CN110665371A - 一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法 - Google Patents

一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法 Download PDF

Info

Publication number
CN110665371A
CN110665371A CN201910464068.8A CN201910464068A CN110665371A CN 110665371 A CN110665371 A CN 110665371A CN 201910464068 A CN201910464068 A CN 201910464068A CN 110665371 A CN110665371 A CN 110665371A
Authority
CN
China
Prior art keywords
membrane
nano
tio
modified
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910464068.8A
Other languages
English (en)
Other versions
CN110665371B (zh
Inventor
曾安然
曾安蓉
林志杰
张少杰
王修齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liming Vocational University
Original Assignee
Liming Vocational University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liming Vocational University filed Critical Liming Vocational University
Priority to CN201910464068.8A priority Critical patent/CN110665371B/zh
Publication of CN110665371A publication Critical patent/CN110665371A/zh
Application granted granted Critical
Publication of CN110665371B publication Critical patent/CN110665371B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/74Natural macromolecular material or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法,本发明的多功能膜是对基膜表面进行一次以上的逐层修饰,避免其它改性方法中催化剂被覆盖或功能粒子易脱落的问题,光催化纳米粒子尽可能暴露于光源,实现纳米多糖纤维吸附富集、GO/TiO2催化降解、膜分离同步进行,实现对印染废水的高效处理。本发明与现有技术相比,制备方法简单易操作,经济高效并易于工业化。

Description

一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备 方法
技术领域
本发明属于膜材料改性技术领域。涉及到利用多巴胺对膜表面改性以提高材料的亲水性和对纳米改性粒子的固载黏附力,以实现吸附富集、光催降解、分离多功能膜的一体化构建。该方法制得的分离膜可用于复杂成分印染废水的高效深度处理。
背景技术
淡水资源极度匮乏,环境污染日趋严重是当今制约人类文明健康和可持续发展的重要瓶颈。作为一种新型的高效分离技术,膜分离技术在水处理方面有着广泛的应用前景。印染废水的排放在沿海城市占有较大的比重,尤其是活性染料废水含盐量高、色度深、污染性强,对近海水体和生态环境造成了严重破坏。印染废水有机污染物含量高、成分复杂、对环境有极强的破坏性,是最难处理的工业废水之一。多年来专家学者们发展了多种印染废水处理技术,其中膜分离技术和光催化技术因各自独特优异的处理性能及工艺应用前景广阔成为近年来的研究热点。膜分离过程中浓差极化、膜污染等因素会导致膜通量下降影响处理效果和缩短使用寿命,而光催化降解技术除二氧化钛本身催化效率不高,可见光利用率低等缺点外,还存在悬浮式催化剂回收困难,易造成二次污染等问题。膜分离技术和光催化技术自身固有的工艺缺陷是这两种技术推广应用的瓶颈。
光催化复合分离膜是一种兼具光催化和膜分离的共同功能和特点的新型膜。将光催化剂负载于分离膜中,利用二氧化钛的光催化性能和亲水性能,大大提高对有机物的降解能力及膜表面抗污染性能。而将催化剂固载于膜表面也可以很好地解决催化剂回收难的问题。经过膜作用及时截留富集水中污染物,并在光催化剂作用下就地降解有机物,二者的协同作用能实现印染废水的高效深度处理并提高分离膜的使用寿命,具有显著的创新意义和应用前景。
为提高催化剂与基膜的粘结力,利用多巴胺的仿生粘附作用对基膜进行改性。多巴胺表面黏附改性是一种新兴的表面改性方法,该分子中的邻苯二酚和氨基官能团可以和材料表面建立共价-非共价相互作用,从而实现多巴胺分子对材料表面的超强黏附行为。经过多巴胺涂覆过的材料表面具有邻苯二酚官能团,可以进行二次反应,实现材料表面对功能纳米粒子的进一步功能化固载。
TiO2是一种典型的光催化剂,为提高其光催化活性,利用高亲水性、高导电性的氧化石墨烯(GO)与TiO2共混固载在膜表面从而获得优良的光催化性能,以期获得降解染料废水和灭火细菌的作用。由于GO具有良好的导电性i,能有效的将TiO2产生的光生电子导流在其表面,抑制光生电子与空穴的复合,能有效的提高光生电子的传导效率,因此GO与TiO2的复合在提高膜表面亲水性的同时能有效的提高TiO2的光催化效率。
在研究重金属离子吸附和有机染料降解的过程中,因如纳米纤维素、壳聚糖、海藻酸盐等纳米多糖纤维具有无毒无害、表面官能团多等性质成为吸附法治理废水的热门材料。将纳米多糖纤维引入到复合膜的制备中,可提高膜材料力学性能和污染物富集性能。
中国发明专利CN 102614783 B(一种多巴胺改性纳米材料制备高通量复合膜)利用多巴胺的自聚合在二氧化钛纳米粒子表面而形成活性的聚多巴胺复合层,并将这种改性的纳米粒子作为添加剂添加到 PVDF铸膜液中制得复合膜,但该方法可能存在发挥光催降解作用的 TiO2等功能粒子被有机物覆盖而无法发挥效用。
发明内容
本发明的目的在于解决现有技术中膜通量低,纳米材料分散不均匀和易脱落、二氧化钛本身催化效率不高,可见光利用率低等问题,提供一种功能纳米粒子分散均匀、不易脱落且能充分发挥TiO2效用的多功能复合膜。同时可通过改变纳米材料的种类来改善分离膜的亲疏水性、抗污染能力、光催降解能力等性能。
为实现上述目的,本发明采用以下技术方案:
一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法,包含如下步骤:
(1)聚多巴胺改性膜的制备:取基膜浸于无水乙醇中超声清洗 1-5h除去表面油剂及杂质,取出后用蒸馏水清洗,晾干备用,取100mL 质量浓度为0.5-5g/L的多巴胺溶液,加入Tris-HCl缓冲液并调节至 pH为8-9,取预处理后的改性膜浸泡于多巴胺溶液中于15-40℃恒温振荡12-30h取出,冲洗晾干得PDA改性膜;
(2)纳米多糖纤维的制备:称取多糖粉加入到40-60%硫酸溶液搅拌混合均匀,在40-60℃缓慢温和加热下酸解,反应结束后超声20-30min,使其充分分散,通过离心洗涤得水溶胶状体,置于透析袋中透析直到pH为7,最后收集纳米多糖纤维悬浮液胶体备用;
(3)二氧化钛的表面改性:采用偶联剂预先对TiO2进行表面活化,以乙醇/水溶液作为溶剂,用醋酸调节pH至4-5,将偶联剂在室温下搅拌水解3-6h制备偶联剂水解液,取TiO2置于无水乙醇中充分搅拌并超声分散后,升温至60℃,滴加适量偶联剂水解液,并用NaOH溶液调节pH值为8,反应2h,反应结束后真空干燥备用;
(4)功能纳米粒子分散液的制备:按一定比例准确称取丙烯酰胺、改性TiO2、GO水分散液和纳米多糖胶体加入400-500mL纯水中,超声使均匀混合,送入到反应釜中,通入氮气,调节反应釜温度为 55-60℃,滴加100-150mL、0.08-0.1mol/l的过硫酸铵水溶液,滴加完毕后保温搅拌3-4小时,出料冷却,得改性共混液;
(5)固载:将PDA改性膜置于超滤杯中,在0.1-0.2MPa下使PDA 改性膜对改性共混液进行压力吸附,吸附完毕后将膜置于真空烘箱中减压常温干燥,即得到目标吸附光催分离复合膜材料。
所述的基膜按材料包括有机膜、无机膜、有机无机杂化膜以及膜组合。
所述的纳米多糖纤维,包括但不限于纳米纤维素、纳米壳聚糖、纳米海藻酸,其用量为10-40g/m2。
所述的TiO2表面活化改性剂,包括但不限于硅烷偶联剂KH550、硅烷偶联剂KH570、钛酸酯偶联剂。
所述的催化剂TiO2的用量为15-40g/m2,GO的用量为TiO2质量的0.2-2倍,丙烯酰胺的用量为TiO2质量的0.1-0.18%。
本发明的优点:
本发明的效果和益处是基于多巴胺分子对材料表面的超强黏附行为,并引入活性基团与功能纳米粒子作用,提高复合膜表面改性粒子的粘结力。同时使具有吸附效应的纳米多糖经过膜作用及时截留富集水中污染物、使具有光催特性的石墨烯/TiO2能暴露于光源下而发挥催化降解作用降低污染物含量,通过水通量测试和染料分子分离降解测试,膜的水通量和分离降解能力都有提高。多功能复合膜的操作简便易行,反应条件温和,制备的复合膜性能良好,为膜改性提供了新的方法和思路。本发明将具有光催特性的石墨烯/TiO2共混分散到以丙烯酰胺为单体的水溶液中,通过引发聚合,得到聚丙烯酰胺 /石墨烯/TiO2共混料,进一步提高了对水中悬浮物质的吸附效果,提高了污染物与光催化剂的接触作用,与纳米多糖纤维形成有效的协同促进作用,进而增强了光催化降解效果。
本发明利用多巴胺分子对材料表面的超强黏附作用而进行亲水化改性,并为后续功能纳米粒子固载提供二次反应的活性基团;利用利用纳米多糖纤维对污染物的吸附富集能力强化分离过程中污染物与光催化剂的接触作用,选用氧化石墨烯(GO)、改性TiO2作为催化剂体系,提高复合膜的光催降解效率;本发明的多功能膜是对基膜表面进行一次以上的逐层修饰,避免其它改性方法中催化剂被覆盖或功能粒子易脱落的问题,光催化纳米粒子尽可能暴露于光源,实现纳米多糖纤维吸附富集、GO/TiO2催化降解、膜分离同步进行,实现对印染废水的高效处理。本发明与现有技术相比,制备方法简单易操作,经济高效并易于工业化。
具体实施方式
实施例1
一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法,包含如下步骤:
(1)聚多巴胺改性膜的制备:取PTFE膜浸于无水乙醇中超声清洗1h除去表面油剂及杂质,取出后用蒸馏水清洗,晾干备用,取100mL 质量浓度为0.5g/L的多巴胺溶液,加入Tris-HCl缓冲液并调节至 pH为8,取预处理后的改性膜浸泡于多巴胺溶液中于15℃恒温振荡 12-30h取出,冲洗晾干得PDA改性膜;
(2)纳米多糖纤维的制备:称取多糖粉加入到40%硫酸溶液搅拌混合均匀,在40℃缓慢温和加热下酸解,反应结束后超声20min,使其充分分散,通过离心洗涤得水溶胶状体,置于透析袋中透析直到 pH为7,最后收集纳米多糖纤维悬浮液胶体备用;
(3)二氧化钛的表面改性:采用偶联剂预先对TiO2进行表面活化,以乙醇/水溶液作为溶剂,用醋酸调节pH至4,将偶联剂在室温下搅拌水解3h制备偶联剂水解液,取TiO2置于无水乙醇中充分搅拌并超声分散后,升温至60℃,滴加适量偶联剂水解液,并用NaOH溶液调节pH值为8,反应2h,反应结束后真空干燥备用;
(4)功能纳米粒子分散液的制备:按一定比例准确称取丙烯酰胺、改性TiO2、GO水分散液和纳米多糖胶体加入400-500mL纯水中,超声使均匀混合,送入到反应釜中,通入氮气,调节反应釜温度为55℃,滴加100mL、0.08mol/l的过硫酸铵水溶液,滴加完毕后保温搅拌3 小时,出料冷却,得改性共混液;
(5)固载:将PDA改性膜置于超滤杯中,在0.1MPa下使PDA改性膜对改性共混液进行压力吸附,吸附完毕后将膜置于真空烘箱中减压常温干燥,即得到目标吸附光催分离复合膜材料。
所述的纳米多糖纤维为纳米壳聚糖,其用量为40g/m2。
所述的TiO2表面活化改性剂为硅烷偶联剂KH570。
所述的催化剂TiO2的用量为15g/m2,GO的用量为TiO2质量的0.2 倍,丙烯酰胺的用量为TiO2质量的0.1%。
具体实施结果见实例1实施结果,测试方法如下:
①纯水通量测试:采用自制膜通量评价系统进行测定,在0.1MPa 压力下,料液经膜过滤后返回进水槽,其水通量J(L·m-2·h-1) 按下式计算
Figure RE-GDA0002293771440000071
式中,V为透过液体积,L;A为膜的有效面积,m2;t为过滤时间, h。
②光催化性能测试:以阳离子染料罗丹明B(RhB)为目标物,以疝气灯为光源,测试膜的光催化性能。将待测膜置于装有相同体积 (50mL)和相同浓度(10mg·L-1)罗丹明B溶液的表面皿中进行光照降解实验。每隔0.5h取出一定量的溶液进行吸光度测试,由标准曲线确定罗丹明B溶液。
实例1实施结果
Figure RE-GDA0002293771440000081
实施例2
一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法,包含如下步骤:
(1)聚多巴胺改性膜的制备:取PTFE膜浸于无水乙醇中超声清洗5h除去表面油剂及杂质,取出后用蒸馏水清洗,晾干备用,取100mL 质量浓度为5g/L的多巴胺溶液,加入Tris-HCl缓冲液并调节至pH 为9,取预处理后的改性膜浸泡于多巴胺溶液中于40℃恒温振荡30h 取出,冲洗晾干得PDA改性膜;
(2)纳米多糖纤维的制备:称取多糖粉加入到60%硫酸溶液搅拌混合均匀,在60℃缓慢温和加热下酸解,反应结束后超声30min,使其充分分散,通过离心洗涤得水溶胶状体,置于透析袋中透析直到 pH为7,最后收集纳米多糖纤维悬浮液胶体备用;
(3)二氧化钛的表面改性:采用偶联剂预先对TiO2进行表面活化,以乙醇/水溶液作为溶剂,用醋酸调节pH至5,将偶联剂在室温下搅拌水解6h制备偶联剂水解液,取TiO2置于无水乙醇中充分搅拌并超声分散后,升温至60℃,滴加适量偶联剂水解液,并用NaOH溶液调节pH值为8,反应2h,反应结束后真空干燥备用;
(4)功能纳米粒子分散液的制备:按一定比例准确称取丙烯酰胺、改性TiO2、GO水分散液和纳米多糖胶体加入500mL纯水中,超声使均匀混合,送入到反应釜中,通入氮气,调节反应釜温度为60℃,滴加150mL、0.1mol/l的过硫酸铵水溶液,滴加完毕后保温搅拌4小时,出料冷却,得改性共混液;
(5)固载:将PDA改性膜置于超滤杯中,在0.2MPa下使PDA改性膜对改性共混液进行压力吸附,吸附完毕后将膜置于真空烘箱中减压常温干燥,即得到目标吸附光催分离复合膜材料。
所述的基膜按材料包括有机膜、无机膜、有机无机杂化膜以及膜组合。
所述的纳米多糖纤维为纳米海藻酸,其用量为10g/m2。
所述的TiO2表面活化改性剂为钛酸酯偶联剂。
所述的催化剂TiO2的用量为15g/m2,GO的用量为TiO2质量的0.2 倍,丙烯酰胺的用量为TiO2质量的0.1%。
具体实施结果见实例2实施结果,测试方法如下:
①纯水通量测试:采用自制膜通量评价系统进行测定,在0.1MPa 压力下,料液经膜过滤后返回进水槽,其水通量J(L·m-2·h-1) 按下式计算
Figure RE-GDA0002293771440000101
式中,V为透过液体积,L;A为膜的有效面积,m2;t为过滤时间, h。
②光催化性能测试:以阳离子染料罗丹明B(RhB)为目标物,以疝气灯为光源,测试膜的光催化性能。将待测膜置于装有相同体积 (50mL)和相同浓度(10mg·L-1)罗丹明B溶液的表面皿中进行光照降解实验。每隔0.5h取出一定量的溶液进行吸光度测试,由标准曲线确定罗丹明B溶液。
实例2实施结果
项目 对照膜 膜1 膜2 膜3
多巴胺溶液浓度(g/L) 0 3 3 3
基膜材料 PTFE PTFE PTFE PTFE
纳米壳聚糖用量(g) 0 0.005 0.010 0.025
KH-TiO2用量(g) 0 0.05 0.05 0.05
GO用量(g) 0 0.02 0.02 0.02
纯水通量(L·m-2·h-1) 90 115 107 98
罗丹明降解率(%) 0 80.99 84.21 86.77

Claims (5)

1.一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法,包含如下步骤:
(1)聚多巴胺改性膜的制备:取基膜浸于无水乙醇中超声清洗1-5h除去表面油剂及杂质,取出后用蒸馏水清洗,晾干备用,取100mL质量浓度为0.5-5g/L的多巴胺溶液,加入Tris-HCl缓冲液并调节至pH为8-9,取预处理后的改性膜浸泡于多巴胺溶液中于15-40℃恒温振荡12-30h取出,冲洗晾干得PDA改性膜;
(2)纳米多糖纤维的制备:称取多糖粉加入到40-60%硫酸溶液搅拌混合均匀,在40-60℃缓慢温和加热下酸解,反应结束后超声20-30min,使其充分分散,通过离心洗涤得水溶胶状体,置于透析袋中透析直到pH为7,最后收集纳米多糖纤维悬浮液胶体备用;
(3)二氧化钛的表面改性:采用偶联剂预先对TiO2进行表面活化,以乙醇/水溶液作为溶剂,用醋酸调节pH至4-5,将偶联剂在室温下搅拌水解3-6h制备偶联剂水解液,取TiO2置于无水乙醇中充分搅拌并超声分散后,升温至60℃,滴加适量偶联剂水解液,并用NaOH溶液调节pH值为8,反应2h,反应结束后真空干燥备用;
(4)功能纳米粒子分散液制备:按一定比例准确称取丙烯酰胺、改性TiO2、GO水分散液和纳米多糖胶体加入400-500mL纯水中,超声使均匀混合,送入到反应釜中,通入氮气,调节反应釜温度为55-60℃,滴加100-150mL、0.08-0.1mol/l的过硫酸铵水溶液,滴加完毕后保温搅拌3-4小时,出料冷却,得改性共混液;
(5)固载:将PDA改性膜置于超滤杯中,在0.1-0.2MPa下使PDA改性膜对改性共混液进行压力吸附,吸附完毕后将膜置于真空烘箱中减压常温干燥,即得到目标吸附光催分离复合膜材料。
2.根据权利要求1所述的一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法,其特征在于所述的基膜按材料包括有机膜、无机膜、有机无机杂化膜以及膜组合。
3.根据权利要求1所述的一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法,其特征在于所述的纳米多糖纤维,包括但不限于纳米纤维素、纳米壳聚糖、纳米海藻酸,其用量为10-40g/m2。
4.根据权利要求1所述的一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法,其特征在于所述的TiO2表面活化改性剂,包括但不限于硅烷偶联剂KH550、硅烷偶联剂KH570、钛酸酯偶联剂。
5.根据权利要求1所述的一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法,其特征在于所述的催化剂TiO2的用量为15-40g/m2,GO的用量为TiO2质量的0.2-2倍,丙烯酰胺的用量为TiO2质量的0.1-0.18%。
CN201910464068.8A 2019-05-30 2019-05-30 一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法 Active CN110665371B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910464068.8A CN110665371B (zh) 2019-05-30 2019-05-30 一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910464068.8A CN110665371B (zh) 2019-05-30 2019-05-30 一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法

Publications (2)

Publication Number Publication Date
CN110665371A true CN110665371A (zh) 2020-01-10
CN110665371B CN110665371B (zh) 2022-02-25

Family

ID=69068663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910464068.8A Active CN110665371B (zh) 2019-05-30 2019-05-30 一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法

Country Status (1)

Country Link
CN (1) CN110665371B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113244786A (zh) * 2021-05-26 2021-08-13 福建农林大学 一种基于碳负载硫化镉纳米材料的抗菌纳滤膜的制备方法
CN113457473A (zh) * 2021-06-24 2021-10-01 同济大学 一种天然蛭石纳米颗粒改性pvdf超滤膜的制备方法
CN113948746A (zh) * 2021-10-12 2022-01-18 南京工业大学 一种带有有机层的金属有机骨架膜及其应用
CN114130213A (zh) * 2021-12-07 2022-03-04 江苏厚生新能源科技有限公司 一种高强高渗透聚乙烯污水处理膜及其制备工艺
CN114191988A (zh) * 2021-11-25 2022-03-18 宜宾学院 一种膜材料在同时去除水中氨氮和亚硝酸盐氮中的应用
CN115007219A (zh) * 2022-07-05 2022-09-06 江南大学 一种TiO2-PTFE支撑层改性的正渗透光催化膜及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102961977A (zh) * 2012-12-17 2013-03-13 中国科学院宁波材料技术与工程研究所 一种聚乳酸中空纤维透析膜的制备方法
CN103435829A (zh) * 2013-07-24 2013-12-11 烟台绿水赋膜材料有限公司 一种基于邻苯二酚衍生物的纳米功能化表面修饰方法
CN103977717A (zh) * 2014-05-26 2014-08-13 山东招金膜天有限责任公司 一种抗生物污染聚醚砜中空纤维超滤膜及其制备方法
KR20150097257A (ko) * 2014-02-18 2015-08-26 전북대학교산학협력단 수처리용 나노복합재 분리막 및 그 제조 방법
CN104927080A (zh) * 2015-04-08 2015-09-23 北京航空航天大学 一种仿生层状强韧一体化导电石墨烯复合材料的制备方法
CN105521717A (zh) * 2016-01-28 2016-04-27 中国科学院宁波材料技术与工程研究所 一种用偶联剂法制备有机-无机杂化全热交换膜的方法
CN105944708A (zh) * 2016-04-28 2016-09-21 安徽理工大学 TiO2-C@TiO2-rGO透明自支撑薄膜及其制备方法和应用
CN107051229A (zh) * 2017-04-17 2017-08-18 江苏大学 一种聚乙烯亚胺交联的氧化石墨烯/二氧化钛层状复合膜的制备方法及其用途
CN107441957A (zh) * 2017-09-20 2017-12-08 江南大学 一种聚乙烯醇‑聚丙烯酸‑纳米纤维素复合膜的制备方法
WO2018093943A1 (en) * 2016-11-16 2018-05-24 The Regents Of The University Of California Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102961977A (zh) * 2012-12-17 2013-03-13 中国科学院宁波材料技术与工程研究所 一种聚乳酸中空纤维透析膜的制备方法
CN103435829A (zh) * 2013-07-24 2013-12-11 烟台绿水赋膜材料有限公司 一种基于邻苯二酚衍生物的纳米功能化表面修饰方法
KR20150097257A (ko) * 2014-02-18 2015-08-26 전북대학교산학협력단 수처리용 나노복합재 분리막 및 그 제조 방법
CN103977717A (zh) * 2014-05-26 2014-08-13 山东招金膜天有限责任公司 一种抗生物污染聚醚砜中空纤维超滤膜及其制备方法
CN104927080A (zh) * 2015-04-08 2015-09-23 北京航空航天大学 一种仿生层状强韧一体化导电石墨烯复合材料的制备方法
CN105521717A (zh) * 2016-01-28 2016-04-27 中国科学院宁波材料技术与工程研究所 一种用偶联剂法制备有机-无机杂化全热交换膜的方法
CN105944708A (zh) * 2016-04-28 2016-09-21 安徽理工大学 TiO2-C@TiO2-rGO透明自支撑薄膜及其制备方法和应用
WO2018093943A1 (en) * 2016-11-16 2018-05-24 The Regents Of The University Of California Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings
CN107051229A (zh) * 2017-04-17 2017-08-18 江苏大学 一种聚乙烯亚胺交联的氧化石墨烯/二氧化钛层状复合膜的制备方法及其用途
CN107441957A (zh) * 2017-09-20 2017-12-08 江南大学 一种聚乙烯醇‑聚丙烯酸‑纳米纤维素复合膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张潇: ""天然高分子纤维素、海藻酸钠基复合凝胶的制备及表征"", 《中国优秀硕士学位论文全文数据库》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113244786A (zh) * 2021-05-26 2021-08-13 福建农林大学 一种基于碳负载硫化镉纳米材料的抗菌纳滤膜的制备方法
CN113457473A (zh) * 2021-06-24 2021-10-01 同济大学 一种天然蛭石纳米颗粒改性pvdf超滤膜的制备方法
CN113457473B (zh) * 2021-06-24 2022-08-19 同济大学 一种天然蛭石纳米颗粒改性pvdf超滤膜的制备方法
CN113948746A (zh) * 2021-10-12 2022-01-18 南京工业大学 一种带有有机层的金属有机骨架膜及其应用
CN114191988A (zh) * 2021-11-25 2022-03-18 宜宾学院 一种膜材料在同时去除水中氨氮和亚硝酸盐氮中的应用
CN114130213A (zh) * 2021-12-07 2022-03-04 江苏厚生新能源科技有限公司 一种高强高渗透聚乙烯污水处理膜及其制备工艺
CN115007219A (zh) * 2022-07-05 2022-09-06 江南大学 一种TiO2-PTFE支撑层改性的正渗透光催化膜及其制备方法

Also Published As

Publication number Publication date
CN110665371B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
CN110665371B (zh) 一种基于聚多巴胺仿生涂层的吸附光催分离多功能膜的制备方法
CN108014760B (zh) 一种吸附铅离子的海藻酸钠/羧基化纳晶纤维素水凝胶微球
CN101829545B (zh) 一种利用蛋壳膜作为基体的重金属生物吸附剂及其制备方法
CN110067042B (zh) 一种魔芋葡甘聚糖基抗菌水凝胶纤维及其制备方法
CN104759261A (zh) 一种二氧化钛纳米复合材料及其制备方法和用途
CN107893062B (zh) 一种纤维素酶固定化及水解纤维素的方法
CN107754619B (zh) 一种天然聚电解质纳滤膜的制备方法
CN104761680A (zh) 一种具有重金属捕集作用的纳米淀粉基絮凝剂的制备方法
CN104368325A (zh) 一种光降解甲醛蜂窝活性炭的制备方法
CN111111638B (zh) 一种粉煤灰光催化材料的制备方法
CN111410857A (zh) 水性负氧离子涂料制备系统、制备工艺及该涂料组合物
CN111389215A (zh) 一种超支化聚酰胺改性活性炭的制备方法及应用
CN106955677A (zh) 一种基于离子液体改性的鸡蛋壳/活性炭吸附剂及其制备方法
CN112624565B (zh) 一种用于污泥深度脱水的多羟基有机阳离子高分子污泥调理剂及其制备方法
WO2022165877A1 (zh) 苹果酸-壳聚糖纳米孔水凝胶微球及其制备方法及应用
CN109400720A (zh) 一种两性纤维素吸附剂的制备方法及应用
CN109095546B (zh) 一种光催化处理废水协同制取氢气的方法
CN111450896A (zh) 一种石墨烯增强的光催化梯度复合有机膜及其制备方法
CN114505100B (zh) 一种用于处理印染废水的磷钼酸掺杂Zr-MOF材料的制备方法
CN103265720B (zh) 一种制备多孔交联壳聚糖微球的新方法
CN108772045A (zh) 石墨烯改性的复合多孔微球空气净化剂的制备方法
CN111495330B (zh) 一种高比表面多维生物碳吸附基质及其制备方法
CN114713290A (zh) 一种葡萄藤材制备废水处理材料的方法以及废水处理方法
CN110903015B (zh) 一种环保复合型污泥调理剂的生产方法
CN104448935A (zh) 纳米碳酸钙复合粒子制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant