CN110504340A - 一种氮化镓发光二极管led外延片的生长方法 - Google Patents

一种氮化镓发光二极管led外延片的生长方法 Download PDF

Info

Publication number
CN110504340A
CN110504340A CN201910881609.7A CN201910881609A CN110504340A CN 110504340 A CN110504340 A CN 110504340A CN 201910881609 A CN201910881609 A CN 201910881609A CN 110504340 A CN110504340 A CN 110504340A
Authority
CN
China
Prior art keywords
aln
epitaxial wafer
growth
gallium nitride
mocvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910881609.7A
Other languages
English (en)
Other versions
CN110504340B (zh
Inventor
解向荣
吴永胜
张帆
刘恒山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Trillion Photoelectric Co Ltd
Original Assignee
Fujian Trillion Photoelectric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Trillion Photoelectric Co Ltd filed Critical Fujian Trillion Photoelectric Co Ltd
Priority to CN201910881609.7A priority Critical patent/CN110504340B/zh
Publication of CN110504340A publication Critical patent/CN110504340A/zh
Application granted granted Critical
Publication of CN110504340B publication Critical patent/CN110504340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Led Devices (AREA)

Abstract

本发明属于光电技术领域,具体涉及一种新型的氮化镓发光二极管(LED)外延片的生长方法。首先使用PECVD在蓝宝石上磁控溅射生长ALN薄膜缓冲层,再转移至MOCVD进行高温刻蚀,对AlN缓冲层进行粗化处理,形成岛状结构,然后退火后继续在MOCVD中二次生长ALN薄膜缓冲层,会增加ALN侧向生长,合并过程中位错会发生湮灭,可以降低ALN薄膜中的位错密度,再将生长ALN缓冲层完毕的蓝宝石衬底退火清洗后再转移至MOCVD腔室内再进行GaN基材料的生长,得到所述LED外延片。在此基础上生长的GaN基LED外延片晶体质量好、位错密度低、光效较传统的LED外延片提升约10%,同时抗静电能力提升显著。

Description

一种氮化镓发光二极管LED外延片的生长方法
技术领域
本发明属于光电技术领域,具体涉及一种新型的氮化镓发光二极管(LED)外延片的生长方法。
背景技术
氮化镓(GaN)基发光二极管(Light-Emitting Diode,LED)由于其体积小、效率高、寿命长等优点广泛应用于交通信号灯、照明、全色显示器件。LED外延片是LED生产过程的最关键环节,目前一般采用的传统外延片生长过程为:首先在P2ECVD腔体内将蓝宝石衬底镀上一层AlN薄膜缓冲层,再将蒸镀AlN薄膜缓冲层的蓝宝石衬底转移至MOCVD(金属有机气相沉积)反应腔体内进行GaN基LED生长,ALN晶体由于与GaN材料比较接近的晶格常数和热膨胀系数,可以有效解决蓝宝石衬底和GaN材料失配较大的难题,可以提升GaN基LED外延片的晶体质量,从而提升LED的光电性能。但是LED外延使用的蓝宝石和ALN薄膜缓冲层仍然存在较大的晶格失配和热失配,同样会给GaN材料引入较高的位错密度和较强的张应力,从而会影响GaN LED的性能,另外Al-N键能过强,Al原子迁移率比较低,侧向生长速率低,二维生长很难形成,因此很难在蓝宝石上生长出低位错密度的AlN薄膜缓冲层,所以在一定程度上还是会影响GaN基LED外延片的品质。
发明内容
本发明的目的在于提供氮化镓发光二极管(LED)外延片的生长方法。
为实现上述目的,本发明采用如下技术方案:
本发明是首先使用PECVD在蓝宝石上磁控溅射生长ALN薄膜缓冲层,再转移至MOCVD进行高温刻蚀,对AlN缓冲层进行粗化处理,形成岛状结构,然后退火后继续在MOCVD中二次生长ALN薄膜缓冲层,会增加ALN侧向生长,合并过程中位错会发生湮灭,可以降低ALN薄膜中的位错密度,再将生长ALN缓冲层完毕的蓝宝石衬底退火清洗后再转移至MOCVD腔室内再进行GaN基材料的生长,就可以得到高品质的GaN基LED外延片。
所述的利用PECVD和MOCVD进行的二次生长的方式得到的低位错密度ALN薄膜缓冲层,在此缓冲层上得到高品质的LED外延片共分为以下阶段:
步骤S1 采用磁控溅射的方式在(0001)面蓝宝石上溅射一定厚度的ALN; 步骤S2 将蓝宝石衬底转移到在MOCVD中,对ALN表面进行粗化处理,具体步骤如下:
步骤S21在MOCVD中通入一定量的H2,反应室压力控制在100Torr,对ALN薄膜进行升温烘烤,温度从500℃升温至1200℃,H2量使用量为50-60L,烘烤时间8min,转速1200转/分钟;
步骤S22 在反应腔体内恒定温度1200℃下持续烘烤5-7min,得到粗化图形的ALN缓冲层,粗化图形为一个个独立的岛状结构;粗化过程中优选H2使用量为60L;
步骤S3 在MOCVD内进行退火后,再转移至MOCVD腔体外进行清洗处理;
步骤S4 在粗化图形ALN上生长ALN,完成侧向合并过程,具体包括:
步骤S41 ALN侧向生长过程中,通入反应腔体的气体为N2、H2、NH3的混合气体,混合气体的体积之和要小于150L;生长时间120S-150S;
其中生长温度控制在1100℃-1250℃左右,生长压力控制在150Torr-200Torr,在粗化图形ALN上生长ALN层; 以800-1000转/min转速进行生长;
步骤S42继续低温550℃生长外延100A-150A的ALN,达到所需要的厚度;最后进行退火清洗;
步骤S5 利用MOCVD,在生长ALN薄膜层上依次生长N型氮化镓、有源层、P型氮化镓层。
步骤S1所述的溅射以高纯度AL靶材和Ar气、氧气或氮气等离子气体为反应源,进行磁控溅射,使用温度为400-800℃,优选温度为475-500℃;
其中氧气流量为0.5-3sccm,优选为2.5-3sccm,氮气用量为80-300sccm,优选用量为90-100sccm;氩气15-30sccm,优选用量为20sccm;
步骤S1 ALN薄膜厚度200-300A,优选厚度为250-300 A;
步骤S21 中所述粗化处理高温优选温度为1100-1150℃;
步骤S3中所述清洗处理使用的液体为酒精、丙酮和去离子水;
步骤S41中所述侧向外延生长过程中使用的N2、H2、NH3的混合气体,氨气的比例大于或者等于40vol%;
步骤S41通入反应腔体的金属有机源为三甲基铝,三甲基铝源的使用量通过NH3和金属有机源的摩尔流量比来决定,NH3和金属有机源的摩尔比350-500之间。
本发明的显著优点在于:
本发明通过将ALN溅射工艺和外延侧向生长结合在一起,有效降低了ALN薄膜的位错密度,首先通过溅射工艺可以确保ALN生长过程中晶向的取向性一致,另外通过粗化后二次生长可以减少ALN薄膜的位错密度,从而获得了高质量的ALN薄膜缓冲层,在此基础上生长的GaN基LED外延片晶体质量好、位错密度低、光效较传统的LED外延片提升约10%,同时抗静电能力提升显著。
附图说明
图1是本发明所述的ALN缓冲层的制备方法的流程图;
图2是本发明所述的一种氮化镓发光二极管外延片的结构图。
具体实施方式
为进一步公开而不是限制本发明,以下结合实例对本发明作进一步的详细说明,但是不用来限制本发明的范围。
图1展示了本发明提供的ALN缓冲层的制备方法的核心思路,主要包括:一是采用磁控溅射的方法在蓝宝石0001面上制备一定厚度的ALN,然后对ALN缓冲层进行粗化处理,再者在高温条件下进行ALN侧向生长,进行位错湮灭,可以有效减少ALN合并过程中的贯穿位错,具体包括以下步骤:
步骤S1 采用磁控溅射的方式在(0001)面蓝宝石上溅射一定厚度的ALN:
首先对4英寸蓝宝石进行表面处理,高温400℃-500℃烘烤5-10min,再通入N2 80-300sccm,氧气0.5-3sccm,氩气15-30sccm,进行等离子辉光处理,以高纯度AL靶材采用磁控溅射方法在蓝宝石表面上生长ALN。
步骤S2 将蓝宝石衬底转移到在MOCVD中,对ALN表面进行粗化处理,具体步骤如下:
步骤S21 在MOCVD内通入一定量的H2,反应室压力控制在150Torr,对ALN薄膜进行升温烘烤,温度从500℃升温至1200℃,H2量使用量为50-60L,烘烤时间8min,转速1200转/分钟。
步骤S22,在反应腔体内恒定温度1200℃下持续烘烤5-7min,得到粗化图形的ALN缓冲层,粗化图形为一个个独立的岛状结构;粗化过程中优选的H2使用量为60L。
步骤S3 在MOCVD内进行退火后,再转移至MOCVD腔体外进行清洗处理;
步骤S4:在粗化图形ALN上生长ALN,完成侧向合并过程,具体包括:
步骤S41 ALN侧向生长过程中,通入反应腔体的气体为N2、H2、NH3的混合气体,混合气体的体积之和要小于150L;通入反应腔体的金属源为三甲基铝,三甲基铝源的使用量通过NH3和金属有机源的摩尔流量比来决定,NH3和金属有机源的摩尔比350-500之间;生长时间为120S-150S;
其中生长温度控制在1100℃-1250℃左右,生长压力控制在150Torr-200Torr,在粗化图形ALN上生长ALN层; 以800-1000转/min转速进行生长;
步骤S42继续低温550℃生长外延100A-150A厚度的ALN,达到所需要的厚度后;最后进行退火清洗;
步骤S5 利用MOCVD,在生长ALN薄膜层上依次生长N型氮化镓、有源层、P型氮化镓层。
本发明将各个步骤进行严格配合控制,其中步骤S4的工艺组合对一定优化厚度的ALN薄膜进行粗化处理,通过步骤S4过程中的温度、时间、气体比例、可以有效控制ALN 台面的宽度,从而控制位错的密度,并实现对粗化过程的精确控制,其中生长温度、转速、NH3和三甲基AL源的比例三个参数的优化选择,可以对ALN侧向聚合过程进行精准监控及控制处理,通过对衬底ALN薄膜各项参数及外延生长条件的优化组合,可以有效的实现在控制ALN侧向聚合过程中由于岛斜面的镜像力弯折位错,就可以实现对台面上贯穿位错的高效消除,极大程度上减少位错密度的产生,另外一方面,通过对工艺参数的优化和改变,可以对ALN侧向生长过程中横向生长的速度,可以有效的减少ALN聚合过程中相邻岛状晶粒间的差异,也会减少位错的增加,达到较传统的ALN薄膜位错密度下降约30%,从而有效提升ALN薄膜层上GaN材料的品质,可以有效提高有源层中电子和空穴的复合效率,减少俄歇复合,提高GaN LED的发光效率。
实施例1
步骤 S1用PECVD(等离子气相沉积)设备,托盘采用7片盘,衬底采用四寸蓝宝石衬底01,首先在500℃下,通入氮气并进行辉光放电,利用氮离子对蓝宝石表面进行处理;
步骤S2在PECVD腔体内再通入N2 90sccm,氩气20sccm,氧气3sccm,辉光放电后通过氩离子轰击AL靶材,在蓝宝石表面上沉淀200A的ALN薄膜02;
步骤 S3将沉积200A厚度的蓝宝石转移至MOCVD(金属有机气相沉积)中,通入H2 55L,转速控制在1000转/分钟,温度控制在1200℃,时间为8min,对ALN薄膜进行粗化处理,得到粗化的ALN薄膜03;
步骤 S4将粗化后的ALN薄膜转移到腔体外进行清洗,使用酒精、丙酮和去离子水质量配比1:1:1的溶液进行震荡清洗,清洗后通过显微镜50倍下检查,表面颗粒数量不能超过3颗;
步骤S5将清洗后的衬底转移到MOCVD中,温度升至1200℃,压力控制在150Torr,通入氨气NH3、H2、N2,氨气比例占混合气体和的45%,再通入三甲基铝源,氨气和三甲基铝的摩尔比为350,生长时间2分钟,生长厚度200A的氮化铝层04;
步骤 S6继续低温550℃生长外延100A的氮化铝层05;
步骤 S7在ALN继续生长N型氮化镓06、有源层07、P型氮化镓层08,总厚度为5.5微米;获得所述LED外延片。
实施例1生长的LED外延片表面光洁平整,对其进行高强度X射线衍射仪测试,其102和002面摇摆曲线半宽高(FWHM)值分别为180弧秒和120弧秒,对比传统方式生长的LED外延片,其102和002面摇摆曲线半宽高(FWHM)值分别为230弧秒和190弧秒,说明该方法明显提高了LED外延片的晶体质量。
实施例1生长的外延片进行清洗、刻蚀、金属蒸镀等芯片工艺,制作成17mil*34mil的LED芯片,并对芯片进行光电性能测试,通入测试电流120mA,得到工作电压2.90V,发光亮度250 mW,通入反向-12V电压,得到反向电流均值0.01uA,反向漏电良率>99.8%(按反向漏电流<0.1uA统计),6KV静电(ESD)释放条件下,良率为99.5%,与传统方式的LED外延片制作的芯片相比,发光亮度提升20mW, 漏电良率提升5%,6KV ESD良率提升了15%,说明实施例1的LED外延片性能较传统的LED有了极大的改善。
综上所述,尽管上文已经通过一般性的说明及具体实施案例对本发明做了相近的描述,但是在本发明的基础上,可以对其进行一些修改和改进,这些对本领域技术人员而言是非常显而易见的,因此在不偏离本发明核心方法基础上做的一些修改和改进,均属于本发明要求保护的范围。

Claims (8)

1.一种氮化镓发光二极管LED外延片的生长方法,其特征在于:首先使用PECVD在蓝宝石上磁控溅射生长ALN,再转移至MOCVD进行高温刻蚀,对AlN表面进行粗化处理,形成岛状结构,然后退火后继续在MOCVD中二次生长ALN薄膜缓冲层,会增加ALN侧向生长,再将生长ALN缓冲层完毕的蓝宝石衬底退火清洗后再转移至MOCVD腔室内再进行GaN基材料的生长,制备得到GaN基LED外延片。
2.根据权利要求1所述的一种氮化镓发光二极管LED外延片的生长方法,其特征在于:具体步骤包括:
步骤S1 采用磁控溅射的方式在(0001)面蓝宝石上溅射一定厚度的ALN;
步骤S2 将蓝宝石衬底转移到在MOCVD中,对ALN表面进行粗化处理,具体步骤如下:
步骤S21在MOCVD中通入一定量的H2,反应室压力控制在100Torr,对ALN薄膜进行升温烘烤,温度从500℃升温至1200℃;
步骤S22 在反应腔体内恒定温度1200℃下持续烘烤5-7min,得到粗化图形的ALN缓冲层,粗化图形为一个个独立的岛状结构;
步骤S3 在MOCVD内进行退火后,再转移至MOCVD腔体外进行清洗处理;
步骤S4 在粗化图形ALN上生长ALN,完成侧向合并过程,具体包括:
步骤S41 ALN侧向生长过程中,通入反应腔体的气体为N2、H2、NH3的混合气体,混合气体的体积之和要小于150L;生长温度控制在1100℃-1250℃,生长压力控制在150Torr-200Torr,在粗化图形ALN上生长ALN层; 以800-1000转/min转速进行生长;生长时间120S-150S;
步骤S42继续低温550℃下生长外延100A-150A厚度的ALN,达到所需要的厚度后,最后进行退火清洗;
步骤S5 利用MOCVD,在生长ALN薄膜层上依次生长N型氮化镓、有源层、P型氮化镓层。
3.根据权利要求2所述的一种氮化镓发光二极管LED外延片的生长方法,其特征在于:步骤S1具体为: 首先对4英寸蓝宝石进行表面处理,高温400℃-500℃烘烤5-10min,再通入N2 80-300sccm,氧气0.5-3sccm,氩气15-30sccm,进行等离子辉光处理,以高纯度AL靶材采用磁控溅射方法在蓝宝石表面上生长ALN。
4.根据权利要求2所述的一种氮化镓发光二极管LED外延片的生长方法,其特征在于:步骤S1 ALN薄膜厚度200-300A。
5.根据权利要求2所述的一种氮化镓发光二极管LED外延片的生长方法,其特征在于:步骤S21 中所述粗化处理具体条件为:H2量使用量为50-60L,烘烤时间8min,转速1200转/分钟。
6.根据权利要求2所述的一种氮化镓发光二极管LED外延片的生长方法,其特征在于:步骤S3中所述清洗处理使用的液体为酒精、丙酮和去离子水。
7.根据权利要求2所述的一种氮化镓发光二极管LED外延片的生长方法,其特征在于:步骤S41中所述侧向外延生长过程中使用的N2、H2、NH3的混合气体,氨气的比例大于或者等于40vol%。
8.根据权利要求2所述的一种氮化镓发光二极管LED外延片的生长方法,其特征在于:步骤S41通入反应腔体的金属有机源为三甲基铝,三甲基铝源的使用量通过NH3和金属有机源的摩尔流量比来决定,NH3和金属有机源的摩尔比350-500之间。
CN201910881609.7A 2019-09-18 2019-09-18 一种氮化镓发光二极管led外延片的生长方法 Active CN110504340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910881609.7A CN110504340B (zh) 2019-09-18 2019-09-18 一种氮化镓发光二极管led外延片的生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910881609.7A CN110504340B (zh) 2019-09-18 2019-09-18 一种氮化镓发光二极管led外延片的生长方法

Publications (2)

Publication Number Publication Date
CN110504340A true CN110504340A (zh) 2019-11-26
CN110504340B CN110504340B (zh) 2021-10-08

Family

ID=68592259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910881609.7A Active CN110504340B (zh) 2019-09-18 2019-09-18 一种氮化镓发光二极管led外延片的生长方法

Country Status (1)

Country Link
CN (1) CN110504340B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111341891A (zh) * 2020-03-09 2020-06-26 江西新正耀光学研究院有限公司 紫外led外延结构及其制备方法
CN111341887A (zh) * 2020-03-02 2020-06-26 江西圆融光电科技有限公司 一种GaN基础层及其制备方法和应用
CN112242459A (zh) * 2020-09-29 2021-01-19 苏州紫灿科技有限公司 一种具有原位SiN位错湮灭层的AlGaN薄膜及其外延生长方法
CN112670378A (zh) * 2020-12-31 2021-04-16 深圳第三代半导体研究院 一种发光二极管及其制造方法
CN112736128A (zh) * 2020-12-31 2021-04-30 晶能光电(江西)有限公司 GaN基HEMT外延结构及其制备方法
CN113540295A (zh) * 2021-06-23 2021-10-22 山西中科潞安紫外光电科技有限公司 一种氮化铝衬底模板的制作方法
CN114242859A (zh) * 2021-11-30 2022-03-25 福建兆元光电有限公司 一种Micro LED外延片制备方法
CN116207196A (zh) * 2023-05-05 2023-06-02 江西兆驰半导体有限公司 一种led外延片及其制备方法、led芯片

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051666A (zh) * 2006-04-07 2007-10-10 丰田合成株式会社 Ⅲ族氮化物半导体发光元件
US20140087545A1 (en) * 2012-09-27 2014-03-27 Toyoda Gosei Co., Ltd. Method for producing a group iii nitride semiconductor
CN105296948A (zh) * 2015-11-03 2016-02-03 湘能华磊光电股份有限公司 一种提高GaN基LED光电性能的外延生长方法
CN105762240A (zh) * 2016-04-18 2016-07-13 厦门市三安光电科技有限公司 一种紫外发光二极管外延结构及其制备方法
JP2018056551A (ja) * 2016-09-21 2018-04-05 豊田合成株式会社 発光素子及びその製造方法
CN107919392A (zh) * 2017-11-09 2018-04-17 中国电子科技集团公司第五十五研究所 氮化镓基氮化物高电子迁移率晶体管外延结构及生长方法
CN108364852A (zh) * 2018-01-22 2018-08-03 北京大学 一种高质量AlN及其制备方法和应用
US20190081209A1 (en) * 2014-11-18 2019-03-14 Nichia Corporation Nitride semiconductor device and method for producing the same
US20190190489A1 (en) * 2016-09-30 2019-06-20 Intel Corporation Film bulk acoustic resonator (fbar) devices for high frequency rf filters

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051666A (zh) * 2006-04-07 2007-10-10 丰田合成株式会社 Ⅲ族氮化物半导体发光元件
US20140087545A1 (en) * 2012-09-27 2014-03-27 Toyoda Gosei Co., Ltd. Method for producing a group iii nitride semiconductor
US20190081209A1 (en) * 2014-11-18 2019-03-14 Nichia Corporation Nitride semiconductor device and method for producing the same
CN105296948A (zh) * 2015-11-03 2016-02-03 湘能华磊光电股份有限公司 一种提高GaN基LED光电性能的外延生长方法
CN105762240A (zh) * 2016-04-18 2016-07-13 厦门市三安光电科技有限公司 一种紫外发光二极管外延结构及其制备方法
JP2018056551A (ja) * 2016-09-21 2018-04-05 豊田合成株式会社 発光素子及びその製造方法
US20190190489A1 (en) * 2016-09-30 2019-06-20 Intel Corporation Film bulk acoustic resonator (fbar) devices for high frequency rf filters
CN107919392A (zh) * 2017-11-09 2018-04-17 中国电子科技集团公司第五十五研究所 氮化镓基氮化物高电子迁移率晶体管外延结构及生长方法
CN108364852A (zh) * 2018-01-22 2018-08-03 北京大学 一种高质量AlN及其制备方法和应用

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111341887A (zh) * 2020-03-02 2020-06-26 江西圆融光电科技有限公司 一种GaN基础层及其制备方法和应用
CN111341891A (zh) * 2020-03-09 2020-06-26 江西新正耀光学研究院有限公司 紫外led外延结构及其制备方法
CN112242459A (zh) * 2020-09-29 2021-01-19 苏州紫灿科技有限公司 一种具有原位SiN位错湮灭层的AlGaN薄膜及其外延生长方法
CN112242459B (zh) * 2020-09-29 2022-05-20 苏州紫灿科技有限公司 一种具有原位SiN位错湮灭层的AlGaN薄膜及其外延生长方法
CN112670378A (zh) * 2020-12-31 2021-04-16 深圳第三代半导体研究院 一种发光二极管及其制造方法
CN112736128A (zh) * 2020-12-31 2021-04-30 晶能光电(江西)有限公司 GaN基HEMT外延结构及其制备方法
CN113540295A (zh) * 2021-06-23 2021-10-22 山西中科潞安紫外光电科技有限公司 一种氮化铝衬底模板的制作方法
CN114242859A (zh) * 2021-11-30 2022-03-25 福建兆元光电有限公司 一种Micro LED外延片制备方法
CN114242859B (zh) * 2021-11-30 2023-05-02 福建兆元光电有限公司 一种Micro LED外延片制备方法
CN116207196A (zh) * 2023-05-05 2023-06-02 江西兆驰半导体有限公司 一种led外延片及其制备方法、led芯片

Also Published As

Publication number Publication date
CN110504340B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN110504340A (zh) 一种氮化镓发光二极管led外延片的生长方法
CN108336195A (zh) 一种InGaN薄膜的制备方法
CN107681025B (zh) 一种GaN基白光LED外延结构及制备方法
US10727054B2 (en) Nitride-based semiconductor device and method for preparing the same
CN114937721B (zh) 一种硅衬底GaN基LED外延片及其制备方法
CN109786527B (zh) 一种发光二极管外延片及其制造方法
US20070272943A1 (en) Structure and manufacturing method for epitaxial layers of gallium nitride-based compound semiconductors
CN104393125A (zh) 一种发光元件的制备方法
CN103117346B (zh) 一种发光二极管芯片及其制造方法
CN104037293A (zh) 一种生长在Si图形衬底上的LED外延片及其制备方法
CN102208338A (zh) 蓝宝石基复合衬底及其制造方法
CN102255020B (zh) 一种垂直结构氮化镓发光二极管的外延片及其制造方法
CN108899401A (zh) 基于石墨烯插入层结构的GaN基LED器件制备方法
CN109786526B (zh) 一种发光二极管外延片及其制造方法
JP2007109713A (ja) Iii族窒化物半導体発光素子
CN104952710B (zh) 一种led外延层生长方法
CN105914270A (zh) 硅基氮化镓led外延结构的制造方法
CN110034174A (zh) 高电子迁移率晶体管外延片及其制备方法
CN109755362A (zh) 一种高发光效率的氮化物发光二极管
CN116845152B (zh) 一种led芯片制备方法及led芯片
CN109638117A (zh) 一种AlN模板、外延片结构及制造方法
CN117577748A (zh) 发光二极管外延片及其制备方法、led
CN115295701B (zh) 硅基氮化镓铝外延片及其制备方法
CN108538970B (zh) 一种发光二极管的制备方法
CN109671819A (zh) 一种GaN基发光二极管外延片及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant