CN110330321B - 一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺 - Google Patents

一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺 Download PDF

Info

Publication number
CN110330321B
CN110330321B CN201910582858.6A CN201910582858A CN110330321B CN 110330321 B CN110330321 B CN 110330321B CN 201910582858 A CN201910582858 A CN 201910582858A CN 110330321 B CN110330321 B CN 110330321B
Authority
CN
China
Prior art keywords
powder
ceramic
warm
nano
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910582858.6A
Other languages
English (en)
Other versions
CN110330321A (zh
Inventor
王双喜
陈鹏
欧阳雪琼
靳艺凯
郑华强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Bairui New Material Technology Co ltd
Original Assignee
Foshan Bairui New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Bairui New Material Technology Co ltd filed Critical Foshan Bairui New Material Technology Co ltd
Priority to CN201910582858.6A priority Critical patent/CN110330321B/zh
Publication of CN110330321A publication Critical patent/CN110330321A/zh
Application granted granted Critical
Publication of CN110330321B publication Critical patent/CN110330321B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/29Producing shaped prefabricated articles from the material by profiling or strickling the material in open moulds or on moulding surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种微纳跨尺度混合陶瓷基板的流延‑温压复合成型工艺,其中所述陶瓷基板的原材料粉体包括微米粉体和纳米粉体;所述流延‑温压工艺是先利用流延法制备陶瓷生带,待干燥之后,剪裁成规则形状,叠放入特制模具内,在一定温度下利用温压机进行压制,从而使得陶瓷生带中的微米粉体颗粒在垂直压力方向连续贯通作为骨架,纳米粉体颗粒填充在微米粉体颗粒骨架间隙中。本发明利用微纳跨尺度混合流延‑温压复合成型工艺使得陶瓷基板中的微米粉体紧密相连、互相连通形成类似一维材料的导热通道,大大提高了陶瓷生带烧结后基板的导热能力;同时,通过添加高活性纳米粉体降低了陶瓷生带致密化烧结温度,适宜于在较低烧结温度下制备导热性能优良的复合陶瓷基板。

Description

一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺
技术领域
本发明属于精细陶瓷制备领域,尤其涉及一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺。
背景技术
在如今5G 网络建设、工业 4.0、物联网等加速演变的大环境下,电子产品对信号传输速度的要求越来越高,传统的具有电磁屏蔽特性的材料将会离开舞台,同时随着集成电路的精密制造技术的发展,元器件单位集成密度越来越高,发热量也越来越大,先进陶瓷材料凭借着其优良的非电磁屏蔽性能以及导热性能成为应用前景最广的材料之一。流延成型法是目前制备大面积陶瓷基板的主要方式,但是使用该方法制备的陶瓷生带需要添加一定量的有机添加剂,使陶瓷基体的固含量受到较大限制,导致烧结后的陶瓷基板需要在高温长时间下烧结致密。采用纳米粉体可以有效降低基板烧结温度和保温时间,但细颗粒导致的过多晶界又使基板导热性能变差。
【专利公开号CN 105906333 A】公布了一种陶瓷生带及其制备工艺,在由微米、纳米混合尺寸粒子的浆料流延过程中,施加辊压来改变流延生带中的粉体排布关系,制备微纳跨尺度混合陶瓷基板。由于流延工艺自身的局限性,该工艺对较薄单层陶瓷板降低烧结温度、提高导热性效果较好,但辊压后再叠层制备厚度较大的基板,因难以有效形成大颗粒的精准接触,可以降低烧结温度,但不能保证较好的导热性能。
发明内容
本发明的目的在于提供一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺以解决制备厚度较大的微纳跨尺度混合基板存在的问题。
为实现上述目的采用如下技术方案:
一种微纳跨尺度陶瓷基板的流延-温压复合成型工艺,其特征在于,所用陶瓷基板的原材料粉体按体积百分比计由55-85%微米陶瓷粉体和45-15%纳米陶瓷粉体组成;所述流延-温压工艺是先利用流延法制备陶瓷生带,待干燥之后,剪裁成规则形状,叠放入特制模具内,然后在一定温度下利用温压机进行压制。
制备过程主要包括以下步骤:
1)将纳米粉体与微米粉体按照一定的比例与分散剂、有机溶剂混合均匀,球磨时间24-36h;
2)添加粘结剂、增塑剂到步骤1)中所得混合料中,继续球磨20-30h,放入消泡剂,将浆料在真空脱泡机中搅拌脱泡30-60min后,进行流延成型;
3)将步骤2)中经流延工艺得到的陶瓷生带剪裁成规则形状,放到特制模具内,根据基板的厚度要求和流延生带的实际厚度,将2-8片叠压在一起,利用温压机进行温压成型;
4)将步骤3)中温压成型后的陶瓷生坯于高温炉中烧结。
进一步的,所述微米粉体粒径为3-5μm,所述纳米粉体粒径为30-50nm。
进一步的,所述流延-温压工艺处理为在温度45-120℃下采用温压机对陶瓷生带施加100-800kN的压力,保持时间1-2h。
进一步的,所述高温烧结温度在850-1600℃之间。
与现有技术相比,本发明结合微纳跨尺度混合的方式,采用流延-温压工艺,制备了高导热、高致密度的厚陶瓷基板。将干燥之后的陶瓷生带多层叠放在一起,在一定的温度下对其施加垂直方向的压力,使层与层之间陶瓷生带中的大颗粒粉体在压力作用下重新排布连接,形成了类似一维材料的导热通道,而纳米小颗粒粉体则在较大压力的作用下互相填充在微米粉体间隙之间,以此来保证制备厚度较大的陶瓷基板时,通过纳米粉体降低烧结温度同时又能保持较高的导热性。本发明适用于在较低的烧结温度下批量制备性能优良的较厚尺寸陶瓷基板。
附图说明
图1为陶瓷基板流延-温压成型工艺流程图。
图2 为微纳跨尺度陶瓷基板导热模型。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
实施例1
一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺,如图1所示,主要包括以下步骤:
按照陶瓷料600g的总量,以75:25体积比计算中位粒径为3μm和中位粒径为30nm的氧化铝粉用量,分别称重;加入277.5g的乙醇溶剂和31g的鲱鱼油分散剂球磨混合24h。球磨后,加入58.5g PVB粘结剂和32.5g聚乙二醇增塑剂,继续球磨20h。然后再加入0.5g脱泡剂,在真空搅拌罐中进行除泡20min,得到固含量为60%的陶瓷浆料。将所得陶瓷浆料在流延机上流延,并于120℃的流延机主干燥区干燥20min后,得到陶瓷生带,将所得陶瓷生带剪裁成规则形状,每次分别取4片放入特制模具内,在温度为50℃的环境下,利用温压机以400kN的压力压制1h后取出,放入高温烧结炉内,在1500℃下烧结4h后,即可得到本发明所述利用微纳跨尺度混合流延-温压复合成型工艺制备的陶瓷基板。
在1500℃烧结后,同样成分组成流延基板的致密度为92.3%,流延-温压基板的致密度为93%;但流延-温压坯体烧结后导热系数达15.89 W/mK,而流延基板的导热系数为11.35 W/mK ,同样条件下导热系数提高了1.4倍。
实施例2
一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺,如图1所示,主要包括以下几个步骤:
按照陶瓷料650g的总量,以60:15:25体积比计算中位粒径为5μm的氧化铝粉体、中位粒径为50nm的氧化铝粉体和中位粒径为50nm的高导热ZnO–B2O3 –SiO2系玻璃粉体用量,分别称重;加入242.5g的乙醇溶剂和27g的鲱鱼油分散剂球磨混合26h。球磨后,加入50gPVB粘结剂和30g聚乙二醇增塑剂,继续球磨24h。然后再加入0.5g脱泡剂,在真空搅拌罐中进行除泡25min,得到固含量为65%的陶瓷浆料. 将所得陶瓷浆料在流延机上流延,并于120℃的流延机主干燥区干燥25min后,得到陶瓷生带,将所得陶瓷生带剪裁成规则形状,每次分别取6片放入特制模具内,在温度为65℃的环境下,利用温压机以500kN的压力压制1.2h后取出,放入高温烧结炉内,在950℃下烧结4h后,即可得到本发明所述利用微纳跨尺度混合流延-温压复合成型工艺制备的陶瓷基板。
实施例3
一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺,如图1所示,主要包括以下几个步骤:
按照陶瓷料700g的总量,以65:20:15体积比计算中位粒径为5μm的氮化铝粉体和中位粒径为30nm的氮化铝粉体以及中位粒径为30nm的高导热Ca-Al-B-Si-O系玻璃粉体用量,分别称重;加入221.5g的乙醇溶剂和21g的鲱鱼油分散剂球磨混合28h。球磨后,加入38gPVB粘结剂和19g聚乙二醇增塑剂,继续球磨26h。然后再加入0.5g脱泡剂,在真空搅拌罐中进行除泡30min,得到固含量为70%的陶瓷浆料. 将所得陶瓷浆料在流延机上流延,并于120℃的流延机主干燥区干燥30min后,得到陶瓷生带,将所得陶瓷生带剪裁成规则形状,每次分别取7片放入特制模具内,在温度为80℃的环境下,利用温压机以630kN的压力压制1.6h后取出,放入高温烧结炉内,在1200℃下烧结2h后,即可得到本发明所述利用微纳跨尺度混合流延-温压复合成型工艺制备的陶瓷基板。
实施例4
一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺,如图1所示,主要包括以下几个步骤:
按照陶瓷料720g的总量,以55:25:20体积比计算中位粒径为3μm的氮化铝粉体和中位粒径为40nm的高纯氮化铝以及中位粒径为30nm的氮化硅等粉体的用量,分别称重;加入212.5g的乙醇溶剂和20g的鲱鱼油分散剂球磨混合30h。球磨后,加入28gPVB粘结剂和19g聚乙二醇增塑剂,继续球磨28h。然后再加入0.5g脱泡剂,在真空搅拌罐中进行除泡35min,得到固含量为72%的陶瓷浆料。将所得陶瓷浆料在流延机上流延,并于120℃的流延机主干燥区干燥35min后,得到陶瓷生带,将所得陶瓷生带剪裁成规则形状,每次分别取8片放入特制模具内,在温度为105℃环境下,利用温压机以750kN的压力压制2h后取出,放入高温烧结炉内,在1550℃下烧结4h后,即可得到本发明所述利用微纳跨尺度混合流延-温压复合成型工艺制备的陶瓷基板。
以上的实施例仅仅是对本发明的具体实施方式进行描述,并非对本发明的范围进行限定,本领域技术人员在现有技术的基础上还可做多种修改和变化,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案作出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (4)

1.一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺,所用陶瓷基板的原材料粉体按体积百分比计由55-85%微米陶瓷粉体和45-15%纳米陶瓷粉体组成,其特征在于,所述流延-温压工艺是先利用流延法制备陶瓷生带,待干燥之后,剪裁成规则形状,叠放入特制模具内,然后在45-120℃温度下利用温压机进行压制,施加压力为100-800kN,保持时间1-2h,制备过程主要包括以下步骤:
1)将纳米粉体与微米粉体按照一定的比例与分散剂、有机溶剂混合均匀,球磨时间24-36h;
2)添加粘结剂、增塑剂到步骤(1)中所得混合料中,继续球磨20-30h,加入消泡剂,将浆料放入真空脱泡机中搅拌脱泡30-60min后,进行流延成型;
3)将步骤(2)中经流延工艺得到的陶瓷生带剪裁成规则形状,放到特制模具内,根据基板的厚度要求和流延生带的实际厚度,将2-8片叠压在一起,利用温压机进行温压成型;
4)将步骤(3)中温压成型后的陶瓷生坯于高温炉中进行烧结。
2.根据权利要求1所述的一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺,其特征在于,所述微米粉体为氧化铝、氧化硅、氧化锆、氮化铝、氮化硅陶瓷粉体中的一种或多种;所述纳米粉体为氧化铝、氧化硅、氧化锆、氮化铝、氮化硅陶瓷粉体中的一种或多种或者高导热玻璃粉。
3.根据权利要求1所述的一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺,其特征在于所述微米粉体粒径为3-5μm,所述纳米粉体粒径为30-50nm。
4.根据权利要求1中所述的一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺,其特征在于,所述高温烧结温度在850-1600℃之间。
CN201910582858.6A 2019-07-01 2019-07-01 一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺 Active CN110330321B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910582858.6A CN110330321B (zh) 2019-07-01 2019-07-01 一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910582858.6A CN110330321B (zh) 2019-07-01 2019-07-01 一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺

Publications (2)

Publication Number Publication Date
CN110330321A CN110330321A (zh) 2019-10-15
CN110330321B true CN110330321B (zh) 2021-09-24

Family

ID=68143719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910582858.6A Active CN110330321B (zh) 2019-07-01 2019-07-01 一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺

Country Status (1)

Country Link
CN (1) CN110330321B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111548136B (zh) * 2020-06-04 2022-07-19 山东国瓷功能材料股份有限公司 一种二氧化硅基复合陶瓷基板、其制作方法及封装基板
CN112834085A (zh) * 2020-12-29 2021-05-25 襄阳臻芯传感科技有限公司 一种陶瓷电容式压力传感器的弹性薄基板及制作方法
CN115959912A (zh) * 2021-10-08 2023-04-14 佛山市百瑞新材料技术有限公司 一种微纳跨尺度陶瓷浆料的制备工艺
CN115231903B (zh) * 2022-07-14 2023-04-18 佛山市百瑞新材料技术有限公司 一种大尺寸高纯陶瓷基板的制备工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20003559U1 (de) * 2000-02-26 2000-06-21 Wendker Gmbh & Co Kg Formkörper mit Nanofeinpartikeln in gezielter Schichtstruktur
CN102576502A (zh) * 2009-10-14 2012-07-11 优泊公司 模内成型用标签、模内成型品及其成型方法
CN104058772A (zh) * 2014-03-20 2014-09-24 汕头大学 一种陶瓷复合材料基板及其制备工艺
CN105130481A (zh) * 2015-07-10 2015-12-09 汕头大学 一种金属陶瓷复合基板及其制备工艺
CN105254306A (zh) * 2015-09-30 2016-01-20 西北工业大学 一种高导热氮化硅陶瓷的制备方法
CN105693221A (zh) * 2016-01-15 2016-06-22 汕头大学 一种超薄高纯陶瓷片及其制备工艺
CN105819882A (zh) * 2016-03-11 2016-08-03 汕头大学 一种陶瓷金属复合基板及其制备工艺
CN105906333A (zh) * 2016-04-19 2016-08-31 汕头大学 一种陶瓷生带及其制备工艺
CN108819400A (zh) * 2018-06-26 2018-11-16 青岛科技大学 一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104044318B (zh) * 2013-03-11 2016-02-24 清华大学 一种叠层结构的聚合物基介电储能复合材料及其制备方法
CN103482985B (zh) * 2013-09-16 2015-02-04 中国科学院上海硅酸盐研究所 一种低温共烧陶瓷生带材料及其制备方法和应用
JP6907536B2 (ja) * 2015-05-27 2021-07-21 東レ株式会社 積層フィルム及びその製造方法
CN107188568A (zh) * 2017-07-11 2017-09-22 中国人民大学 一种氮化铝陶瓷基板及其制备方法
CN107857595A (zh) * 2017-11-29 2018-03-30 上海大学 氮化硅陶瓷浆料及其制备方法和制备氮化硅流延膜的应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20003559U1 (de) * 2000-02-26 2000-06-21 Wendker Gmbh & Co Kg Formkörper mit Nanofeinpartikeln in gezielter Schichtstruktur
CN102576502A (zh) * 2009-10-14 2012-07-11 优泊公司 模内成型用标签、模内成型品及其成型方法
CN104058772A (zh) * 2014-03-20 2014-09-24 汕头大学 一种陶瓷复合材料基板及其制备工艺
CN105130481A (zh) * 2015-07-10 2015-12-09 汕头大学 一种金属陶瓷复合基板及其制备工艺
CN105254306A (zh) * 2015-09-30 2016-01-20 西北工业大学 一种高导热氮化硅陶瓷的制备方法
CN105693221A (zh) * 2016-01-15 2016-06-22 汕头大学 一种超薄高纯陶瓷片及其制备工艺
CN105819882A (zh) * 2016-03-11 2016-08-03 汕头大学 一种陶瓷金属复合基板及其制备工艺
CN105906333A (zh) * 2016-04-19 2016-08-31 汕头大学 一种陶瓷生带及其制备工艺
CN108819400A (zh) * 2018-06-26 2018-11-16 青岛科技大学 一种利用吉布斯自由能诱导制备各向异性导热块体材料的方法

Also Published As

Publication number Publication date
CN110330321A (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
CN110330321B (zh) 一种微纳跨尺度混合陶瓷基板的流延-温压复合成型工艺
CN101321415B (zh) 基于氮化铝微晶陶瓷基板的稀土厚膜电路电热元件及其制备工艺
TWI557094B (zh) 手持終端產品外觀陶瓷薄型件的製備方法
CN112297189B (zh) 一种超高密度的陶瓷素坯制备方法
CN107857595A (zh) 氮化硅陶瓷浆料及其制备方法和制备氮化硅流延膜的应用
CN105693221B (zh) 一种超薄高纯陶瓷片及其制备工艺
CN103833403B (zh) 一种碳化硅晶须增韧碳化硼陶瓷复合材料的制备方法及产品
CN107324812A (zh) 氮化铝陶瓷浆料及其制备方法
US11891338B2 (en) Ceramic composite material
CN107311666A (zh) 低温共烧陶瓷基板的成型与烧结方法
CN105459515A (zh) 一种陶瓷基板及其制备方法和一种功率模块
CN105236948A (zh) Ka波段环行器用NiCuZn铁氧体厚膜材料制备方法
CN110372392A (zh) 一种陶瓷基板的烧结方法
CN102950844A (zh) 平面波导复合陶瓷材料及其制备
CN104844224A (zh) 一种制备层状复合透明陶瓷的非水基流延成型方法
CN115231903A (zh) 一种大尺寸高纯陶瓷基板的制备工艺
CN104230344A (zh) 一种添加多元烧结助剂的AlN陶瓷低温烧结制备方法
CN1911860A (zh) 一种低温烧结电子陶瓷材料的制备方法
CN106542828A (zh) 一种低温烧结高热导率的氮化铝陶瓷及其制备方法
CN106206928B (zh) 一种压电功能多孔电极复合材料及制备方法
CN114800775B (zh) Gspl-snst氮化硅流延素坯及制备方法
CN101134241A (zh) 一种定向增强铝基复合材料的制备方法
CN102276152B (zh) 一种氧化铝陶瓷表面金属化的组合物
CN111203535A (zh) 采用3d打印技术制备铱坩埚的方法
CN111370217B (zh) 一种光固化辅助直写3d打印制备永磁体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant