CN110635093B - 一种锂硫电池正极与隔膜一体化结构及其制备方法 - Google Patents

一种锂硫电池正极与隔膜一体化结构及其制备方法 Download PDF

Info

Publication number
CN110635093B
CN110635093B CN201910813760.7A CN201910813760A CN110635093B CN 110635093 B CN110635093 B CN 110635093B CN 201910813760 A CN201910813760 A CN 201910813760A CN 110635093 B CN110635093 B CN 110635093B
Authority
CN
China
Prior art keywords
diaphragm
lithium
spinning
positive electrode
integrated structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910813760.7A
Other languages
English (en)
Other versions
CN110635093A (zh
Inventor
张力
吕晓雪
熊杰
雷天宇
陈伟
胡音
李政翰
张淼
邬春阳
王显福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Electronics Technology Co ltd
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910813760.7A priority Critical patent/CN110635093B/zh
Publication of CN110635093A publication Critical patent/CN110635093A/zh
Application granted granted Critical
Publication of CN110635093B publication Critical patent/CN110635093B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种锂硫电池正极与隔膜一体化结构及其制备方法,属于锂硫电池技术领域。发明提供一种隔膜与正极一体的新型结构,该结构具有纳米纤维状的隔膜直接覆盖在正极表面,使在电池制备中,由原来需在隔膜两面滴加电解液减少为仅需滴加在一次电解液,大大降低了电解液的用量,从而降低了E/S,提升电池的能量密度;基于本发明一体化结构组装的扣式CR2025电池,E/S可降低至5。

Description

一种锂硫电池正极与隔膜一体化结构及其制备方法
技术领域
本发明属于锂硫电池技术领域,具体涉及一种锂硫电池正极与隔膜一体化结构及其制备方法。
背景技术
目前世界能源90%以上来源于煤炭、石油和天然气等化石能源,然而化石能源的过度消耗会引发温室效应等环境问题;同时,作为不可再生能源,大规模的消耗必然导致资源的枯竭。因而太阳能、风能等清洁能源引起了广泛关注,但是这些能源的利用需要匹配合适的储能系统。在众多的电化学储能体系中,Li-S电池是一种新型能源存储系统,其具有远高于目前商业化锂离子电池的理论比容量(1675mAhg-1)和能量密度(2500Whkg-1),引起了广泛关注。此外,硫具有价格低廉、自然储量丰富(几乎占地球质量的3%)及环境友好无污染等众多优点,因此,使得Li-S电池成为低成本且极具吸引力的储能技术。
Li-S电池的研究始于二十世纪六十年代,经过几十年的发展,科研工作者们针对锂硫电池中的三大主要问题:“穿梭效应”、充放电循环过程中的体积膨胀问题、硫单质及其聚硫化锂的导电性差的研究已经取得较大进展,使得电池的容量以及循环性能等得到很大提升。但是,其中仍存在一个重大的问题,阻碍着Li-S电池商业化,即E/S(电解液与硫含量之比)值的大小:E/S越大,则能量密度越低;若E/S超过20时,计算得到的能量密度,就与现有的三元锂离子电池相比没有太大优势。因此如何才能降低E/S,更充分地利用电解液,是当下锂硫电池研究中亟待解决的问题。
针对这个问题,目前的解决思路一般有两种:(1)采用多硫离子溶解性低或不溶解的电解液,将单质硫的电荷转移与多硫离子的溶解过程分开,然而这类电解液由于其对多硫离子较低的溶解度,室温下难以满足离子的有效传输,其反应动力学较差;(2)采用具有高介电常数的电解液,促进多硫化物的溶解,可以大大加快电化学反应动力学。然而,这种电解液需要在锂负极表面形成一层良好的SEI膜来抑制穿梭效应,而常用的高介电常数电解液对锂不稳定,锂负极侧的副反应限制了这种电解液的广泛使用。
以上的解决思路都是通过对电池的组成物质进行改性研究,但还没有针对电池结构本身进行改进以解决E/S值的措施。目前的锂硫电池的结构都是以正极、隔膜、电解液和负极单个组成,扣式电池的组装顺序通常为:负极壳-负极-电解液-隔膜-电解液-正极-垫片及弹片-正极壳,电池需要隔膜两侧需要分别滴加电解液。
发明内容
针对背景技术所存在的现有电池结构下E/S比例较大的问题,本发明的目的在于提供一种锂硫电池正极与隔膜一体化结构及其制备方法,本发明通过在常用电池正极上直接静电纺丝制备具有纳米纤维网状结构的隔膜,使得电解液能够通过隔膜与电池正极接触,减少现有技术中隔膜与正极之间需滴加电解液的工艺步骤,从而降低E/S的值。
为实现上述目的,本发明的技术方案如下:
一种锂硫电池正极与隔膜一体化结构,包括正极和采用静电纺丝法直接生长于正极表面的隔膜,所述隔膜具有纳米纤维网状结构,其中,隔膜面积大于正极面积,隔膜厚度为30μm~70μm。
一种锂硫电池正极与隔膜一体化结构的制备方法,包括以下步骤:
步骤1:将聚丙烯腈(PAN)溶于N-甲基吡咯烷酮(NMP)中,在40~60℃水浴下搅拌2~4h,得到静电纺丝前驱液,其中,PAN在前驱液中的质量分数为10~20%;
步骤2:将聚偏氟乙烯(PVDF)溶于NMP中,研磨5~10min,得到粘性稠液,将锂硫电池正极用黏性稠液粘附在铝箔上,得到静电纺丝接收基底;
步骤3:用注射针管吸取步骤1得到的静电纺丝前驱液,使用步骤2得到的静电纺丝接收基底,利用静电纺丝仪器进行纺丝;
步骤4:将步骤3得到的带隔膜的接收基底放入真空烘箱烘干,烘干结束后取出基底,即可得到隔膜与正极一体结构。
进一步地,步骤2所述粘性稠液中聚偏氟乙烯的浓度为0.15~0.2mg/μl。
进一步地,步骤2所述锂硫电池正极制备方法为:将乙炔黑、硫、PVDF混合,加入NMP进行研磨,均匀涂覆于涂碳铝箔上,烘干即可得到所述正极。
进一步地,步骤3中所述的静电纺丝具体参数为:纺丝喷头直径:0.5mm~1mm;纺丝负电压:5kV~7kV;纺丝正电压:5kV~7kV;纺丝接收速度:20~50r/min;纺丝平移速度:300~500mm/min;推注速度:0.01~0.02mm/min;纺丝时间:8h~16h。
进一步地,步骤4中所述烘干条件为:在50℃~60℃温度下烘干12h~24h。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1.本发明提供一种隔膜与正极一体的新型结构,该结构中具有纳米纤维状的隔膜直接生长于正极表面,使得在电池制备中,由原来在隔膜两面滴加电解液减少为仅滴加一次电解液,大大降低了电解液的用量,从而降低了E/S,提升电池的能量密度;基于本发明一体化结构组装的扣式CR2025电池,E/S可降低至5。
2.本发明一体化结构的制备工艺简单,采用静电纺丝工艺,直接将隔膜纺丝至正极表面,与现有技术相比,所用设备简单,制备成本低,可大规模生产。
附图说明
图1为本发明实施例1制备的正极与隔膜一体化结构的实物图;
其中,(a)为隔膜面朝上;(b)为正极面朝上。
图2为本发明实施例1制备的正极与隔膜一体化结构中纳米纤维隔膜的SEM图。
图3为基于本发明实施例1制备的正极与隔膜一体化结构组装的扣式电池的电化学充放电平台曲线图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合实施方式和附图,对本发明作进一步地详细描述。
实施例1
一种锂硫电池正极与隔膜一体化结构的制备方法,包括以下步骤:
步骤1:将1g的PAN溶于9mL NMP中,在50℃下进行水浴加热,并同时进行搅拌,加热2h后得到静电纺丝前驱液;
步骤2:将21mg的单质硫、6mg的乙炔黑、3mg的聚偏氟乙烯混合后,加入300μl的NMP,在温度为20℃的环境下,研磨30min,均匀涂敷到1cm2的圆形涂碳铝箔上,然后置于60℃真空烘干箱中,烘干16h,得到正极材料,其中,每片正极上约含有3.5mg硫;
步骤3:将30mg PVDF溶于200μl NMP中,研磨5min,得到粘性稠液,将锂硫电池正极以2cm的间距粘附在10cm*10cm的铝箔上,静置15min,得到静电纺丝接收基底;
步骤4:用注射针管吸取4mL步骤1得到的静电纺丝前驱液,使用步骤2得到的静电纺丝接收基底,采用型号为Ucalery SS-2534H的静电纺丝仪器,在空气湿度30%、纺丝喷头直径0.5mm、纺丝负电压为6kV、纺丝正电压为6kV、纺丝接收速度为50r/min、纺丝平移速度为300mm/min、推注速度为0.01mm/min、纺丝时间为16h;
步骤5:将步骤4得到的带隔膜的接收基底放入真空烘箱中,在60℃温度下烘干12h,烘干结束后取出基底,以圆形正极的圆心为中心,利用压片裁剪机裁剪出1.5cm*1.5cm的圆形三层结构,并揭下最底层不需要的铝箔基底,即得到两层的隔膜与正极一体的结构。
基于上述隔膜与正极一体的结构组装的扣式电池,具体步骤为:采用1mol/L的含2%的LiNO3的LiTFSI/DOL-DME(其中,DOL和DME的体积比为1:1)电解液,在氩气气氛的手套箱中,按照负极壳、电解液、所制备的正极及隔膜一体化结构(隔膜朝下,涂覆有硫正极的面为与隔膜的接触面)、垫片、弹片、正极壳为顺序,由下而上依次叠加,所滴加电解液为15~25ul,组装成CR2025型扣式电池。
本实施例制得的正极与隔膜一体化结构的实物图如图1所示,隔膜的SEM图如图2所示,基于本实施例得到的正极与隔膜一体化结构组装的扣式电池的电化学充放电平台曲线图如图3所示。
实施例2
一种锂硫电池正极与隔膜一体化结构的制备方法,包括以下步骤:
步骤1:将1.5g的PAN溶于9mL NMP中,在50℃下进行水浴加热,并同时进行搅拌,加热2h后得到静电纺丝前驱液;
步骤2:将21mg的单质硫、6mg的乙炔黑、3mg的聚偏氟乙烯混合后,加入300μl的NMP,在温度为20℃的环境下,研磨30min,均匀涂敷到1cm2的圆形涂碳铝箔上,然后置于60℃真空烘干箱中,烘干16h,得到正极材料,其中,每片正极上约含有3.5mg硫;
步骤3:将30mg PVDF溶于200μl NMP中,研磨5min,得到粘性稠液,将锂硫电池正极以2cm的间距粘附在10cm*10cm的铝箔上,静置15min,得到静电纺丝接收基底;
步骤4:用注射针管吸取4mL步骤1得到的静电纺丝前驱液,使用步骤2得到的静电纺丝接收基底,采用型号为Ucalery SS-2534H的静电纺丝仪器,在空气湿度30%、纺丝喷头直径1mm、纺丝负电压为7kV、纺丝正电压为7Kv、纺丝接收速度为20r/min、纺丝平移速度为500mm/min、推注速度为0.01mm/min、纺丝时间为12h;
步骤5:将步骤4得到的带隔膜的接收基底放入真空烘箱中,在60℃温度下烘干12h,烘干结束后取出基底,以圆形正极的圆心为中心,利用压片裁剪机裁剪出1.5cm*1.5cm的圆形三层结构,并揭下最底层不需要的铝箔基底,即得到两层的隔膜与正极一体的结构。
图1为实施例1得到的正极与隔膜一体化结构的正反面图,由图可知,正极与隔膜具备一定的结合力和机械稳定性,并且易于剪切;图2为实施例1得到的正极与隔膜一体化结构中的隔膜的SEM图,由图可知,其隔膜为纳米纤维膜,具有多孔网状结构,可对多硫化物的穿梭具备一定的抑制作用,但不会影响锂离子的传输,厚度为45μm;图3为基于本发明实施例1得到的正极与隔膜一体化结构组装的扣式电池的电化学充放电平台曲线图,由图可知,该结构的E/S为6,在0.02C电流下,仍然具备优良的锂硫电池充放电平台,电池比容量为602mAh g-1,电池可正常运行,证明使用该结构来实现低E/S锂硫电池的可行性。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (3)

1.一种锂硫电池正极与隔膜一体化结构,其特征在于,包括正极和采用静电纺丝法直接生长于正极表面的隔膜,所述隔膜具有纳米纤维网状结构,其中,隔膜面积大于正极面积,隔膜厚度为30 μm~70 μm,所述锂硫电池正极与隔膜一体化结构由以下制备方法得到:
步骤1:将聚丙烯腈溶于N-甲基吡咯烷酮中,在40~60 ℃水浴下搅拌,得到静电纺丝前驱液,其中,聚丙烯腈在前驱液中的质量分数为10~20%;
步骤2:用注射针管吸取步骤1得到的静电纺丝前驱液,使用锂硫电池正极作为静电纺丝接收基底,利用静电纺丝仪器进行纺丝,所述的静电纺丝具体参数为:纺丝喷头直径:0.5mm ~1 mm;纺丝负电压:5 kV ~7 kV;纺丝正电压:5 kV ~7 kV;纺丝接收速度:20~50 r/min;纺丝平移速度:300~500 mm/min;推注速度:0.01~0.02 mm/min;纺丝时间:8 h~16 h;
步骤3:将步骤2得到的带隔膜的接收基底放入真空烘箱烘干,烘干结束后取出基底,即可得到隔膜与正极一体结构,所述隔膜与正极一体结构降低锂硫电池制备中的电解液与硫含量之比,所述电解液与硫含量之比降低至5。
2.根据权利要求1所述锂硫电池正极与隔膜一体化结构,其特征在于,步骤2所述锂硫电池正极制备方法为:将乙炔黑、硫、聚偏氟乙烯混合,加入N-甲基吡咯烷酮进行研磨,均匀涂覆于涂碳铝箔上,烘干即可得到所述正极。
3.根据权利要求1所述锂硫电池正极与隔膜一体化结构,其特征在于,步骤3中所述烘干条件为:在50 ℃~60 ℃温度下烘干12 h~24 h。
CN201910813760.7A 2019-08-30 2019-08-30 一种锂硫电池正极与隔膜一体化结构及其制备方法 Active CN110635093B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910813760.7A CN110635093B (zh) 2019-08-30 2019-08-30 一种锂硫电池正极与隔膜一体化结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910813760.7A CN110635093B (zh) 2019-08-30 2019-08-30 一种锂硫电池正极与隔膜一体化结构及其制备方法

Publications (2)

Publication Number Publication Date
CN110635093A CN110635093A (zh) 2019-12-31
CN110635093B true CN110635093B (zh) 2022-03-15

Family

ID=68969672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910813760.7A Active CN110635093B (zh) 2019-08-30 2019-08-30 一种锂硫电池正极与隔膜一体化结构及其制备方法

Country Status (1)

Country Link
CN (1) CN110635093B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900326B (zh) * 2020-08-04 2021-08-06 大连理工大学 一种锂硫电池用正极-隔层一体化膜材料的制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103972480A (zh) * 2014-03-26 2014-08-06 北京理工大学 一种多级结构碳纤维/硫复合正极材料的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225809A (ja) * 2009-03-23 2010-10-07 Mitsubishi Paper Mills Ltd 電気化学素子用セパレータ電極一体型蓄電素子およびそれを用いてなる電気化学素子
JP2013065471A (ja) * 2011-09-16 2013-04-11 Nissan Motor Co Ltd 電極およびこれを用いた電気デバイス
KR101585839B1 (ko) * 2012-07-24 2016-01-14 가부시끼가이샤 도시바 2차 전지
JP6130845B2 (ja) * 2012-09-27 2017-05-17 三洋電機株式会社 セパレータ一体形電極及び非水電解質二次電池
CN103972467B (zh) * 2013-02-06 2016-01-13 中国科学院金属研究所 一种锂硫电池多层复合正极及其制备方法
CN103545473A (zh) * 2013-10-18 2014-01-29 中国第一汽车股份有限公司 制备一体化锂电池极板隔膜的装置及方法
CN107516724A (zh) * 2016-06-16 2017-12-26 宁德新能源科技有限公司 电芯及储能装置
CN107516725A (zh) * 2016-06-16 2017-12-26 宁德新能源科技有限公司 电芯及储能装置
CN107516721A (zh) * 2016-06-16 2017-12-26 宁德新能源科技有限公司 电芯及储能装置
CN110137560A (zh) * 2019-04-26 2019-08-16 中国航发北京航空材料研究院 一种一体化复合电极材料及其制备方法与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103972480A (zh) * 2014-03-26 2014-08-06 北京理工大学 一种多级结构碳纤维/硫复合正极材料的制备方法

Also Published As

Publication number Publication date
CN110635093A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN109704302B (zh) 一种磷掺杂多孔碳材料及其制备和在锂硫电池用涂层隔膜中的应用
CN110649266A (zh) 一种基于碳纳米管膜的锂离子电池及其制备方法
WO2011103708A1 (zh) 一种高比能量有机体系的电容电池
CN105529464A (zh) 一种锂硫电池
CN106099110A (zh) 一种利用水藻作碳源制备Li‑S电池正极材料的方法
CN109449376B (zh) 一种复合锂金属电极及其制备方法
CN104143624A (zh) 一种锂硫电池用正极材料和锂硫电池正极
CN103219491A (zh) 一种硫化铜正极及其制备方法
CN112687865A (zh) 一种锂离子电池负极浆料、其制备方法和用途
CN111864156A (zh) 锂硫电池用金属氮化物-金属氧化物异质结修饰隔膜的制备方法及包含该隔膜的锂硫电池
CN109859951A (zh) 一种碳基复合负极材料及其制备方法以及一种化学电源及其制备方法
WO2018059180A1 (zh) 一种高功率高能量化学电源及其制备方法
CN104183820B (zh) 一种锂硫电池正极用膜材料
CN107507958B (zh) 一种用于锂硫电池的原位粉体包覆与极板制备一体化方法
CN117790789A (zh) 一种负极活性层和包含其的二次电池
CN108666533B (zh) 一种锂硫电池硫电极的制备方法及应用
CN110635093B (zh) 一种锂硫电池正极与隔膜一体化结构及其制备方法
CN109830656A (zh) 一种具有固液复合界面层的金属锂负极的制备方法
CN117096279A (zh) 一种含锂复合负极的制备,其在锂二次电池中的应用
CN109817467B (zh) 一种复合正极材料及其制备方法以及一种化学电源及其制备方法
CN116387472A (zh) 一种钠离子电池负极浆料、负极片和钠离子电池
CN113659135B (zh) 铁硫化物在磷酸铁锂二次电池中的应用
CN116014073A (zh) 钠离子电池负极极片、钠离子电池及应用
CN115332541A (zh) 一种三明治结构柔性负极集流体及其制备方法和应用
CN108091927A (zh) 一种高安全、长循环寿命的锂离子电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220906

Address after: 610000 1, 3, 1, 366 north section of lakeside road, Tianfu New District, Chengdu, Sichuan

Patentee after: Chengdu Core Wisdom Technology Co.,Ltd.

Address before: 611731, No. 2006, West Avenue, Chengdu hi tech Zone (West District, Sichuan)

Patentee before: University of Electronic Science and Technology of China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230106

Address after: Room 302, Building 1, No. 715, North Section of Hupan Road, Xinglong Street, Tianfu New District, Chengdu, Sichuan, 610000

Patentee after: Chengdu Electronics Technology Co.,Ltd.

Address before: 610000 1, 3, 1, 366 north section of lakeside road, Tianfu New District, Chengdu, Sichuan

Patentee before: Chengdu Core Wisdom Technology Co.,Ltd.

TR01 Transfer of patent right