CN107681025B - 一种GaN基白光LED外延结构及制备方法 - Google Patents

一种GaN基白光LED外延结构及制备方法 Download PDF

Info

Publication number
CN107681025B
CN107681025B CN201710818343.2A CN201710818343A CN107681025B CN 107681025 B CN107681025 B CN 107681025B CN 201710818343 A CN201710818343 A CN 201710818343A CN 107681025 B CN107681025 B CN 107681025B
Authority
CN
China
Prior art keywords
layer
gan
buffer layer
growing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710818343.2A
Other languages
English (en)
Other versions
CN107681025A (zh
Inventor
李虞锋
云峰
张维涵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201710818343.2A priority Critical patent/CN107681025B/zh
Publication of CN107681025A publication Critical patent/CN107681025A/zh
Application granted granted Critical
Publication of CN107681025B publication Critical patent/CN107681025B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明一种GaN基白光LED外延结构及制备方法,该制备方法包括以下步骤:使用反应磁控溅射在稀土元素掺杂YAG陶瓷或单晶衬底上制备单晶或多晶氮氧化铝、氮化铝双层缓冲层;使用金属有机化学气相沉积在所述单晶或多晶氮化铝缓冲层上生长GaN基LED外延结构,其中,GaN基LED外延结构自下而上依次为低温GaN缓冲层、高温GaN层、N型GaN层、InGaN/GaN多量子阱有源区、P型GaN层和高掺杂P型电极接触层。本发明制备的GaN基白光LED外延结构可以非常精确地控制荧光材料的掺杂、厚度和质量等光学特型和物理特性,实现重复率非常高、均匀度非常好的荧光材料集成,并解决传统点胶(涂覆)型白光LED中荧光粉、胶体散射导致的光损失与荧光粉受热退化造成的光效降低、色坐标偏移的问题。

Description

一种GaN基白光LED外延结构及制备方法
技术领域
本发明属于光电技术领域,具体涉及一种GaN基白光LED外延结构及制备方法。
背景技术
白光LED目前已经取代传统照明,成为室内、室外通用照明的首选方式。白光LED通常采用蓝光LED激发黄色荧光粉的方式产生白光。目前最主流的荧光粉涂敷工艺是传统的喷涂(点胶)工艺:即荧光粉与胶体混合后,直接涂覆在蓝光LED芯片上。该工艺存在诸多难以克服的困难,例如,微米级的荧光粉颗粒对LED发出的蓝光具有较强的散射作用,导致光效降低;荧光粉由于受到LED芯片的热影响,产生热退化效应,最终导致白光LED光效降低,色坐标的偏移。
因此,需要一种新型白光LED,解决荧光粉光散射、热退化等现象,同时简化封装工艺、提高良率、减少生产成本。
发明内容
本发明的目的是为了解决上述技术问题,提供了一种GaN基白光LED外延结构的制备方法,在新型稀土元素掺杂的YAG陶瓷或单晶衬底上生长的一种GaN基白光LED外延片,通过传统芯片加工工艺可获得无需荧光粉涂覆工艺的白光LED芯片。
为达到上述目的,本发明采用如下的技术方案予以实现:
一种GaN基白光LED外延结构的制备方法,包括以下步骤:
采用反应磁控溅射法在稀土元素掺杂YAG陶瓷或单晶衬底上制备双层外延缓冲层;
用金属有机化学气相沉积在所述双层外延缓冲层上生长GaN基LED外延结构,其中,GaN基LED外延结构自下而上依次为低温GaN缓冲层、高温GaN层、N型GaN层、InGaN/GaN多量子阱有源区、P型GaN层和高掺杂P型电极接触层。
本发明进一步的改进在于,所述稀土元素掺杂YAG陶瓷或单晶衬底中,稀土元素包括Ce、Eu、Nd和Yb中的一种或几种,掺杂浓度为0.05at%到0.5at%,衬底厚度为100μm到1000μm,作为衬底的稀土元素YAG陶瓷或单晶表面经过精细抛光,其表面粗糙度小于0.5nm。
本发明进一步的改进在于,采用反应磁控溅射法在稀土元素掺杂YAG陶瓷或单晶衬底上制备双层外延缓冲层,其具体操作为:
首先,将稀土元素掺杂YAG陶瓷或单晶衬底放入磁控溅射腔室内样品台上,开启抽真空及样品加热;
随后,通入氩气,开启RF电源,对靶材进行等离子清洗;之后通入氩气、氮气或氧气,开始预溅射;
最后,打开挡板,根据条件依次溅射缓冲层第一层和第二层。
本发明进一步的改进在于,所述采用反应磁控溅射法制备的双层外延缓冲层,自下而上依次为:第一层:单晶或多晶氮化铝或氮氧化铝缓冲层;第二层:单晶或多晶氮化铝缓冲层。
本发明进一步的改进在于,所述采用反应磁控溅射法制备的双层外延缓冲层,其厚度为:第一层:0.1nm至2μm,第二层:0.1nm至2μm。
本发明进一步的改进在于,溅射靶材为铝靶材或氮化铝靶材;
样品加热温度为200℃至1300℃。
本发明进一步的改进在于,RF功率为200W至1000W,反应溅射时对应自偏压为100-4000V;
溅射气压为0.1Pa至1Pa。
本发明进一步的改进在于,氩气流量范围为0至100sccm,氮气流量为0至50sccm,氧气流量为0至50sccm,且三种气体中至少有一种气体通入。
本发明进一步的改进在于,使用金属有机化学气相沉积在所述单晶或多晶氮化铝缓冲层上生长GaN基LED外延结构,具体包括:
在温度为500℃-700℃下生长50nm-300nm厚度的低温GaN缓冲层;
在温度为900℃-1200℃下生长2-4um厚度的高温GaN缓冲层;
在温度为900℃-1200℃下生长1um-3um的N型GaN层,其中,N型GaN层中的Si掺杂浓度为1×1017cm-3-3×1020cm-3
在温度为650℃-850℃下生长1-30个循环的InGaN/GaN多量子阱发光层;
在温度为800℃-1150℃下生长100nm-800nm的P型GaN层,其中,Mg掺杂浓度为1×1017cm-3-3×1020cm-3
在温度为800℃-1200℃下生长5nm-50nm的高掺杂P型电极接触层,其中,Mg掺杂浓度为1×1018cm-3-5×1020cm-3
一种GaN基白光LED外延结构,采用上述制备方法制得。
与现有技术相比,通过反应磁控溅射可以获得高质量的氮氧化铝、氮化铝薄膜,可以有效地缓解GaN与YAG晶格失配带来的应力,同时为GaN的外延生长提供较好的成核条件。采用该结构,衬底被GaN基LED激发后,可以直接得到白光发射。在生产中减少了荧光粉涂覆封装环节,减少了成本;同时,采用倒装结构有利于芯片热管理,避免使用传统荧光粉可消除热效应导致的荧光粉失效,从而提高白光LED的光效与寿命。
综上,本发明可大幅度简化制作工艺,有效减少生产成本。另外由于直接使用荧光材料取代传统的蓝宝石作为外延衬底,可以较好地解决荧光粉材料本身的散热问题,提高其在大功率驱动下的稳定性,实现更好的色温控制,更长的寿命。
附图说明
图1为本发明制备方法制备的GaN基白光LED外延结构的示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
实施例1
取一片掺杂浓度0.5at%、厚度200μm、表面粗糙度小于0.5nm的Ce:YAG单晶衬底,清洗后放入磁控溅射设备室中,开启抽真空、样品加热。
当衬底加热至300℃,本底真空达到1×10-5时,通入Ar:10sccm,RF功率设为200W,腔体气压调节为0.1Pa,对Al靶材进行射频清洗10min。将Ar流量调整为20sccm,并通入N2:20sccm,RF功率调整为500W,气压调节为0.2Pa,预溅射AlN 20min。打开挡板,在Ce:YAG衬底上溅射第一层0.1nm多晶AlN缓冲层,关闭挡板。
温度保持不变,通入Ar:30sccm、N2:30sccm,RF功率设为800W,腔体气压调节为0.4Pa,预溅射AlN 20min。打开挡板,在第一层AlN缓冲层上溅射第二层500nm单晶AlN缓冲层。
将衬底放入金属有机化学气相沉积(MOVPE)设备中,生长GaN基LED外延结构,具体为:在反应磁控溅射AlN缓冲层表面依次生长低温GaN层、高温GaN层、N型GaN层、InGaN/GaN多量子阱发光层、P型GaN层和高掺杂P型GaN电极接触层。
实施例2
取一片厚度1000μm、表面粗糙度小于0.5nm的Ce、Nd:YAG单晶衬底,其中,Ce掺杂浓度为0.05at%,Nd掺杂浓度为0.05at%清洗后放入磁控溅射设备室中,开启抽真空、样品加热。
当衬底加热至1300℃,本底真空达到1×10-4时,通入Ar:100sccm,RF功率设为200W,腔体气压调节为0.5Pa,对Al靶材进行射频清洗10min。将Ar流量调整为50sccm,并通入N2:50sccm、O2:50sccm,RF功率调整为1000W,气压调节为1Pa,预溅射AlON 20min。打开挡板,在Ce:YAG衬底上溅射第一层5nm单晶AlON缓冲层。
将温度设为600℃,温度稳定后,通入Ar:10sccm、N2:10sccm,RF功率设为200W,腔体气压调节为0.1Pa,预溅射AlN 20min。打开挡板,在第一层AlON缓冲层上溅射第二层30nmAlN单晶缓冲层。
将衬底放入金属有机化学气相沉积(MOVPE)设备中,生长GaN基LED外延结构,具体为:在反应磁控溅射双层AlON/AlN缓冲层表面依次生长低温GaN缓冲层、GaN缓冲层、N型GaN层、InGaN/GaN多量子阱发光层、AlGaN阻挡层、P型GaN层和高掺杂P型GaN电极接触层。
实施例3
取一片厚度100μm、表面粗糙度小于0.5nm的Ce、Eu、Yb:YAG单晶衬底,其中,Ce掺杂浓度为0.5at%,Eu掺杂浓度为0.5at%,Yb掺杂浓度为0.05at%清洗后放入磁控溅射设备室中,开启抽真空、样品加热。
当衬底加热至200℃,本底真空达到5×10-5时,通入Ar:40sccm,RF功率设为200W,腔体气压调节为1Pa,对AlN靶材进行射频清洗20min。Ar流量保持40sccm,并通入O2:20sccm,RF功率调整为800W,气压调节为1Pa,预溅射AlON 20min。打开挡板,在衬底上溅射第一层100nm单晶AlON缓冲层。
将温度设为400℃,温度稳定后,通入Ar:30sccm、N2:30sccm,RF功率设为400W,腔体气压调节为1Pa,预溅射AlN 20min。打开挡板,在第一层AlON缓冲层上溅射第二层2000nmAlN单晶缓冲层。
将衬底放入金属有机化学气相沉积(MOVPE)设备中,生长GaN基LED外延结构,具体为:在反应磁控溅射双层AlON/AlN缓冲层表面依次生长低温GaN缓冲层、GaN缓冲层、N型GaN层、InGaN/GaN多量子阱发光层、AlGaN阻挡层、P型GaN层和高掺杂P型GaN电极接触层。
实施例5
取一片厚度600μm、表面粗糙度小于0.5nm的Ce:YAG单晶衬底,其中,Ce掺杂浓度为0.05at%,清洗后放入磁控溅射设备室中,开启抽真空、样品加热。
当衬底加热至900℃,本底真空达到2×10-4时,通入Ar:10sccm,RF功率设为400W,腔体气压调节为0.1Pa,对Al靶材进行射频清洗15min。将Ar流量关闭,并通入N2:50sccm、O2:5sccm,RF功率调整为500W,气压调节为0.6Pa,预溅射AlON 30min。打开挡板,在Ce:YAG衬底上溅射2000nm单晶AlON缓冲层。
将温度设为300℃,温度稳定后,通入Ar:10sccm、N2:10sccm,RF功率设为800W,腔体气压调节为0.1Pa,预溅射AlN 20min。打开挡板,在第一层AlON缓冲层上溅射第二层0.1nm多晶AlN缓冲层。
将带有该缓冲层的衬底放入金属有机化学气相沉积(MOVPE)设备中,生长GaN基LED外延结构,具体为:在反应磁控溅射双层AlON/AlN缓冲层表面依次生长低温GaN缓冲层、GaN缓冲层、N型GaN层、InGaN/GaN多量子阱发光层、AlGaN阻挡层、P型GaN层和高掺杂P型GaN电极接触层。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种GaN基白光LED外延结构的制备方法,其特征在于,包括以下步骤:
采用反应磁控溅射法在稀土元素掺杂YAG陶瓷或单晶衬底上制备双层外延缓冲层;该双层外延缓冲层自下而上依次为:第一层:单晶或多晶氮化铝或氮氧化铝缓冲层;第二层:单晶或多晶氮化铝缓冲层,其厚度为:第一层:0.1nm至2μm,第二层:0.1nm至2μm;
用金属有机化学气相沉积在所述双层外延缓冲层上生长GaN基LED外延结构,其中,GaN基LED外延结构自下而上依次为低温GaN缓冲层、高温GaN层、N型GaN层、InGaN/GaN多量子阱有源区、P型GaN层和高掺杂P型电极接触层;
采用反应磁控溅射法在稀土元素掺杂YAG陶瓷或单晶衬底上制备双层外延缓冲层,其具体操作为:
首先,将稀土元素掺杂YAG陶瓷或单晶衬底放入磁控溅射腔室内样品台上,开启抽真空及样品加热;所述稀土元素掺杂YAG陶瓷或单晶衬底中,稀土元素包括Ce、Eu、Nd和Yb中的一种或几种,掺杂浓度为0.05at%到0.5at%,衬底厚度为100μm到1000μm,作为衬底的稀土元素YAG陶瓷或单晶表面经过精细抛光,其表面粗糙度小于0.5nm;
随后,通入氩气,开启RF电源,对靶材进行等离子清洗;之后通入氩气、氮气或氧气,开始预溅射;RF功率为200W至1000W,反应溅射时对应自偏压为100-4000V;溅射气压为0.1Pa至1Pa;氩气流量范围为0至100sccm,氮气流量为0至50sccm,氧气流量为0至50sccm,且三种气体中至少有一种气体通入;
最后,打开挡板,根据条件依次溅射缓冲层第一层和第二层;
使用金属有机化学气相沉积在所述单晶或多晶氮化铝缓冲层上生长GaN基LED外延结构,具体包括:
在温度为500℃-700℃下生长50nm-300nm厚度的低温GaN缓冲层;
在温度为900℃-1200℃下生长2-4um厚度的高温GaN缓冲层;
在温度为900℃-1200℃下生长1um-3um的N型GaN层,其中,N型GaN层中的Si掺杂浓度为1×1017cm-3-3×1020cm-3
在温度为650℃-850℃下生长1-30个循环的InGaN/GaN多量子阱发光层;
在温度为800℃-1150℃下生长100nm-800nm的P型GaN层,其中,Mg掺杂浓度为1×1017cm-3-3×1020cm-3
在温度为800℃-1200℃下生长5nm-50nm的高掺杂P型电极接触层,其中,Mg掺杂浓度为1×1018cm-3-5×1020cm-3
2.根据权利要求1所述的制备方法,其特征在于,溅射靶材为铝靶材或氮化铝靶材;
样品加热温度为200℃至1300℃。
3.一种GaN基白光LED外延结构,其特征在于,采用权利要求1 或2所述的制备方法制得。
CN201710818343.2A 2017-09-12 2017-09-12 一种GaN基白光LED外延结构及制备方法 Active CN107681025B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710818343.2A CN107681025B (zh) 2017-09-12 2017-09-12 一种GaN基白光LED外延结构及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710818343.2A CN107681025B (zh) 2017-09-12 2017-09-12 一种GaN基白光LED外延结构及制备方法

Publications (2)

Publication Number Publication Date
CN107681025A CN107681025A (zh) 2018-02-09
CN107681025B true CN107681025B (zh) 2020-07-28

Family

ID=61135712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710818343.2A Active CN107681025B (zh) 2017-09-12 2017-09-12 一种GaN基白光LED外延结构及制备方法

Country Status (1)

Country Link
CN (1) CN107681025B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244203B (zh) * 2018-09-12 2020-07-07 华灿光电(苏州)有限公司 一种发光二极管的外延片及其制备方法
CN109326696B (zh) * 2018-09-19 2021-04-27 华灿光电(苏州)有限公司 一种发光二极管的外延片的制备方法
CN109267020B (zh) * 2018-09-29 2021-02-05 有研新材料股份有限公司 一种铝氮钪合金靶材的制备方法和应用
CN109786514B (zh) * 2018-12-27 2020-08-18 华灿光电(浙江)有限公司 一种发光二极管外延片的制造方法
CN109873056B (zh) * 2019-01-18 2020-09-29 华灿光电(浙江)有限公司 发光二极管的外延片的制备方法
CN114361315A (zh) * 2020-10-13 2022-04-15 福建中科芯源光电科技有限公司 一种无机材料封装的白光led芯片、器件及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714145A (zh) * 2009-03-27 2012-10-03 同和控股(集团)有限公司 第iii族氮化物半导体生长基板、第iii族氮化物半导体外延基板、第iii族氮化物半导体元件和第iii族氮化物半导体自立基板、及它们的制造方法
CN104332539A (zh) * 2013-07-22 2015-02-04 中国科学院福建物质结构研究所 GaN基LED外延结构及其制造方法
CN104952986A (zh) * 2015-06-03 2015-09-30 西安交通大学 一种GaN基白光LED外延结构的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744076B2 (en) * 2002-03-14 2004-06-01 The Circle For The Promotion Of Science And Engineering Single crystalline aluminum nitride film, method of forming the same, base substrate for group III element nitride film, light emitting device and surface acoustic wave device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714145A (zh) * 2009-03-27 2012-10-03 同和控股(集团)有限公司 第iii族氮化物半导体生长基板、第iii族氮化物半导体外延基板、第iii族氮化物半导体元件和第iii族氮化物半导体自立基板、及它们的制造方法
CN104332539A (zh) * 2013-07-22 2015-02-04 中国科学院福建物质结构研究所 GaN基LED外延结构及其制造方法
CN104952986A (zh) * 2015-06-03 2015-09-30 西安交通大学 一种GaN基白光LED外延结构的制备方法

Also Published As

Publication number Publication date
CN107681025A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
CN107681025B (zh) 一种GaN基白光LED外延结构及制备方法
CN102738325B (zh) 金属基片垂直GaN基LED芯片及其制备方法
CN104393125B (zh) 一种发光元件的制备方法
CN105633223B (zh) AlGaN模板、AlGaN模板的制备方法及AlGaN模板上的半导体器件
WO2015144023A1 (zh) 基于lao衬底的非极性蓝光led外延片及其制备方法
CN104952986B (zh) 一种GaN基白光LED外延结构的制备方法
CN109659403B (zh) 发光二极管的外延片的制作方法及外延片
TW201133557A (en) Method for manufacturing aluminum-containing nitride intermediate layer, method for manufacturing nitride layer, and method for manufacturing nitride semiconductor element
CN114937721B (zh) 一种硅衬底GaN基LED外延片及其制备方法
JP2008034444A (ja) Iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体発光素子及びランプ
CN108417676B (zh) 基于等离子体增强效应的核壳结构钙钛矿led及其制备方法
CN113410353B (zh) 发光二极管外延片及其制备方法
CN108281514A (zh) 一种发光二极管外延片的制备方法
CN109671819A (zh) 一种GaN基发光二极管外延片及其制备方法
CN108538970B (zh) 一种发光二极管的制备方法
CN110993752A (zh) 一种以石墨烯为缓冲层的led外延生长方法
CN114823995A (zh) Led外延片制作方法
CN112736168A (zh) 非极性GaN基微型发光二极管及制备方法
CN109888063B (zh) AlN模板及氮化镓基发光二极管外延片的制备方法
CN109473522B (zh) 一种氮化镓基发光二极管外延片及其制备方法
CN101958236B (zh) 一种半导体衬底及其制备方法
JP5058642B2 (ja) 半導体基板の製造方法
CN109888070A (zh) AlN模板、发光二极管外延片及其制造方法
KR20080005002A (ko) 스퍼터링을 이용한 산화아연계 산화물 박막의 제조방법
CN109962129A (zh) AlN模板及氮化镓基发光二极管外延片的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant