CN110064311B - 一种多层il@mof复合膜的制备方法 - Google Patents

一种多层il@mof复合膜的制备方法 Download PDF

Info

Publication number
CN110064311B
CN110064311B CN201910493297.2A CN201910493297A CN110064311B CN 110064311 B CN110064311 B CN 110064311B CN 201910493297 A CN201910493297 A CN 201910493297A CN 110064311 B CN110064311 B CN 110064311B
Authority
CN
China
Prior art keywords
mof
teta
layer
film
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910493297.2A
Other languages
English (en)
Other versions
CN110064311A (zh
Inventor
刘大欢
魏鵾鹏
韩国鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201910493297.2A priority Critical patent/CN110064311B/zh
Publication of CN110064311A publication Critical patent/CN110064311A/zh
Application granted granted Critical
Publication of CN110064311B publication Critical patent/CN110064311B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/30Ionic liquids and zwitter-ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

通过层层沉积法制备出一种多层的离子液体与MOF的复合膜,属于新型的复合膜材料。由 [TETA]L与MOF制备出的多层复合膜对H2/CO2有较高的分离性能。我们发明的制备方法可以制备出离子液体与MOF的双层和三层的复合膜。双层复合膜对H2/CO2的分离选择性为53,三层复合膜对H2/CO2的分离选择性为67,H2通量高达125461 barrer。我们制备出来的膜材料具有超高的气体通量和有效的分离性能,并通过逐层累加实现逐级分离提高对H2/CO2的分离效果,这对以后膜材料的制备和应用有着重要的参考意义。

Description

一种多层IL@MOF复合膜的制备方法
技术领域
本发明属于新材料技术领域,由MOF负载离子液体形成一种多层IL@MOF复合膜的制备方法。
背景技术
在工业上对于气体分离和溶剂的提纯,一般采用与变压吸附和低温蒸馏等工艺,与这些能源密集型工艺相比,膜技术分离法由于有效的能源管理,易于操作和节约成本等优点更具有工业意义。具体例子包括从气体中分离氢气和碳氢化合物,沼气和填埋的废物气体的升级,烟道气体的处理,甲烷的净化和有机溶剂的脱水。目前应用于气体分离的商业膜大多为聚合物膜,虽然聚合物膜具有良好的加工性和大规模生产,但是聚合物膜通量低,极大限制了工业的发展。因此我们开发了一种多层复合膜,该膜通过在基底上形成一层MOF膜,再灌入离子液体弥补MOF颗粒之间的缺陷,由于离子液体具有很强的粘性,与MOF表面上的官能团产生很强的作用力形成一个致密的复合膜。
MOF材料孔径小、孔隙率高、孔道分布均匀,含有不饱和金属位点,应用领域广,例如分子分离、气体储存、催化、药物缓释。MOF表面含有许多官能团与离子液体作用力强,特别是金属位点对离子液体有很强的静电作用。因此我们选用MOF负载离子液体。离子液体是一种在常温或低于100摄氏度条件下呈液态的有机熔融盐,蒸汽压低无污染,对气体溶解性强,液态范围宽,电导率高。离子液体对CO2的溶解性很强,而氨基化的离子液体不仅能提高CO2吸收能力还可以增大离子液体的粘性。我们选用对CO2具有较高吸附能力的离子液体[TETA]L与不同的MOF复合制备出多种复合膜。并在此基础上制备出双层或三层结构的复合膜,极大提高了对H2/CO2的分离效果。
发明内容
本发明是提供一种多层IL@MOF复合膜的制备方法。该方法不仅操作简单,还能制备出双层或三层结构的复合膜,实现逐层分离提高对H2/CO2分离性能。我们制备出的三层[TETA]L@MOF膜对H2/CO2的分离选择性67,H2的通量125461 barrer,CH4/CO2的分离选择性为15,N2/CO2的分离选择性为12.3。
1、本发明所述的新型复合膜制备方法如下
(1)[TETA]L的合成 将一定量的乳酸在剧烈的搅拌下滴加到等摩尔的三亚乙基四胺中,然后混合物加热反应,得透明液体,并将其置于真空烘箱中,干燥24 h,得产物。
(2)Ni-MOF-74的制备 将0.404 g的2,5-二羟基对苯二甲酸(H4dobdc)置于15 ml的水中,搅拌。将1 g四水醋酸镍溶于5 ml水中,并将溶液倒入H4dobdc的悬浊液中,搅拌1h, 离心,甲醇洗涤,真空干燥得到黄色固体。
(3)[TETA]L@ Ni-MOF-74膜的制备 将Ni-MOF-74悬浊液逐滴滴在基底上。然后将[TETA]L滴在沉积物上,313 K干燥24 h。
2、改变不同的MOF,包括Mg-MOF-74、MIL-101、CAU-1、NH2-MIL-53、UiO-66、PCN-222, 制备一系列的离子液体与MOF的复合膜。
3、在单层膜的基础上继续沉积其它的M0F与[TETA]L溶液,制备出双层或三层复合膜。
本发明所述的[TETA]L@MOF膜用于H2/CO2、CH4/CO2、N2/CO2的分离,气体通量使用皂泡法测量。
(1)将复合膜两面用橡胶垫圈密封,置于模具中固定,将有膜的一面放在上端。
(2)打开待测气体阀门,通过阀门控制气体流量,再由一个压力表控制膜两侧气体压差,保持一段时间待压力稳定后进行测量。
(3)气体经过膜,渗透后达到后面的皂泡流量计,通过皂泡流量计记录通过膜一定体积气体所需要的时间。
(4)为了保证数据的准确性,在更换气体的时候需要保持气体流动一段时间以排除其它气体的影响。同时,每次测量的数据都要多次记录。并且保证膜可以长时间测试。
(5)通过计算分析对材料的性能进行评判。
与现有的膜材料相比,本发明的优势:
(1)制备过程简单,具有普适性。
(2)复合膜稳定机械强度好,通量高,选择性突出。
(3)该膜对CO2作用力强,不仅H2/CO2分离效果好,对CH4/CO2、N2/CO2起到反选的作用。
(4)该方法不仅可以制备出单层复合膜而且还可以制备出双层甚至是三层复合膜,并且性能逐层提高。
附图说明
图1为实列1中的单层、双层、三层膜的示意图。
图2为实例1中的单层复合膜的扫描电镜(SEM)表征图。
图3为实例1中的双层和三层复合膜的扫描电镜表征图。
图4为实例1中各个膜的Robeson上限图。
具体实施方式
下面通过具体实例对本发明做进一步说明,但本发明并不局限于此。
下述实施例中所述试实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
实例1
将制备各个单层复合膜以及双层和三层膜分别对H2、CO2、CH4、N2纯组气体进行渗透测试,得气体通量。
分别将[TETA]L@MOF膜置于模具中,密封好,依次测量H2、CO2、CH4、N2,在每次测量之前需要保持该气体流通2 h以上,确保无其它气体影响实验结果。然后使用皂泡流量计测试气体通过膜之后的气体通量并测试膜在不同压降下的气体通量进行对比。测量结束后检测膜的耐久性,保持气体流通长达100 h以此来判断膜的耐久性。
实例2
将制备各个单层复合膜以及双层和三层膜分别对H2/CO2、CH4/CO2、N2/CO2混合气体进行渗透测试,得气体通量及分离选择性。
分别将[TETA]L@MOF膜置于模具中,密封好,同时打开H2和CO2两个气体钢瓶并保持两种气体进气压力相同流量相同,在每次测量之前需要保持两种气体流通2 h以上,确保无其它气体影响实验结果。然后以He作为保护气把通过膜筛分后的混合气载入气相色谱仪,由气相色谱仪检测两种待测气体所占比例通过计算得出两种待测气体的气体通量,再测试膜在不同压降下的气体通量进行对比。按照上述方法依次测试CH4/CO2和N2/ CO2混合气。

Claims (2)

1.一种由MOF负载[TETA]L制备多层复合膜的方法,包括如下步骤:
(1)[TETA]L合成,将一定量的乳酸在剧烈的搅拌下滴加到等摩尔的三亚乙基四胺中,然后混合物加热反应,得透明液体,并将其置于真空烘箱中,干燥24h,得产物;
(2)Ni-MOF-74的制备,将0.404g的2,5-二羟基对苯二甲酸(H4dobdc)置于15mL的水中,搅拌;将1g四水醋酸镍溶于5mL水中,并将溶液倒入H4dobdc的悬浊液中,搅拌1h,离心,甲醇洗涤,真空干燥得到黄色固体;
(3)[TETA]L@Ni-MOF-74膜的制备,将Ni-MOF-74悬浊液逐滴滴在基底上,然后将[TETA]L滴在沉积物上,313K干燥24h;
(4)改变不同的MOF,包括Mg-MOF-74、MIL-101、CAU-1、NH2-MIL-53、Ui0-66、PCN-222,制备一系列的离子液体与MOF的复合膜;
(5)在单层膜的基础上继续沉积其它的MOF与[TETA]L溶液,制备出双层或三层[TETA]L@MOF复合膜;
所述双层或三层[TETA]L@MOF复合膜主要用于H2/CO2的分离。
2.按照权利要求1所述的一种由MOF负载[TETA]L制备多层复合膜的方法,其特征在于,所制备的双层或三层[TETA]L@MOF复合膜为多层次结构,使用[TETA]L、甲醇和MOFs作为主要原料;其中,所述复合膜由MOF负载[TETA]L,[TETA]L又包裹着MOF,两者相互混合形成一个整体。
CN201910493297.2A 2019-06-06 2019-06-06 一种多层il@mof复合膜的制备方法 Active CN110064311B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910493297.2A CN110064311B (zh) 2019-06-06 2019-06-06 一种多层il@mof复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910493297.2A CN110064311B (zh) 2019-06-06 2019-06-06 一种多层il@mof复合膜的制备方法

Publications (2)

Publication Number Publication Date
CN110064311A CN110064311A (zh) 2019-07-30
CN110064311B true CN110064311B (zh) 2021-06-01

Family

ID=67372531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910493297.2A Active CN110064311B (zh) 2019-06-06 2019-06-06 一种多层il@mof复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN110064311B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092296A1 (en) 2022-10-27 2024-05-02 Council For Scientific And Industrial Research Multi-layered biodegradable polymer nanocomposite-based film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110639373B (zh) * 2019-09-03 2021-11-05 大连理工大学 一种精确筛分气体分子对的混合基质膜的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003013685A1 (en) * 2001-08-06 2003-02-20 Instituto De Biologia Experimental E Técnologia (Ibet) Removal and recovery of solutes present in ionic liquids by pervaporation
WO2017004496A1 (en) * 2015-07-01 2017-01-05 3M Innovative Properties Company Polymeric ionomer separation membranes and methods of use

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120872A2 (en) * 2008-03-26 2009-10-01 Ada Technologies, Inc. High performance batteries with carbon nanomaterials and ionic liquids
CN101757861B (zh) * 2009-12-10 2011-01-26 山东东岳神舟新材料有限公司 一种多层全氟交联离子膜及其制备方法
CN102441312B (zh) * 2010-10-13 2014-01-08 北京化工大学 一种可循环利用的离子液体型二氧化碳吸收剂及其制备方法
CN103752183B (zh) * 2014-01-21 2015-10-21 清华大学 一种聚二甲基硅氧烷多层复合分离膜及其制备方法
CN104056598A (zh) * 2014-06-20 2014-09-24 浙江大学 一种MOFs基二氧化碳吸附剂及其制备方法和应用
CN104524990A (zh) * 2014-12-15 2015-04-22 南京工业大学 气体分离膜及其制备方法、膜式气体分离装置
US10363546B2 (en) * 2016-05-02 2019-07-30 Liso Plastics LLC Multilayer polymeric membrane
CN109647343A (zh) * 2018-12-28 2019-04-19 南京工业大学 多活性吸附位点金属-有机骨架复合材料及其制备和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003013685A1 (en) * 2001-08-06 2003-02-20 Instituto De Biologia Experimental E Técnologia (Ibet) Removal and recovery of solutes present in ionic liquids by pervaporation
WO2017004496A1 (en) * 2015-07-01 2017-01-05 3M Innovative Properties Company Polymeric ionomer separation membranes and methods of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient;Rijia Lin 等;《ACS Applied Materials & Interfaces》;20161123;第8卷(第46期);第32041-32049页 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092296A1 (en) 2022-10-27 2024-05-02 Council For Scientific And Industrial Research Multi-layered biodegradable polymer nanocomposite-based film

Also Published As

Publication number Publication date
CN110064311A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
Fu et al. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2
CN110064311B (zh) 一种多层il@mof复合膜的制备方法
Yan et al. Room-temperature synthesis of defect-engineered Zirconium-MOF membrane enabling superior CO2/N2 selectivity with zirconium-oxo cluster source
Ma et al. Fabrication of mixed-matrix membrane containing metal–organic framework composite with task-specific ionic liquid for efficient CO 2 separation
Wang et al. Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H 2/CO 2 selectivity
Wei et al. Effects of polydimethylsiloxane (PDMS) molecular weight on performance of PDMS/ceramic composite membranes
US11684890B2 (en) Methane-selective mixed matrix membranes including nanoporous metal-organic framework materials to which a methane-selective functional group is introduced, the use thereof, and a method of preparing the same
CN108939958A (zh) 利用聚合物涂层提高支撑型mof膜气体分离性能的方法
Pan et al. Preparation of Zeolitic Imidazolate Framework-91 and its modeling for pervaporation separation of water/ethanol mixtures
Pan et al. Determination of sorption and diffusion for ethanol through superhydrophobic ZIF/PDMS mixed matrix membrane
Zhang et al. In-situ synthetic modified metal-organic framework (MZIF-8) as an interlayer of the composite membranes for ethanol dehydration
Penkova et al. Novel pervaporation mixed matrix membranes based on polyphenylene isophtalamide modified by metal–organic framework UiO-66 (NH2)-EDTA for highly efficient methanol isolation
Li et al. A robust zeolitic imidazolate framework membrane with high H2/CO2 separation performance under hydrothermal conditions
AU2014354691A1 (en) Zeolite-like metal-organic framework membrane
Kuehne et al. Selective transport of sulfur dioxide through polymer membranes. 1. polyacrylate and cellulose triacetate single-layer membranes
Ma et al. Freezing assisted in situ growth of nano-confined ZIF-8 composite membrane for dye removal from water
CN110141977A (zh) 接枝型离子液体聚酰亚胺膜和制备方法及其应用
Cheng et al. Multi-scale design of MOF-based membrane separation for CO2/CH4 mixture via integration of molecular simulation, machine learning and process modeling and simulation
Yan et al. Room temperature fabrication of oriented Zr-MOF membrane with superior gas selectivity with zirconium-oxo cluster source
CN110280150A (zh) 一种高抗污聚偏氟乙烯多孔基复合超滤膜材料的制备方法
Li et al. Preparation and characterization of Ni2 (mal) 2 (bpy) homochiral MOF membrane
CN113750821A (zh) 基于嵌入式多孔少层g-C3N4/ZIF-8混合基质膜的制备方法及应用
Li et al. Visualization of the gas permeation in core–shell MOF/Polyimide mixed matrix membranes and structural optimization based on finite element equivalent simulation
Wang et al. A multi-scale porous composite adsorbent with copper benzene-1, 3, 5-tricarboxylate coating on copper foam
Chen et al. Surface chiroselective assembly of enantiopure crystalline porous films containing bichiral building blocks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant