Fe2O3:La2O3=1:3:0.3:1分别进行称量,置入聚四氟乙烯罐中,控制玛瑙球、粉体、分散剂丙酮与乙醚混合质量比为3:1:1,进行球磨,时间11h,于温度140℃下干燥,得到Mn-Ni-Fe-La-O混合粉体,其中分散剂丙酮与乙醚混合体积比为7:3;
b、煅烧:将步骤a中得到的Mn-Ni-Fe-La-O混合粉体置于温度1050℃下煅烧2h,得到尖晶石结构的Mn-Ni-Fe-La-O粉体;
c、混合研磨:将步骤b煅烧后的尖晶石Mn-Ni-Fe-La-O粉体置入玛瑙研钵中研磨5h;
d、成型:将步骤c复合后的粉体于330MP下冷等静压165s后成型;
e、烧结:将步骤d成型块体置入含有MnO2和Fe2O3的Al2O3粉体中,于温度1250℃下烧结2h,得到La离子掺杂的深低温热敏电阻材料;
电极制备:将银浆涂覆于镧离子掺杂的深低温热敏电阻材料正反两面,置入钟罩炉中在温度800℃下烧结60min;将经过电极制备的镧离子掺杂的深低温热敏电阻材料进行电学性能测试,电学参数为:R90K=6.34MΩ·cm,R77K=11.38MΩ·cm,B77/90=311.63K。
实施例6
a、粉体配比:按摩尔比MnO2:NiO:Fe2O3:La2O3=1.7:2.3:0.1:2分别进行称量,置入聚四氟乙烯罐中,控制玛瑙球、粉体、分散剂丙酮与乙醚混合质量比为3.5:1:1,进行球磨,时间11h,于温度140℃下干燥,得到Mn-Ni-Fe-La-O混合粉体,其中分散剂丙酮与乙醚混合体积比为8:2;
b、煅烧:将步骤a中得到的Mn-Ni-Fe-La-O混合粉体置于温度1050℃下煅烧1.5h,得到尖晶石结构的Mn-Ni-Fe-La-O粉体;
c、混合研磨:将步骤b煅烧后的尖晶石Mn-Ni-Fe-La-O粉体置入玛瑙研钵中研磨5.5h;
d、成型:将步骤c复合后的粉体于340MP下冷等静压170s后成型;
e、烧结:将步骤d成型块体置入含有MnO2和La2O3的Al2O3粉体中,于温度1275℃下烧结1.5h,得到La离子掺杂的深低温热敏电阻材料;
电极制备:将银浆涂覆于镧离子掺杂的深低温热敏电阻材料正反两面,置入钟罩炉中在温度800℃下烧结60min;将经过电极制备的镧离子掺杂的深低温热敏电阻材料进行电学性能测试,电学参数为:R90K=3.03MΩ·cm,R77K=5.4MΩ·cm,B77/90=308.58K。
实施例7
a、粉体配比:按摩尔比MnO2:NiO:Fe2O3:La2O3=0.55:0.8:0.55:4.15分别进行称量,置入聚四氟乙烯罐中,控制玛瑙球、粉体、分散剂丙酮与乙醚混合质量比为4:1:1,进行球磨,时间12h,于温度150℃下干燥,得到Mn-Ni-Fe-La-O混合粉体,其中分散剂丙酮与乙醚混合体积比为9:1;
b、煅烧:将步骤a中得到的Mn-Ni-Fe-La-O混合粉体置于温度1100℃下煅烧1h,得到尖晶石结构的Mn-Ni-Fe-La-O粉体;
c、混合研磨:将步骤b煅烧后的尖晶石Mn-Ni-Fe-La-O粉体置入玛瑙研钵中研磨6h;
d、成型:将步骤c复合后的粉体于350MP下冷等静压175s后成型;
e、烧结:将步骤d成型块体置入含有MnO2、Fe2O3和Fe2O3的Al2O3粉体中,于温度1300℃下烧结1h,得到La离子掺杂的深低温热敏电阻材料。
电极制备:将银浆涂覆于镧离子掺杂的深低温热敏电阻材料正反两面,置入钟罩炉中在温度800℃下烧结60min;将经过电极制备的镧离子掺杂的深低温热敏电阻材料进行电学性能测试,电学参数为:R77K=160KΩ·cm,R90K=92.8KΩ·cm,B77/90=290.38K。
实施例1-7得到的任意一种La离子掺杂的深低温热敏电阻材料均为尖晶石结构,所有陶瓷片微观形貌均显示出良好的致密性,成瓷、一致性与复现性较好,低温测量温区较广。

Claims (2)

1.一种镧离子掺杂的深低温热敏电阻材料,其特征在于该材料是由MnO2、NiO、Fe2O3和La2O3为原料,按摩尔比MnO2:NiO: Fe2O3: La2O3=0.45-2:0.8-3:0.1-0.6:1-4.15,通过球磨、煅烧、研磨、成型、高温烧结制成。
2.根据权利要求1所述的一种镧离子掺杂的深低温热敏电阻材料的制备方法,其特征在于按下列步骤进行:
a、粉体配比:以MnO2、NiO、Fe2O3和La2O3为原料,按摩尔比MnO2:NiO: Fe2O3: La2O3=0.45-2:0.8-3:0.1-0.6:1-4.15分别进行称量,置入聚四氟乙烯罐中进行球磨,时间8h-12h,于温度100℃-150℃下干燥,得到Mn-Ni-Fe-La-O混合粉体,其中聚四氟乙烯罐中的玛瑙球、粉体、分散剂丙酮与乙醚的混合质量比为1-4:1:1,分散剂丙酮与乙醚混合体积比为1:9-9:1;
b、煅烧:将步骤a中得到的Mn-Ni-Fe-La-O混合粉体置于温度900℃-1100℃下煅烧1-4h,得到尖晶石结构的Mn-Ni-Fe-La-O粉体;
c、混合研磨:将步骤b煅烧后的尖晶石Mn-Ni-Fe-La-O粉体置入玛瑙研钵中研磨2-6h;
d、成型:将步骤c复合后的粉体于280MP-350MP下冷等静压140s-175s后成型;
e、烧结:将步骤d成型块体置入含有MnO2、Fe2O3、La2O3中一种或两种或三种的Al2O3粉体中,于温度1150-1300℃下烧结1-4h,得到镧离子掺杂的深低温热敏电阻材料。
CN201911117201.9A 2019-11-15 2019-11-15 一种镧离子掺杂的深低温热敏电阻材料及制备方法 Active CN110698189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911117201.9A CN110698189B (zh) 2019-11-15 2019-11-15 一种镧离子掺杂的深低温热敏电阻材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911117201.9A CN110698189B (zh) 2019-11-15 2019-11-15 一种镧离子掺杂的深低温热敏电阻材料及制备方法

Publications (2)

Publication Number Publication Date
CN110698189A true CN110698189A (zh) 2020-01-17
CN110698189B CN110698189B (zh) 2021-11-02

Family

ID=69206173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911117201.9A Active CN110698189B (zh) 2019-11-15 2019-11-15 一种镧离子掺杂的深低温热敏电阻材料及制备方法

Country Status (1)

Country Link
CN (1) CN110698189B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292111A (zh) * 2021-04-23 2021-08-24 陕西彩虹新材料有限公司 一种无钴单晶正极材料及其制备方法
CN113603484A (zh) * 2021-08-26 2021-11-05 陕西君普新航科技有限公司 负温度系数热敏电阻锰钛酸镧-铌镍酸铅的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063311A (en) * 1998-08-19 2000-05-16 Tdk Corporation Composition for thermister
CN1348192A (zh) * 2000-10-11 2002-05-08 株式会社村田制作所 具有负电阻温度系数的半导体陶瓷和负温度系数热敏电阻
CN1744240A (zh) * 2005-09-30 2006-03-08 中国科学院新疆理化技术研究所 一种深低温氧化物热敏电阻材料
CN104064297A (zh) * 2014-06-30 2014-09-24 句容市博远电子有限公司 用于超低温环境的热敏电阻材料
WO2015124421A1 (de) * 2014-02-18 2015-08-27 Epcos Ag Ntc-bauelement und verfahren zu dessen herstellung
CN105777093A (zh) * 2016-01-30 2016-07-20 中国科学院新疆理化技术研究所 一种高b低阻型测温复合热敏电阻材料及其制备方法
CN106699158A (zh) * 2017-01-18 2017-05-24 广州新莱福磁电有限公司 一种高精度ntc热敏电阻芯片的制造方法
CN109074923A (zh) * 2016-04-28 2018-12-21 埃普科斯股份有限公司 用于进行接通电流限制的电子器件和电子器件的应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063311A (en) * 1998-08-19 2000-05-16 Tdk Corporation Composition for thermister
CN1348192A (zh) * 2000-10-11 2002-05-08 株式会社村田制作所 具有负电阻温度系数的半导体陶瓷和负温度系数热敏电阻
CN1744240A (zh) * 2005-09-30 2006-03-08 中国科学院新疆理化技术研究所 一种深低温氧化物热敏电阻材料
WO2015124421A1 (de) * 2014-02-18 2015-08-27 Epcos Ag Ntc-bauelement und verfahren zu dessen herstellung
CN104064297A (zh) * 2014-06-30 2014-09-24 句容市博远电子有限公司 用于超低温环境的热敏电阻材料
CN105777093A (zh) * 2016-01-30 2016-07-20 中国科学院新疆理化技术研究所 一种高b低阻型测温复合热敏电阻材料及其制备方法
CN109074923A (zh) * 2016-04-28 2018-12-21 埃普科斯股份有限公司 用于进行接通电流限制的电子器件和电子器件的应用
CN106699158A (zh) * 2017-01-18 2017-05-24 广州新莱福磁电有限公司 一种高精度ntc热敏电阻芯片的制造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
杨思锋等: "测量超低温用NTC热敏电阻的制备和性能研究", 《功能材料》 *
王忠兵等: "La2O3掺杂对Mn-Co-Ni系NTC热敏电阻材料性能的影响", 《电子元件与材料》 *
王恒: "《传感器与测试技术》", 30 June 2016 *
罗绍华等: "《材料科学研究与工程技术系列丛书 功能材料》", 31 December 2014 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292111A (zh) * 2021-04-23 2021-08-24 陕西彩虹新材料有限公司 一种无钴单晶正极材料及其制备方法
CN113603484A (zh) * 2021-08-26 2021-11-05 陕西君普新航科技有限公司 负温度系数热敏电阻锰钛酸镧-铌镍酸铅的制备方法
CN113603484B (zh) * 2021-08-26 2022-08-30 陕西君普新航科技有限公司 负温度系数热敏电阻锰钛酸镧-铌镍酸铅的制备方法

Also Published As

Publication number Publication date
CN110698189B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN110698189B (zh) 一种镧离子掺杂的深低温热敏电阻材料及制备方法
CN107324799B (zh) 一种类钙钛矿型高温热敏电阻材料及其制备方法
CN107793153B (zh) 一种复合型热敏电阻材料及其制备方法和应用
CN101328062B (zh) 一种负温度系数双相复合热敏材料及其制备方法
CN108675769B (zh) 一种含锂六元系中温负温度系数热敏电阻材料
EP2835363B1 (en) Circuit board using a sintered oxide compact
CN102627458A (zh) 一种宽温区负温度系数热敏电阻材料
CN107406328A (zh) 黑色氧化铝陶瓷粉末、由其制备的黑色氧化铝陶瓷体及制备该黑色氧化铝陶瓷体的方法
CN102211924A (zh) 复合相负温度系数热敏陶瓷材料的制备方法
US20100134238A1 (en) Metal oxide sintered compact for thermistor, thermistor element, thermisor temperature sensor, and manufacturing method for metal oxide sintered compact for thermistor
CN108439982A (zh) 一种轴向复合负温度系数热敏陶瓷材料及其制备方法
CN105753474A (zh) 一种锶掺杂铬酸镧热敏电阻材料
CN103121837A (zh) 一种铝掺杂钙钛矿相负温度系数热敏陶瓷材料
CN108484126A (zh) 一种微波介质陶瓷及其制备方法
CN107226681B (zh) 一种低电阻率抗老化ntc热敏陶瓷材料及其制备方法
CN102311259A (zh) 复合相负温度系数热敏陶瓷材料
US8147990B2 (en) Ceramic material and electroceramic component comprising the ceramic material
JP5485275B2 (ja) セラミックス材料、このセラミックス材料の製造方法、およびこのセラミックス材料からなる電子セラミックス素子
CN103922736B (zh) 铌酸钾基v型ptc材料及其制备方法
JP2016196392A (ja) 導電性酸化物焼結体、それを用いたサーミスタ素子及び温度センサ
KR101511840B1 (ko) 온도센서용 금속산화물 소결체 및 이의 제조방법
CN112408977A (zh) 一种高品质的陶瓷介质材料及其制备方法
CN105060888B (zh) 一种氧化铝掺杂制备低损耗稳定铌酸钕陶瓷
CN107140977B (zh) 钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法
CN106348756A (zh) 一种高q值锂镁铌系微波介质陶瓷

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant