CN110639373B - 一种精确筛分气体分子对的混合基质膜的制备方法 - Google Patents

一种精确筛分气体分子对的混合基质膜的制备方法 Download PDF

Info

Publication number
CN110639373B
CN110639373B CN201910826816.2A CN201910826816A CN110639373B CN 110639373 B CN110639373 B CN 110639373B CN 201910826816 A CN201910826816 A CN 201910826816A CN 110639373 B CN110639373 B CN 110639373B
Authority
CN
China
Prior art keywords
mof
zif
ionic liquid
bmim
rtils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910826816.2A
Other languages
English (en)
Other versions
CN110639373A (zh
Inventor
郑文姬
郭自兴
王秋晨
焉晓明
代岩
贺高红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910826816.2A priority Critical patent/CN110639373B/zh
Publication of CN110639373A publication Critical patent/CN110639373A/zh
Application granted granted Critical
Publication of CN110639373B publication Critical patent/CN110639373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种精确筛分气体分子对的混合基质膜的制备方法,属于膜分离技术领域。将活化后的MOF颗粒分散于离子液体溶液中,再使溶液中的低沸点溶剂充分挥发得到MOF/离子液体复合物。选用溶剂洗掉复合物表面离子液体,得到类核壳结构的不同离子液体含量复合物,再将其混入聚合物溶液,浇铸成膜。本方法从填充物有序调控填料孔道尺寸的角度可将MOF孔径修饰到一定范围内,实现了精确筛分具有不同尺寸的气体分子对,在其他物化性质相近而尺寸有差异的气体对分离过程中,提供一种新颖可行的思路。

Description

一种精确筛分气体分子对的混合基质膜的制备方法
技术领域
本发明属于膜分离技术领域,具体涉及一种可以精确筛分不同尺寸气体分子对的混合基质膜制备的方法。
背景技术
CO2气体捕集已经成为21世纪人类社会亟需解决的国际性问题之一。CO2在大气中的浓度过高会加剧全球变暖,此外,CO2是天然气,煤田气,沼气等能源气的常见伴生气,如果不预先除去会造成运输过程中管道腐蚀,还会降低燃料热值影响供能效率。传统上对CO2的分离主要采用变压吸附、化学吸收、低温蒸馏等方法。气体膜分离技术是一种可用于CO2捕集的新型分离技术,相对于传统分离方法,它具有无相变、无需质量分离剂的再生过程、工艺条件温和、操作成本低、占地面积小等优点,近年来得到迅猛发展。膜材料是膜分离技术的关键部分。传统的聚合物膜材料用于CO2分离时,存在分离性能较低、塑化严重、不耐高温高压等问题,制约了CO2膜分离的工业化发展。因此,研究能同时满足分离要求和机械性能要求的膜材料是该领域的重点。
混合基质膜(MixedMatrixMembrane)是将无机膜的高分离性能和聚合物膜的机械性能及成本优势结合起来,满足未来膜分离工业要求的新型材料。无机填料的选择是制备高性能混合基质膜的关键。金属-有机框架化合物(MOFs)因其部分有机的本质,在膜材料中表现出更好的界面相容性。MOFs的孔道是由金属离子和有机配体共同组装而成的,因有机配体的功能化的多样性,MOFs的种类也在不断更新,目前已达到上万种。但MOFs的孔道尺寸一般大于气体分子动力学尺寸,无法理想地介于两种待分离气体之间,从而无法充分发挥填料的筛分效应。虽然可以通过金属离子置换,配体改性等方法进行孔结构修饰,但操作难度高,无法满足实际要求。
发明内容
基于现有技术中存在的问题,本发明的目的在于制备一种可以精确筛分不同尺寸气体分子对的混合基质膜。
本发明的技术方案:
一种精确筛分气体分子对的混合基质膜的制备方法,步骤如下:
选择具有不同大小、不同物化性质的室温离子液体(RTILs),将其和150℃条件下烘箱活化后的填料MOF粉末分散于溶剂A中,采用溶剂A自然挥发的方法得到RTILs/MOF复合物,选用溶剂B洗掉所制备复合物表面的游离离子液体,得到不同离子液体含量的RTILs/MOF复合物,记为IL@MOF,再将其混入聚合物溶液,浇铸成膜。
所述的RTILs和MOF的质量比为0.5~5;
所述的室温离子液体为1-乙基-3-甲基六氟磷酸盐[Emim][PF6]、1-丁基-3-甲基六氟磷酸盐[Bmim][PF6]、1-己基-3-甲基六氟磷酸盐[Hmim][PF6]、1-丁基-3-甲基双三氟甲磺酰亚胺盐[Bmim][Tf2N]或1-乙基-3-甲基双三氟甲磺酰亚胺盐[Emim][Tf2N]。
所述的MOF为带有笼-孔道结构的MOF,包括ZIF-71,ZIF-67,ZIF-7,ZIF-8,ZIF-90,ZIF-95或ZIF-100。
所述的溶剂A为丙酮、氯仿、乙醚或二氯甲烷。
所述的溶剂B为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺或二甲基亚砜。
所述的聚合物为聚醚共聚酰胺1657(Pebax1657)、聚酰亚胺、聚醚酰亚胺、聚醚砜或聚二甲基硅氧烷。
所述的聚合物用量根据公式确定:
Figure BDA0002189359140000021
本发明的有益效果:本发明所制备的离子液体@MOFs复合物中,离子液体的含量范围为3%~20%,将其混入Pebax1657制备混合基质膜后,在25度,0.3MPa的测试条件下,CO2渗透系数相较纯Pebax膜提高了92.1%可达115Barrer,CO2/N2分离选择性提高了54.5%达到85,超过2008年CO2/N2Roberson上限。
附图说明
图1是实施例1,ZIF-8,[Bmim][PF6]@ZIF-8复合物,[Bmim][PF6]的热失重曲线。
图2是实施例2,ZIF-8,[Bmim][PF6]@ZIF-8复合物,[Bmim][PF6]的热失重曲线。
图3是实施例3,ZIF-8,[Bmim][Tf2N]@ZIF-8复合物,[Bmim][Tf2N]的热失重曲线。
图4是实施例4,ZIF-71,[Emim][Tf2N]@ZIF-71复合物,[Emim][Tf2N]的热失重曲线。
具体实施方式
以下结合技术方案,进一步说明本发明的具体实施方式。
实施例1
选择离子液体1-丁基-3-甲基六氟磷酸盐([Bmim][PF6]),取0.07g[Bmim][PF6]加入20mL丙酮中,在低转速(<250r/min)下搅拌1小时使[Bmim][PF6]在丙酮中分布均匀,加入0.2g活化后的ZIF-8粉末后,水浴超声使ZIF-8充分分散在[Bmim][PF6]/丙酮溶液中,再通过搅拌自然挥发丙酮,得到[Bmim][PF6]/ZIF-8复合物,105℃烘箱中热处理过夜使得离子液体尽量进入ZIF-8孔道内。N,N-二甲基甲酰胺洗-收集重复三次,每次十分钟,以确保ZIF-8表面的[Bmim][PF6]被彻底洗去。将洗完的复合物记为[Bmim][PF6]@ZIF-8。再将[Bmim][PF6]@ZIF-8放入150℃烘箱使N,N-二甲基甲酰胺充分挥发。待材料冷却后,称取一定质量将其混入3wt%的Pebax1657溶液,浇铸成膜。将制备得到的膜材料放入50℃真空烘箱24h退火处理即可进行测试。
经热重测试表明,本实施例中所制备的[Bmim][PF6]@ZIF-8复合材料中[Bmim][PF6]为8.07%。制备的混合基质膜在25℃,0.3MPa的测试条件下,填料量为25%时,CO2渗透系数相较纯Pebax1657膜增加92.1%可达115Barrer,CO2/N2分离选择性增加54.5%达到85。
实施例2
选择离子液体1-丁基-3-甲基六氟磷酸盐([Bmim][PF6]),取0.3g[Bmim][PF6]加入20mL氯仿中,在低转速(<250r/min)下搅拌1小时使[Bmim][PF6]在丙酮中分布均匀,加入0.2g活化后的ZIF-8粉末后,水浴超声使ZIF-8充分分散在[Bmim][PF6]/氯仿溶液中,再通过搅拌自然挥发氯仿,得到[Bmim][PF6]/ZIF-8复合物,105℃烘箱中热处理过夜使得离子液体尽量进入ZIF-8孔道内。二甲基亚砜洗-收集重复三次,每次十分钟,以确保ZIF-8表面的[Bmim][PF6]被彻底洗去。将洗完的复合物记为[Bmim][PF6]@ZIF-8。再将[Bmim][PF6]@ZIF-8放入150℃烘箱使二甲基亚砜充分挥发。待材料冷却后,称取一定质量将其混入3wt%的Pebax1657溶液,浇铸成膜。将制备得到的膜材料放入50℃真空烘箱24h退火处理即可进行测试。
经热重测试表明,本实施例中所制备的[Bmim][PF6]@ZIF-8复合材料中[Bmim][PF6]为12.05%。制备的混合基质膜在25℃,0.3MPa的测试条件下,填料量为10%时,CO2渗透系数相较纯Pebax1657膜增加71.6%可达101Barrer,CO2/N2分离选择性增加62.9%达到90。
实施例3
选择离子液体1-丁基-3-甲基双三氟甲磺酰亚胺盐[Bmim][Tf2N],取0.7g[Bmim][Tf2N]加入20mL丙酮中,在低转速(<250r/min)下搅拌1小时使[Bmim][Tf2N]在丙酮中分布均匀,加入0.2g活化后ZIF-8粉末后,水浴超声使ZIF-8充分分散在[Bmim][Tf2N]/丙酮溶液中,再通过搅拌自然挥发丙酮,得到[Bmim][Tf2N]/ZIF-8复合物,105℃烘箱中热处理过夜使得离子液体尽量进入ZIF-8孔道内。N,N-二甲基甲酰胺洗-收集重复三次,每次十分钟,以确保ZIF-8表面的[Bmim][Tf2N]被彻底洗去。将洗完的复合物记为[Bmim][Tf2N]@ZIF-8。再将[Bmim][Tf2N]@ZIF-8放入150℃烘箱使N,N-二甲基甲酰胺充分挥发。待材料冷却后,称取一定质量将其混入3wt%的聚酰亚胺溶液,浇铸成膜。将制备得到的膜材料放入50℃真空烘箱24h退火处理即可进行测试。
经测试表明,本实施例中所制备的[Bmim][Tf2N]@ZIF-8复合材料中[Bmim][Tf2N]为8%。制备的混合基质膜在25℃,0.3MPa的测试条件下,填料量为15%时,CO2渗透系数相较纯聚酰亚胺膜增加了155%可达28.7Barrer,CO2/N2分离选择性增加了42%达到24.5。
实施例4
选择离子液体1-乙基-3-甲基双三氟甲磺酰亚胺盐[Emim][Tf2N],取0.5g[Emim][Tf2N]加入20mL氯仿中,在低转速(<250r/min)下搅拌1小时使[Emim][Tf2N]在氯仿中分布均匀,加入0.2g活化后ZIF-71粉末后,水浴超声使ZIF-71充分分散在[Emim][Tf2N]/氯仿溶液中,再通过搅拌自然挥发氯仿,得到[Emim][Tf2N]/ZIF-71复合物,105℃烘箱中热处理过夜使得离子液体尽量进入ZIF-71孔道内。N,N-二甲基乙酰胺洗-收集重复三次,每次十分钟,以确保ZIF-71表面的[Emim][Tf2N]被彻底洗去。将洗完的复合物记为[Emim][Tf2N]@ZIF-71。再将[Emim][Tf2N]@ZIF-71放入150℃烘箱使N,N-二甲基乙酰胺充分挥发。待材料冷却后,称取一定质量将其混入3wt%聚醚酰亚胺的溶液,浇铸成膜。将制备得到的膜材料放入50℃真空烘箱24h退火处理即可进行测试。
经测试表明,本实施例中所制备的[Emim][Tf2N]@ZIF-71复合材料中[Emim][Tf2N]为18.4%。制备的混合基质膜在25℃,0.3MPa的测试条件下,填料量为10%时,CO2渗透系数相较纯聚醚酰亚胺膜增加了64%可达30.5Barrer,CO2/N2分离选择性增加了59%达到20.6。

Claims (1)

1.一种精确筛分气体分子对CO2/N2的混合基质膜的制备方法,其特征在于,步骤如下:
选择具有不同大小、不同物化性质的室温离子液体RTILs,将其和150℃条件下活化后的填料MOF分散于溶剂A中,采用溶剂A自然挥发得到RTILs/MOF复合物,选用溶剂B洗掉所制备复合物表面的游离离子液体,得到不同离子液体含量的RTILs/MOF复合物,记为IL@MOF,再将其混入聚合物溶液,浇铸成膜;所述的聚合物为聚二甲基硅氧烷;所述的MOF为带有笼-孔道结构的MOF,为ZIF-71、ZIF-90、ZIF-95或ZIF-100;
所述的溶剂A为丙酮、氯仿、乙醚或二氯甲烷;所述的溶剂B为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺或二甲基亚砜;
所述的RTILs和MOF的质量比为0.5~5;
所述的室温离子液体为1-乙基-3-甲基咪唑六氟磷酸盐[Emim][PF6]、1-丁基-3-甲基咪唑六氟磷酸盐[Bmim][PF6]、1-己基-3-甲基咪唑六氟磷酸盐[Hmim][PF6]、1-丁基-3-甲基咪唑双三氟甲磺酰亚胺盐[Bmim][Tf2N]或1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐[Emim][Tf2N]。
CN201910826816.2A 2019-09-03 2019-09-03 一种精确筛分气体分子对的混合基质膜的制备方法 Active CN110639373B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910826816.2A CN110639373B (zh) 2019-09-03 2019-09-03 一种精确筛分气体分子对的混合基质膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910826816.2A CN110639373B (zh) 2019-09-03 2019-09-03 一种精确筛分气体分子对的混合基质膜的制备方法

Publications (2)

Publication Number Publication Date
CN110639373A CN110639373A (zh) 2020-01-03
CN110639373B true CN110639373B (zh) 2021-11-05

Family

ID=69010047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910826816.2A Active CN110639373B (zh) 2019-09-03 2019-09-03 一种精确筛分气体分子对的混合基质膜的制备方法

Country Status (1)

Country Link
CN (1) CN110639373B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113813801B (zh) * 2021-09-28 2023-06-06 浙江工商大学 一种掺杂ZIFs@聚离子液体复合物的混合基质超滤膜及其制备方法
CN116351265B (zh) * 2022-01-17 2024-06-07 中国科学院过程工程研究所 一种基于离子液体配位作用的高性能混合基质气体分离膜的制备及应用
CN114588793B (zh) * 2022-03-11 2022-12-30 中国石油大学(华东) 用于甲烷/氮气分离的混合基质膜及其制备方法
CN115121135B (zh) * 2022-06-20 2024-02-27 西安交通大学 一种混合基质膜及其制备方法和应用以及一种空分制氮装置
CN115382405B (zh) * 2022-09-02 2024-01-23 西安交通大学 一种混合基质膜及其制备方法和r410a混合制冷剂分离回收系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106582328A (zh) * 2015-10-20 2017-04-26 中国科学院大连化学物理研究所 复合分离膜
WO2017098433A1 (en) * 2015-12-08 2017-06-15 King Abdullah University Of Science And Technology Fabrication of green polymeric membranes
CN107159132A (zh) * 2017-06-07 2017-09-15 华中科技大学 Co2/co选择性吸附剂及其制备方法
CN107638870A (zh) * 2016-07-22 2018-01-30 浙江大学 一种离子液体与金属有机框架复合吸附剂的制备方法和应用
CN108192109A (zh) * 2018-02-12 2018-06-22 华中科技大学 一种离子液体增强金属有机骨架材料稳定性的方法
CN109663512A (zh) * 2018-12-13 2019-04-23 石河子大学 离子液体@中空多面体填充的混合基质膜及制备方法和应用
JP2019118859A (ja) * 2017-12-28 2019-07-22 旭化成株式会社 希ガス分離膜、及びこれを用いた、実用に適用可能な純度の希ガスの製造方法
CN110064311A (zh) * 2019-06-06 2019-07-30 北京化工大学 一种多层il@mof复合膜的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138419A1 (en) * 2011-04-04 2012-10-11 Georgia Tech Research Corporation Mof nanocrystals
CN105582823A (zh) * 2015-12-23 2016-05-18 南京工业大学 ZIF-8/聚醚-b-聚酰胺混合基质膜及其制备和应用
CN109012235A (zh) * 2018-07-25 2018-12-18 南京工业大学 ZIF-7/聚醚-b-聚酰胺混合基质膜及其制备和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106582328A (zh) * 2015-10-20 2017-04-26 中国科学院大连化学物理研究所 复合分离膜
WO2017098433A1 (en) * 2015-12-08 2017-06-15 King Abdullah University Of Science And Technology Fabrication of green polymeric membranes
CN107638870A (zh) * 2016-07-22 2018-01-30 浙江大学 一种离子液体与金属有机框架复合吸附剂的制备方法和应用
CN107159132A (zh) * 2017-06-07 2017-09-15 华中科技大学 Co2/co选择性吸附剂及其制备方法
JP2019118859A (ja) * 2017-12-28 2019-07-22 旭化成株式会社 希ガス分離膜、及びこれを用いた、実用に適用可能な純度の希ガスの製造方法
CN108192109A (zh) * 2018-02-12 2018-06-22 华中科技大学 一种离子液体增强金属有机骨架材料稳定性的方法
CN109663512A (zh) * 2018-12-13 2019-04-23 石河子大学 离子液体@中空多面体填充的混合基质膜及制备方法和应用
CN110064311A (zh) * 2019-06-06 2019-07-30 北京化工大学 一种多层il@mof复合膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular";Yujie Ban等;《Angew. Chem. Int. Ed.》;20151030;第54卷(第51期);第15483-15487页 *

Also Published As

Publication number Publication date
CN110639373A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
CN110639373B (zh) 一种精确筛分气体分子对的混合基质膜的制备方法
AU2021104398A4 (en) A Preparation Method For A Mixed Matrix Membrane Utilized To Screen Gas Molecule Pairs Precisely
Hao et al. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture
Lee et al. Network‐nanostructured ZIF‐8 to enable percolation for enhanced gas transport
Liu et al. CO2 separation by supported ionic liquid membranes and prediction of separation performance
CN109663512A (zh) 离子液体@中空多面体填充的混合基质膜及制备方法和应用
Sanchez et al. Hydrogen stable supported ionic liquid membranes with silver carriers: propylene and propane permeability and solubility
JP2019118859A (ja) 希ガス分離膜、及びこれを用いた、実用に適用可能な純度の希ガスの製造方法
CN104190270B (zh) 混合基质膜、其制备方法及其应用
Dey et al. Synthesis and characterization of covalent triazine framework CTF-1@ polysulfone mixed matrix membranes and their gas separation studies
CN105621389A (zh) 支撑型复合碳分子筛膜
CN106310984A (zh) 多巴胺修饰金属有机化合物/聚醚共聚酰胺混合基质膜及制备和应用
Duan et al. Enhanced gas separation properties of metal organic frameworks/polyetherimide mixed matrix membranes
Yang et al. Solubility‐Boosted Molecular Sieving‐Based Separation for Purification of Acetylene in Core–Shell IL@ MOF Composites
CN110773120A (zh) 金属盐改性分子筛及其制备方法和应用
Zhu et al. Enhanced gas separation performance of mixed matrix hollow fiber membranes containing post-functionalized S-MIL-53
US10814269B2 (en) Liquid having oxygen absorbing ability, method for producing same, and complex solution containing same
Ilicak et al. Influence of ZIF-95 on structure and gas separation properties of polyimide-based mixed matrix membranes
CN109174008A (zh) 在金属有机骨架中固载离子液体的吸附剂及其制备方法与应用
CN112979977A (zh) 用于CO2捕集的双金属MOFs材料及制备方法和应用
Yao et al. A multifunctional microporous metal–organic framework: efficient adsorption of iodine and column-chromatographic dye separation
Li et al. ZIF‐11/Polybenzimidazole composite membrane with improved hydrogen separation performance
Hosseini Monjezi et al. Metal‐Organic Framework MIL‐68 (In)‐NH2 on the Membrane Test Bench for Dye Removal and Carbon Capture
CN105731378A (zh) 一种有机聚合物/ab5或ab2复合储氢材料及制备方法
Cong et al. Rational design of mixed matrix membranes modulated by trisilver complex for efficient propylene/propane separation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant