CN110311012B - 基于纳米晶界面层的全无机钙钛矿太阳能电池及其制备方法 - Google Patents

基于纳米晶界面层的全无机钙钛矿太阳能电池及其制备方法 Download PDF

Info

Publication number
CN110311012B
CN110311012B CN201910548129.9A CN201910548129A CN110311012B CN 110311012 B CN110311012 B CN 110311012B CN 201910548129 A CN201910548129 A CN 201910548129A CN 110311012 B CN110311012 B CN 110311012B
Authority
CN
China
Prior art keywords
inorganic perovskite
solar cell
boundary surface
surface layer
perovskite solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910548129.9A
Other languages
English (en)
Other versions
CN110311012A (zh
Inventor
贺本林
苏国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN201910548129.9A priority Critical patent/CN110311012B/zh
Publication of CN110311012A publication Critical patent/CN110311012A/zh
Application granted granted Critical
Publication of CN110311012B publication Critical patent/CN110311012B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池及其制备方法和应用,本发明具体是采用多步旋涂技术先将溴化铅旋涂于导电玻璃负载的二氧化钛电子传输层表面,再多步旋涂溴化铯制备高纯度的CsPbBr3吸光层,然后将无机钙钛矿纳米晶的正己烷溶液旋涂至CsPbBr3层进行界面修饰,最后刮涂碳背电极组装成全无机钙钛矿太阳能电池。本发明充分利用无机钙钛矿纳米晶的高空穴传导性和能级可调性,促进电子‑空穴分离和降低能量损失,同时实现正己烷溶剂对钙钛矿的处理,增大钙钛矿晶粒尺寸及降低缺陷密度和电荷复合,有效提高电池的能量转换效率。本发明制备工艺简单,成本可控,材料优化空间大,同时具有商业化生产前景。

Description

基于纳米晶界面层的全无机钙钛矿太阳能电池及其制备方法
技术领域
本发明属于新材料技术以及新能源技术领域,具体涉及基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池及其制备方法和应用。
背景技术
太阳能资源已经成为人类能源的重要组成部分,因其具有无需开采、清洁无害、取之不尽、能量巨大等优点,越来越受到人们的关注。采用太阳能电池直接将太阳能转换成电能是太阳能资源利用最清洁有效的方式之一。在众多太阳能电池中,钙钛矿太阳能电池因其制备工艺简单、成本低、效率高而成为最耀眼的光伏器件,但通常采用的有机-无机杂化钙钛矿材料因其在潮湿环境下结构不稳定易发生分解且有机阳离子(MA+,FA+)在高热条件下易挥发导致器件性能不稳定。最近,用无机铯离子完全取代有机阳离子制备的全无机CsPbBr3钙钛矿因其优异的高温和湿气容忍性及高空穴迁移率,成为钙钛矿太阳能电池最具应用潜力的吸光材料之一。
然而,低成本碳基CsPbBr3钙钛矿太阳能电池因CsPbBr3薄膜内部的缺陷态密度较高以及器件结构的界面能级差较大,导致电荷复合严重,电池效率较低。无机钙钛矿纳米晶粒径小、易于成膜且空穴提取能力高、能级可调,将其修饰在钙钛矿层和碳电极层之间可充分促进电子-空穴分离、降低界面能量损失,有效抑制电荷复合并提高电池的光伏性能。
发明内容
本发明的目的在于提供了基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池及其制备方法和应用,本发明可以获得具有低缺陷密度和低电荷复合的钙钛矿薄膜、较高光电转化效率、制备工艺简单的全无机钙钛矿太阳能电池,进一步促进钙钛矿太阳能电池的商业化进程,具有重要的实用价值和经济价值。
为实现上述发明目的,本发明采用以下技术方案予以实现:
本发明提供了基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池的制备方法,包括以下步骤:
(1)、将十八烯,BX2和/或BY2和/或BZ2放入烧瓶,加热50-150摄氏度,并保持真空状态0.5~1.5小时;通入氮气后,加入30~150℃下干燥后的油胺和油酸的混合物,搅拌直至混合物溶解,保持真空状态10~60分钟;
(2)、将烧瓶加热到50~200℃,快速放入铯的前驱体溶液,1-60秒后将烧瓶在冰水浴下快速冷却;
(3)、将上述混合物加入乙酸甲酯、正己烷、氯苯、环己烷或甲苯并高速离心,去除沉淀,获得澄清的钙钛矿纳米晶溶液;
(4)、配制钛酸异丙酯的乙醇溶液,配制TiO2浆料,配制TiCl4的水溶液,配制浓度为0.5~1.5mol/L的PbBr2的DMF溶液,配制浓度为0.02~0.12mol/L的CsBr的甲醇溶液;
(5)、将所述钛酸异丙酯的乙醇溶液以6500~7500转/分旋涂在FTO玻璃上,在400~600℃下煅烧90~150分钟制得TiO2致密层;将所述TiO2浆料旋涂在TiO2致密层上,在400~500℃下煅烧30~90分钟制得TiO2介孔层;将制备得到的玻璃基底完全浸泡在50~100℃的所述TiCl4的水溶液中,清洗后,在400~500℃下煅烧30~90分钟制得TiO2电子传输层;
(6)、将所述的PbBr2的DMF溶液旋涂在TiO2电子传输层上,加热制得PbBr2薄膜;将所述的CsBr的甲醇溶液旋涂在PbBr2薄膜上,加热,并重复此步骤,得到CsPbBr3吸光层;
(7)、将所述的钙钛矿纳米晶溶液旋涂在CsPbBr3吸光层上,加热制得高效界面层;在高效界面层上刮涂导电碳浆料,刮涂1~3次,在70~150℃下加热15~90分钟得到背电极,组装成基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池。
进一步的:无机钙钛矿纳米晶的化学式为ABXxYyZ3-x-y, A为Cs,B为Pb、Sn、Ge中的一种或几种,X、Y、Z分别为Br、I、Cl。
进一步的:所述步骤(1)中BX2、BY2、BZ2的用量之比等于x:y:3-x-y。
进一步的:所述步骤(1)中十八烯的量是油胺油酸混合物量的5-15倍,油胺与油酸的用量之比为1:0.8~1.2。
进一步的:所述步骤(3)中钙钛矿纳米晶的溶剂为正己烷、环己烷、氯苯、甲苯中的一种或几种的混合物。
进一步的:所述步骤(7)中钙钛矿纳米晶溶液先在700-1500转/分下旋涂10~25秒,后在1800~2500转/分下旋涂10~15秒。
进一步的:所述步骤(7)中钙钛矿纳米晶溶液在60~150℃下加热20~60分钟。
本发明还提供了所述的制备方法制得的全无机钙钛矿太阳能电池。
所述无机钙钛矿太阳能电池的开路电压为1.35 V~1.55 V、短路电流密度为7mA·cm-2~9 mA·cm-2、填充因子为0.65~0.85、光电转化效率为8%~11%。
与现有技术相比,本发明的优点和技术效果是:
1、本发明充分利用无机钙钛矿纳米晶优异的空穴传输能力和能级结构可调节性,优化了CsPbBr3吸光材料与碳电极之间较大的能级差异,提高了空穴提取和传输效率。无机钙钛矿纳米晶的正己烷溶剂可以钝化CsPbBr3薄膜,降低了薄膜表面的缺陷态密度,减少非辐射复合的几率,使得全无机钙钛矿太阳能电池的效率提升至9.4%,且在80%相对湿度25度环境下运行38天仍保持优异的稳定性。
2、本发明采用的制备技术可以合成多种性能优异的钙钛矿纳米晶,步骤简单,可高度重复。正己烷、环己烷、氯苯、甲苯等几种溶剂既可以良好地溶解钙钛矿纳米晶,也可以钝化CsPbBr3薄膜,对提高电池的光伏性能至关重要。
附图说明
图1为本发明所制备的基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池的J-V曲线。
图2为本发明所制备的基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池的阻抗图谱。
图3为本发明所制备的基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池的长期稳定性能。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步详细的说明。
实施例1
1、将5 mL十八烯,22.95 mg PbBr2和57.625 mg PbI2 放入烧瓶,加热120℃,并保持真空状态1小时;通入氮气后,加入70℃下干燥后的0.5 mL油胺和0.5mL油酸的混合物,搅拌直至混合物溶解,保持真空状态30分钟;
2、将烧瓶加热到170℃,快速放入铯的前驱体溶液,10秒后将烧瓶在冰水浴下快速冷却;
3、将上述混合物加入乙酸甲酯和正己烷高速离心,去除沉淀,获得澄清的CsPbBrI2钙钛矿纳米晶的正己烷溶液;
4、配制钛酸异丙酯的乙醇溶液,配制TiO2浆料,配制TiCl4的水溶液,配制浓度为1mol/L的PbBr2的DMF溶液,配制浓度为0.07 mol/L的CsBr的甲醇溶液;
5、将步骤(4)中的钛酸异丙酯的乙醇溶液以7000转/分旋涂在FTO玻璃上,在500℃下煅烧120分钟制得TiO2致密层;将步骤(4)中的TiO2浆料旋涂在TiO2致密层上,在450℃下煅烧30分钟制得TiO2介孔层;将制备得到的玻璃基底完全浸泡在70℃的步骤(4)中的TiCl4的水溶液中,清洗后,在450℃下煅烧30分钟制得TiO2电子传输层;
6、将步骤(4)中的PbBr2的DMF溶液旋涂在TiO2电子传输层上,加热制得PbBr2薄膜;将步骤(4)中的CsBr的甲醇溶液旋涂在PbBr2薄膜上,250℃加热,并重复此步骤,得到CsPbBr3吸光层;
7、将步骤(3)中的钙钛矿纳米晶溶液旋涂在CsPbBr3吸光层上,加热制得高效界面层;在高效界面层上刮涂导电碳浆料,刮涂1次,在90℃下加热30分钟得到背电极,组装成基于无机CsPbBrI2钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池。
如图1-3所示,通过发明上述方法,获得了开路电压为1.35~1.55V、短路电流密度为7~9 mA·cm-2、填充因子为0.65~0.85、光电转化效率为8~11%、在相对湿度为80%和温度为25℃的空气条件下仍保持了优异的稳定性的基于纳米晶界面层全无机钙钛矿太阳能电池。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行纤细的说明,对本领域的普通技术人员来说,依然可以对前述实施案例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (9)

1.基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池的制备方法,其特征在于包括以下步骤:
(1)、将十八烯,BX2和/或BY2和/或BZ2放入烧瓶,加热50-150摄氏度,并保持真空状态0.5~1.5小时;通入氮气后,加入30~150℃下干燥后的油胺和油酸的混合物,搅拌直至混合物溶解,保持真空状态10~60分钟;
(2)、将烧瓶加热到50~200℃,快速放入铯的前驱体溶液,1-60秒后将烧瓶在冰水浴下快速冷却;
(3)、将上述混合物加入乙酸甲酯、正己烷、氯苯、环己烷或甲苯并高速离心,去除沉淀,获得澄清的钙钛矿纳米晶溶液;
(4)、配制钛酸异丙酯的乙醇溶液,配制TiO2浆料,配制TiCl4的水溶液,配制浓度为0.5~1.5mol/L的PbBr2的DMF溶液,配制浓度为0.02~0.12mol/L的CsBr的甲醇溶液;
(5)、将所述钛酸异丙酯的乙醇溶液以6500~7500转/分旋涂在FTO玻璃上,在400~600℃下煅烧90~150分钟制得TiO2致密层;将所述TiO2浆料旋涂在TiO2致密层上,在400~500℃下煅烧30~90分钟制得TiO2介孔层;将制备得到的玻璃基底完全浸泡在50~100℃的所述TiCl4的水溶液中,清洗后,在400~500℃下煅烧30~90分钟制得TiO2电子传输层;
(6)、将所述的PbBr2的DMF溶液旋涂在TiO2电子传输层上,加热制得PbBr2薄膜;将所述的CsBr的甲醇溶液旋涂在PbBr2薄膜上,加热,并重复此步骤,得到CsPbBr3吸光层;
(7)、将所述的钙钛矿纳米晶溶液旋涂在CsPbBr3吸光层上,加热制得界面层;在界面层上刮涂导电碳浆料,刮涂1~3次,在70~150℃下加热15~90分钟得到背电极,组装成基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池。
2.根据权利要求1所述的基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池的制备方法,其特征在于:无机钙钛矿纳米晶体的化学式为ABXxYyZ3-x-y, A为Cs,B为Pb、Sn、Ge中的一种或几种,X、Y、Z分别为Br、I、Cl。
3.根据权利要求1所述的基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤(1)中BX2、BY2、BZ2的用量之比等于x:y:3-x-y。
4.根据权利要求1所述的基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤(1)中十八烯的量是油胺油酸混合物量的5-15倍,油胺与油酸的用量之比为1:0.8~1.2。
5.根据权利要求1所述的基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤(3)中钙钛矿纳米晶的溶剂为正己烷、环己烷、氯苯、甲苯中的一种或几种的混合物。
6.根据权利要求1所述的基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤(7)中钙钛矿纳米晶溶液先在700-1500转/分下旋涂10~25秒,后在1800~2500转/分下旋涂10~15秒。
7.根据权利要求1所述的基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池的制备方法,其特征在于:所述步骤(7)中钙钛矿纳米晶溶液在60~150℃下加热20~60分钟。
8.根据权利要求1~7任一项所述的制备方法制得的全无机钙钛矿太阳能电池。
9.根据权利要求8所述的全无机钙钛矿太阳能电池,其特征在于:所述无机钙钛矿太阳能电池的开路电压为1.35 V~1.55 V、短路电流密度为7 mA·cm-2~9 mA·cm-2、填充因子为0.65~0.85、光电转化效率为8%~11%。
CN201910548129.9A 2019-06-24 2019-06-24 基于纳米晶界面层的全无机钙钛矿太阳能电池及其制备方法 Active CN110311012B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910548129.9A CN110311012B (zh) 2019-06-24 2019-06-24 基于纳米晶界面层的全无机钙钛矿太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910548129.9A CN110311012B (zh) 2019-06-24 2019-06-24 基于纳米晶界面层的全无机钙钛矿太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN110311012A CN110311012A (zh) 2019-10-08
CN110311012B true CN110311012B (zh) 2021-01-01

Family

ID=68077350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910548129.9A Active CN110311012B (zh) 2019-06-24 2019-06-24 基于纳米晶界面层的全无机钙钛矿太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN110311012B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797435B (zh) * 2019-10-16 2021-02-05 暨南大学 一种组分可调无机钙钛矿光电薄膜及其低温制备方法和器件应用
CN111244220B (zh) * 2020-01-17 2021-10-29 山东大学 一种全无机p/n异质结硒化锑/钙钛矿太阳能电池及其制备方法
CN111785838B (zh) * 2020-06-30 2022-06-24 厦门大学 一种有机无机杂化钙钛矿粉末及其制备方法和应用
CN113066895A (zh) * 2021-03-05 2021-07-02 兰州大学 一种CsPbBr3钙钛矿太阳能电池的制备方法
CN113823746A (zh) * 2021-08-19 2021-12-21 华东理工大学 一种钙钛矿太阳能电池含氧酸盐基复合电荷传输层的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195789A (zh) * 2017-06-01 2017-09-22 吉林大学 一种无机混合卤素钙钛矿薄膜的制备方法及其在制备太阳能电池方面的应用
CN108217718A (zh) * 2018-03-13 2018-06-29 南方科技大学 一种abx3钙钛矿纳米晶的合成方法及其产品和用途
CN108502918A (zh) * 2018-04-25 2018-09-07 河北工业大学 一种无机钙钛矿纳米线的合成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101692985B1 (ko) * 2015-04-03 2017-01-05 한국과학기술연구원 무기 나노물질 기반 소수성 전하 수송체, 이의 제조방법 및 이를 포함하는 유무기 복합 페로브스카이트 태양전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195789A (zh) * 2017-06-01 2017-09-22 吉林大学 一种无机混合卤素钙钛矿薄膜的制备方法及其在制备太阳能电池方面的应用
CN108217718A (zh) * 2018-03-13 2018-06-29 南方科技大学 一种abx3钙钛矿纳米晶的合成方法及其产品和用途
CN108502918A (zh) * 2018-04-25 2018-09-07 河北工业大学 一种无机钙钛矿纳米线的合成方法

Also Published As

Publication number Publication date
CN110311012A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
CN110311012B (zh) 基于纳米晶界面层的全无机钙钛矿太阳能电池及其制备方法
CN108878554B (zh) 基于镧系稀土离子掺杂CsPbBr3的全无机钙钛矿太阳能电池及其制备方法和应用
CN110047951B (zh) 基于过渡金属离子掺杂全无机钙钛矿电池制备及其应用
Tai et al. Ultrathin Zn2SnO4 (ZTO) passivated ZnO nanocone arrays for efficient and stable perovskite solar cells
CN109980092B (zh) 一种钙钛矿量子点太阳能电池及其制备方法
CN109216557B (zh) 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
CN108963032B (zh) 双面无机钙钛矿太阳能电池及其制备方法和应用
CN108232017B (zh) 一种低温高效的钙钛矿太阳能电池及其制备方法
CN108288675B (zh) 一种铁盐掺杂Spiro-OMeTAD的空穴传输层及含该空穴传输层的太阳能电池
CN109728169B (zh) 一种掺杂有功能添加剂的钙钛矿太阳电池及其制备方法
CN101976611A (zh) TiO2纳米线阵列薄膜光阳极及其制备方法
CN101916670A (zh) 一种TiO2纳米花薄膜光阳极及其制备方法
CN108039411A (zh) 一种钙钛矿型太阳能电池及其修饰层制备方法
CN115020596A (zh) 一种双层电子传输层及其钙钛矿太阳能电池及其制备方法和应用
CN113035991A (zh) 一种低温制备CsPbI3柔性钙钛矿太阳能电池的方法
Zhang et al. Rigid amino acid as linker to enhance the crystallinity of CH3NH3PbI3 particles
CN105990524A (zh) [6,6]-苯基-c61-丁酸(pcba)作为界面修饰层制备高效率平面异质结钙钛矿结构的太阳能电池
CN113087636B (zh) 一种碘化物及其制备方法,及基于其的全无机钙钛矿太阳电池及制备方法
CN108832001B (zh) 一种无铅钙钛矿太阳能电池器件及其制备方法
CN114678472A (zh) 一种FAPbI3钙钛矿薄膜及其高效的钙钛矿太阳能电池的方法
CN114883503A (zh) 少层TiO2-MXene复合材料及其制备方法和应用
CN107994123B (zh) 一种钙钛矿型太阳能电池及其制备方法
Xie et al. Changes of the dye adsorption state induced by ferroelectric polarization to improve photoelectric performance
Wang et al. Boosting efficiency of planar heterojunction perovskite solar cells by a low temperature TiCl4 treatment
CN112349843A (zh) 一种太阳能电池的空穴传输层材料、锑基太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant