CN110064311A - 一种多层il@mof复合膜的制备方法 - Google Patents
一种多层il@mof复合膜的制备方法 Download PDFInfo
- Publication number
- CN110064311A CN110064311A CN201910493297.2A CN201910493297A CN110064311A CN 110064311 A CN110064311 A CN 110064311A CN 201910493297 A CN201910493297 A CN 201910493297A CN 110064311 A CN110064311 A CN 110064311A
- Authority
- CN
- China
- Prior art keywords
- mof
- composite membrane
- gas
- preparation
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1475—Removing carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1493—Selection of liquid materials for use as absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/229—Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/30—Ionic liquids and zwitter-ions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/20—Organic adsorbents
- B01D2253/204—Metal organic frameworks (MOF's)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/24—Mechanical properties, e.g. strength
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
通过层层沉积法制备出一种多层的离子液体与MOF的复合膜,属于新型的复合膜材料。由[TETA]L与MOF制备出的多层复合膜对H2/CO2有较高的分离性能。我们发明的制备方法可以制备出离子液体与MOF的双层和三层的复合膜。双层复合膜对H2/CO2的分离选择性为53,三层复合膜对H2/CO2的分离选择性为67,H2通量高达125461 barrer。我们制备出来的膜材料具有超高的气体通量和有效的分离性能,并通过逐层累加实现逐级分离提高对H2/CO2的分离效果,这对以后膜材料的制备和应用有着重要的参考意义。
Description
技术领域
本发明属于新材料技术领域,由MOF负载离子液体形成一种多层IL@MOF复合膜的制备方法。
背景技术
在工业上对于气体分离和溶剂的提纯,一般采用与变压吸附和低温蒸馏等工艺,与这些能源密集型工艺相比,膜技术分离法由于有效的能源管理,易于操作和节约成本等优点更具有工业意义。具体例子包括从气体中分离氢气和碳氢化合物,沼气和填埋的废物气体的升级,烟道气体的处理,甲烷的净化和有机溶剂的脱水。目前应用于气体分离的商业膜大多为聚合物膜,虽然聚合物膜具有良好的加工性和大规模生产,但是聚合物膜通量低,极大限制了工业的发展。因此我们开发了一种多层复合膜,该膜通过在基底上形成一层MOF膜,再灌入离子液体弥补MOF颗粒之间的缺陷,由于离子液体具有很强的粘性,与MOF表面上的官能团产生很强的作用力形成一个致密的复合膜。
MOF材料孔径小、孔隙率高、孔道分布均匀,含有不饱和金属位点,应用领域广,例如分子分离、气体储存、催化、药物缓释。MOF表面含有许多官能团与离子液体作用力强,特别是金属位点对离子液体有很强的静电作用。因此我们选用MOF负载离子液体。离子液体是一种在常温或低于100摄氏度条件下呈液态的有机熔融盐,蒸汽压低无污染,对气体溶解性强,液态范围宽,电导率高。离子液体对CO2的溶解性很强,而氨基化的离子液体不仅能提高CO2吸收能力还可以增大离子液体的粘性。我们选用对CO2具有较高吸附能力的离子液体[TETA]L与不同的MOF复合制备出多种复合膜。并在此基础上制备出双层或三层结构的复合膜,极大提高了对H2/CO2的分离效果。
发明内容
本发明是提供一种多层IL@MOF复合膜的制备方法。该方法不仅操作简单,还能制备出双层或三层结构的复合膜,实现逐层分离提高对H2/CO2分离性能。我们制备出的三层[TETA]L@MOF膜对H2/CO2的分离选择性67,H2的通量125461 barrer,CH4/CO2的分离选择性为15,N2/CO2的分离选择性为12.3。
1、本发明所述的新型复合膜制备方法如下
(1)[TETA]L的合成 将一定量的乳酸在剧烈的搅拌下滴加到等摩尔的三亚乙基四胺中,然后混合物加热反应,得透明液体,并将其置于真空烘箱中,干燥24 h,得产物。
(2)Ni-MOF-74的制备 将0.404 g的2,5-二羟基对苯二甲酸(H4dobdc)置于15 ml的水中,搅拌。将1 g四水醋酸镍溶于5 ml水中,并将溶液倒入H4dobdc的悬浊液中,搅拌1h, 离心,甲醇洗涤,真空干燥得到黄色固体。
(3)[TETA]L@ Ni-MOF-74膜的制备 将Ni-MOF-74悬浊液逐滴滴在基底上。然后将[TETA]L滴在沉积物上,313 K干燥24 h。
2、改变不同的MOF,包括Mg-MOF-74、MIL-101、CAU-1、NH2-MIL-53、UiO-66、PCN-222, 制备一系列的离子液体与MOF的复合膜。
3、在单层膜的基础上继续沉积其它的M0F与[TETA]L溶液,制备出双层或三层复合膜。
本发明所述的[TETA]L@MOF膜用于H2/CO2、CH4/CO2、N2/CO2的分离,气体通量使用皂泡法测量。
(1)将复合膜两面用橡胶垫圈密封,置于模具中固定,将有膜的一面放在上端。
(2)打开待测气体阀门,通过阀门控制气体流量,再由一个压力表控制膜两侧气体压差,保持一段时间待压力稳定后进行测量。
(3)气体经过膜,渗透后达到后面的皂泡流量计,通过皂泡流量计记录通过膜一定体积气体所需要的时间。
(4)为了保证数据的准确性,在更换气体的时候需要保持气体流动一段时间以排除其它气体的影响。同时,每次测量的数据都要多次记录。并且保证膜可以长时间测试。
(5)通过计算分析对材料的性能进行评判。
与现有的膜材料相比,本发明的优势:
(1)制备过程简单,具有普适性。
(2)复合膜稳定机械强度好,通量高,选择性突出。
(3)该膜对CO2作用力强,不仅H2/CO2分离效果好,对CH4/CO2、N2/CO2起到反选的作用。
(4)该方法不仅可以制备出单层复合膜而且还可以制备出双层甚至是三层复合膜,并且性能逐层提高。
附图说明
图1为实列1中的单层、双层、三层膜的示意图。
图2为实例1中的单层复合膜的扫描电镜(SEM)表征图。
图3为实例1中的双层和三层复合膜的扫描电镜表征图。
图4为实例1中各个膜的Robeson上限图。
具体实施方式
下面通过具体实例对本发明做进一步说明,但本发明并不局限于此。
下述实施例中所述试实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
实例1
将制备各个单层复合膜以及双层和三层膜分别对H2、CO2、CH4、N2纯组气体进行渗透测试,得气体通量。
分别将[TETA]L@MOF膜置于模具中,密封好,依次测量H2、CO2、CH4、N2,在每次测量之前需要保持该气体流通2 h以上,确保无其它气体影响实验结果。然后使用皂泡流量计测试气体通过膜之后的气体通量并测试膜在不同压降下的气体通量进行对比。测量结束后检测膜的耐久性,保持气体流通长达100 h以此来判断膜的耐久性。
实例2
将制备各个单层复合膜以及双层和三层膜分别对H2/CO2、CH4/CO2、N2/CO2混合气体进行渗透测试,得气体通量及分离选择性。
分别将[TETA]L@MOF膜置于模具中,密封好,同时打开H2和CO2两个气体钢瓶并保持两种气体进气压力相同流量相同,在每次测量之前需要保持两种气体流通2 h以上,确保无其它气体影响实验结果。然后以He作为保护气把通过膜筛分后的混合气载入气相色谱仪,由气相色谱仪检测两种待测气体所占比例通过计算得出两种待测气体的气体通量,再测试膜在不同压降下的气体通量进行对比。按照上述方法依次测试CH4/CO2和N2/ CO2混合气。
Claims (3)
1.一种由MOF负载 [TETA]L制备多层复合膜的方法,本发明所述的 [TETA]L@MOF膜主要用于H2/CO2的分离。
2.按照权利要求1所述的内容,其特征在于,所制备的复合膜由MOF负载 [TETA]L,[TETA]L又包裹着MOF, 两者相互混合形成一个整体,并在此基础上制备出多层复合膜。
3.按照权利要求1所述的用途,其特征在于,所分离的对象包括H2/CO2。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910493297.2A CN110064311B (zh) | 2019-06-06 | 2019-06-06 | 一种多层il@mof复合膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910493297.2A CN110064311B (zh) | 2019-06-06 | 2019-06-06 | 一种多层il@mof复合膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110064311A true CN110064311A (zh) | 2019-07-30 |
CN110064311B CN110064311B (zh) | 2021-06-01 |
Family
ID=67372531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910493297.2A Active CN110064311B (zh) | 2019-06-06 | 2019-06-06 | 一种多层il@mof复合膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110064311B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110639373A (zh) * | 2019-09-03 | 2020-01-03 | 大连理工大学 | 一种精确筛分气体分子对的混合基质膜的制备方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024092296A1 (en) | 2022-10-27 | 2024-05-02 | Council For Scientific And Industrial Research | Multi-layered biodegradable polymer nanocomposite-based film |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003013685A1 (en) * | 2001-08-06 | 2003-02-20 | Instituto De Biologia Experimental E Técnologia (Ibet) | Removal and recovery of solutes present in ionic liquids by pervaporation |
US20090246625A1 (en) * | 2008-03-26 | 2009-10-01 | Ada Technologies, Inc. | High performance batteries with carbon nanomaterials and ionic liquids |
CN101757861A (zh) * | 2009-12-10 | 2010-06-30 | 山东东岳神舟新材料有限公司 | 一种多层全氟交联离子膜及其制备方法 |
CN102441312A (zh) * | 2010-10-13 | 2012-05-09 | 北京化工大学 | 一种可循环利用的离子液体型二氧化碳吸收剂及其制备方法 |
CN103752183A (zh) * | 2014-01-21 | 2014-04-30 | 清华大学 | 复合分离膜及其制备方法 |
CN104056598A (zh) * | 2014-06-20 | 2014-09-24 | 浙江大学 | 一种MOFs基二氧化碳吸附剂及其制备方法和应用 |
CN104524990A (zh) * | 2014-12-15 | 2015-04-22 | 南京工业大学 | 气体分离膜及其制备方法、膜式气体分离装置 |
WO2017004496A1 (en) * | 2015-07-01 | 2017-01-05 | 3M Innovative Properties Company | Polymeric ionomer separation membranes and methods of use |
US20180065105A1 (en) * | 2016-05-02 | 2018-03-08 | LiSo Plastics, L.L.C. | Multilayer polymeric membrane and process |
CN109647343A (zh) * | 2018-12-28 | 2019-04-19 | 南京工业大学 | 多活性吸附位点金属-有机骨架复合材料及其制备和应用 |
-
2019
- 2019-06-06 CN CN201910493297.2A patent/CN110064311B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003013685A1 (en) * | 2001-08-06 | 2003-02-20 | Instituto De Biologia Experimental E Técnologia (Ibet) | Removal and recovery of solutes present in ionic liquids by pervaporation |
US20090246625A1 (en) * | 2008-03-26 | 2009-10-01 | Ada Technologies, Inc. | High performance batteries with carbon nanomaterials and ionic liquids |
CN101757861A (zh) * | 2009-12-10 | 2010-06-30 | 山东东岳神舟新材料有限公司 | 一种多层全氟交联离子膜及其制备方法 |
CN102441312A (zh) * | 2010-10-13 | 2012-05-09 | 北京化工大学 | 一种可循环利用的离子液体型二氧化碳吸收剂及其制备方法 |
CN103752183A (zh) * | 2014-01-21 | 2014-04-30 | 清华大学 | 复合分离膜及其制备方法 |
CN104056598A (zh) * | 2014-06-20 | 2014-09-24 | 浙江大学 | 一种MOFs基二氧化碳吸附剂及其制备方法和应用 |
CN104524990A (zh) * | 2014-12-15 | 2015-04-22 | 南京工业大学 | 气体分离膜及其制备方法、膜式气体分离装置 |
WO2017004496A1 (en) * | 2015-07-01 | 2017-01-05 | 3M Innovative Properties Company | Polymeric ionomer separation membranes and methods of use |
US20180065105A1 (en) * | 2016-05-02 | 2018-03-08 | LiSo Plastics, L.L.C. | Multilayer polymeric membrane and process |
CN109647343A (zh) * | 2018-12-28 | 2019-04-19 | 南京工业大学 | 多活性吸附位点金属-有机骨架复合材料及其制备和应用 |
Non-Patent Citations (2)
Title |
---|
RIJIA LIN 等: "Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient", 《ACS APPLIED MATERIALS & INTERFACES》 * |
黄玉垚: "金属-有机骨架膜的制备及其气体分离应用研究", 《博士研究生学位论文》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110639373A (zh) * | 2019-09-03 | 2020-01-03 | 大连理工大学 | 一种精确筛分气体分子对的混合基质膜的制备方法 |
CN110639373B (zh) * | 2019-09-03 | 2021-11-05 | 大连理工大学 | 一种精确筛分气体分子对的混合基质膜的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110064311B (zh) | 2021-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shi et al. | Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation | |
Azar et al. | Large-scale computational screening of metal organic framework (MOF) membranes and MOF-based polymer membranes for H2/N2 separations | |
Demir et al. | MOF membranes for CO2 capture: past, present and future | |
Ozcan et al. | Modeling of gas transport through polymer/MOF interfaces: a microsecond-scale concentration gradient-driven molecular dynamics study | |
Liu et al. | A hybrid absorption–adsorption method to efficiently capture carbon | |
Zhang et al. | Investigating the intrinsic ethanol/water separation capability of ZIF-8: an adsorption and diffusion study | |
Thompson et al. | Tunable CO2 adsorbents by mixed-linker synthesis and postsynthetic modification of zeolitic imidazolate frameworks | |
Houndonougbo et al. | A combined experimental–computational investigation of methane adsorption and selectivity in a series of isoreticular zeolitic imidazolate frameworks | |
Marsh et al. | Exceptional packing density of ammonia in a dual-functionalized metal–organic framework | |
Velioglu et al. | Simulation of H 2/CH 4 mixture permeation through MOF membranes using non-equilibrium molecular dynamics | |
Karousos et al. | Cellulose-based carbon hollow fiber membranes for high-pressure mixed gas separations of CO2/CH4 and CO2/N2 | |
Chang et al. | Separation of CH4/N2 by an ultra‐stable metal–organic framework with the highest breakthrough selectivity | |
CN109663512A (zh) | 离子液体@中空多面体填充的混合基质膜及制备方法和应用 | |
CN110064311A (zh) | 一种多层il@mof复合膜的制备方法 | |
Daglar et al. | Recent advances in simulating gas permeation through MOF membranes | |
Cheng et al. | Multi-scale design of MOF-based membrane separation for CO2/CH4 mixture via integration of molecular simulation, machine learning and process modeling and simulation | |
CN108939958A (zh) | 利用聚合物涂层提高支撑型mof膜气体分离性能的方法 | |
Liu et al. | Spherical covalent organic frameworks as advanced adsorbents for preconcentration and separation of phenolic endocrine disruptors, followed by high performance liquid chromatography | |
JPS63274857A (ja) | 水素含有ガスまたは水素反応性ガスの検出法及びその装置 | |
Roualdes et al. | Sulfonated polystyrene-type plasma-polymerized membranes for miniature direct methanol fuel cells | |
Barghi et al. | Solubility and diffusivity of H2 and CO2 in the ionic liquid [bmim][PF6] | |
Pizzoccaro-Zilamy et al. | Initial steps toward the development of grafted ionic liquid membranes for the selective transport of CO2 | |
Son et al. | Rapid Quantification of Mass Transfer Barriers in Metal–Organic Framework Crystals | |
Wang et al. | A multi-scale porous composite adsorbent with copper benzene-1, 3, 5-tricarboxylate coating on copper foam | |
Lee et al. | Facilitated transport membrane with functionalized ionic liquid carriers for CO 2/N 2, CO 2/O 2, and CO 2/air separations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |