CN110183625B - 一种侧链型卟啉三元共聚物的合成及其太阳能电池大面积制备 - Google Patents

一种侧链型卟啉三元共聚物的合成及其太阳能电池大面积制备 Download PDF

Info

Publication number
CN110183625B
CN110183625B CN201910516370.3A CN201910516370A CN110183625B CN 110183625 B CN110183625 B CN 110183625B CN 201910516370 A CN201910516370 A CN 201910516370A CN 110183625 B CN110183625 B CN 110183625B
Authority
CN
China
Prior art keywords
terpolymer
meso
compound
side chain
argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910516370.3A
Other languages
English (en)
Other versions
CN110183625A (zh
Inventor
王行柱
刘志鑫
闫磊
陈煜卓
谢柳平
程佶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201910516370.3A priority Critical patent/CN110183625B/zh
Publication of CN110183625A publication Critical patent/CN110183625A/zh
Application granted granted Critical
Publication of CN110183625B publication Critical patent/CN110183625B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明涉及一类侧链型meso位取代金属卟啉三元共聚物的光伏材料的其制备方法及其应用,属于聚合物光伏材料领域。所述一类侧链型meso位取代金属卟啉三元共聚物具有如式Ⅰ所示的结构。本发明提供的侧链型卟啉三元共聚物给体材料提高了材料的光捕获能力,改善了材料的成膜性能,且具有优秀的空穴传输性能,并能够与富勒烯受体PC71BM形成良好的能级匹配。利用本发明的材料,所制备的聚合物太阳能电池具有较好的器件性能,进一步采用大面积印刷制备方法成功获得满意的电池器件,说明其在聚合物太阳能电池中具有广阔的应用前景。

Description

一种侧链型卟啉三元共聚物的合成及其太阳能电池大面积 制备
技术领域
本发明属于有机聚合物光伏材料领域,具体涉及一类侧链型meso位取代金属卟啉三元共聚物光伏材料的其制备方法及其太阳能电池大面积制备的应用。
背景技术
太阳能是地球上最充足最直接的可再生清洁能源,对于解决能源危机有着重要的实际意义,太阳能电池的发展近年来备受关注。过去二十年来,聚合物和小分子的合成与应用研究得到了快速发展,随着有机太阳能电池和光伏技术的发展,聚合物太阳能有希望替代传统太阳能电池。
卟啉及其衍生物成功应用在染料敏化太阳能电池中,但是卟啉及其衍生物新材料与新器件结构在本体异质结有机太阳能电池中的仍有待探索。有机光电子器件的效率高度依赖于有机光活性材料。近年来,卟啉由于其极高的摩尔消光系数而被视为非常有前景的光敏材料。由于起结构可调通过改变大环周边位置处的金属中心和取代基来改变电化学和光物理性质,被广泛应用于有机太阳能电池材料的设计中。然而目前应用了卟啉的主链型卟啉聚合物有机太阳能电池材料由于无法实现良好的形貌,导致其能量转换效率低下,不利于商业应用。
发明内容
本发明的目的在于针对现有的应用于聚合物太阳能电池的材料开发的不足,提供了一类侧链型meso位取代金属卟啉三元共聚物光伏材料,该材料具有良好的光伏器件性能,能为电池器件提供较高的开路电压以及高的能量转换效率。
本发明的目的还在于提供所述的一类侧链型meso位取代金属卟啉三元共聚物光伏材料的制备方法。
本发明的另一目的还在于提供所述的一类侧链型meso位取代金属卟啉三元共聚物光伏材料的应用。
本发明的目的通过如下技术方案实现:
一类侧链型meso位取代金属卟啉三元共聚物,其特征在于,其分子结构如式Ⅰ所示:
式Ⅰ:
Figure BDA0002095183020000021
其中:P为取代或未取代的卟啉单元;T为取代或未取代的烷氧基、硫烷基或噻吩基团;x为0~1中的任意数字。
所述P选用式Ⅱ或式Ⅲ中所示的卟啉单元,其中M为金属离子或氢;Ar为氢、烷基或取代或未取代的芳香基团。
式Ⅱ:
Figure BDA0002095183020000022
式Ⅲ:
Figure BDA0002095183020000023
所述Ar为结构式1~5中的一种:
Figure BDA0002095183020000031
其中,R1与R2相同或不同,为含碳数为0-20的直链或支链烷基、烷氧基或硫烷基,碳为0是为氢。
所述为结构式6~7中的一种:
Figure BDA0002095183020000032
其中:R为含碳数为0-20的直链或支链烷基、烷氧基或硫烷基,碳为0是为氢,X为氟离子或氢。
所述M为金属离子时,金属离子为锌离子、铁离子、镍离子、镁离子、铜离子或铱离子。
7.所述一类侧链型meso位取代金属卟啉三元共聚物的制备方法,包括以下步骤:
(1)氩气保护下,3-碘噻吩,溴代丁二酰亚胺(NBS)和乙酸,在100℃在回流反应12h以上停止反应后用二氯甲烷萃取,采用硅胶柱层析纯化,得到化合物1。
(2)氩气保护下,化合物1,双(三苯基磷)二氯化钯,碘化亚铜,三苯基磷,通氩气10分钟,用注射器打入无水THF,无水三乙胺和三甲基硅乙炔,80℃下回流反应24小时。停止反应旋干,二氯甲烷萃取,过柱纯化,得到化合物2。
(3)氩气保护下,化合物2和碳酸钾,用注射器加入THF和甲醇,室温反应1小时。二氯甲烷萃取,饱采用硅胶柱层析纯化,得到化合物3。
(4)氩气保护下,往两口反应瓶中,溴化卟啉,化合物3,碘化亚铜,四(三苯基磷)钯,用注射器打入无水THF和无水三乙胺。60℃下回流反应24小时,二氯甲烷萃取,得到化合物POR。
(5)将化合物POR、苯并二噻吩和单体TT{4,6-二溴-3-氟-2-(1-(2-乙基己酮))-噻吩并[3,4-B]噻吩}以及无水甲苯,在110℃和Pd(PPh3)4催化下并在保护氩气球保护下避光回流反应三天。加入到搅拌的甲醇中,析出大量片状薄膜。经抽提纯化得到目标共聚物。
上述任一项所述的一类侧链型meso位取代金属卟啉三元共聚物材料的应用,作为给体材料应用于制备聚合物太阳能电池。
本发明提供了一类meso位取代金属卟啉三元共聚物
与现有技术相比,本发明具有如下优点和有益效果:
(1)该三元共聚物热稳定良好,失重5%的分解温度超过300℃;
(2)该三元共聚物吸收光范围广阔,适合作为聚合物太阳能电池材料;
(3)该三元共聚物可溶于三氯甲烷、氯苯等溶剂,易加工;
(4)本发明的含侧链卟啉单元、BDT和TT的三元共聚物,卟啉的引入使器件具有较高的开路电压;同时具有良好的短路电流;能够广泛应用于电池材料领域。
(5)该三元共聚物作为电子给体材料在聚合物太阳能电池中显示出良好的光电转换效率,具有较强的吸收、较强的电荷传输性能以及合适的电子能级。
附图说明
图1为实施例1、2制备的meso位取代金属卟啉三元共聚物光伏材料在三氯甲烷溶液中的紫外-可见吸收谱图;
图2为实施例1、2制备的meso位取代金属卟啉三元共聚物光伏材料在薄膜中的紫外-可见吸收谱图;
图3为实施例1、2制备的meso位取代金属卟啉三元共聚物光伏材料的循环伏安曲线图;
图4为实施例1、2制备的meso位取代金属卟啉三元共聚物光伏材料的TGA曲线图;
图5为实施例1、2制备的meso位取代金属卟啉三元共聚物光伏电池器件的J-V曲线图;
图6为本发明实施例1、2制备的meso位取代金属卟啉三元共聚物有机太阳能电池的外量子效率(EQE)曲线图。
具体实施方式
下面结合具体实施方式,进一步阐述本发明,但本发明的实施方式不限于此。
下述实施例中所使用的实验材料、试剂等若无特殊说明,均可通过商业途径或已知实验方法获得。
实施例1
含meso位被炔基噻吩绕丹宁取代的烷基卟啉侧链单元、BDT和TT的三元共聚物材料PL1的合成:
反应方程式如下:
Figure BDA0002095183020000061
化合物1的合成:氩气保护下,往100mL两口反应瓶中加入3-碘噻吩(1g,4.762mmol),溴代丁二酰亚胺(NBS)(1.9g,10.674mmol)和30mL乙酸,在100℃在回流反应12h以上(通过TLC板追踪),停止反应后用二氯甲烷萃取,饱和碳酸氢钠水溶液洗涤,反复多次,收集有机层,旋干,采用硅胶柱层析纯化,洗脱剂为石油醚:二氯甲烷(8:1)。旋干,产物为液体,得到1.66g,产率95%。1H NMR(400MHz,CDCl3)δ:6.93(s,1H).GC-MS(C4HBr2IS)m/z:calcd for 367.82,found:365.
化合物2的合成:氩气保护下,往100mL两口反应瓶中加入化合物13(2g,5.435mmol),双(三苯基磷)二氯化钯(190.45mg,0.272mmol),碘化亚铜(51.63mg,0.272mmol),三苯基磷(71.26mg,0.272mmol),通氩气10分钟,用注射器打入30mL无水THF,10mL无水三乙胺和0.843mL三甲基硅乙炔(585.87mg,5.978mmol),80℃下回流反应24小时。停止反应旋干,二氯甲烷萃取,饱和食盐水洗涤,反复多次,收集有机层旋干,过柱子纯化,洗脱剂为石油醚:二氯甲烷(6:1)。旋干,得到产物1.72g,产率93.6%。1H NMR(400MHz,CDCl3)δ:6.93(s,1H),0.25(s,9H).13C NMR(100MHz,CDCl3)δ:132.33,125.35,116.90,110.88,99.86,96.96,0.42.GC-MS(C9H10Br2SSi)m/z:calcd for 338.13,found:337.86.
化合物POR1的合成:在250ml两口瓶中,加入化合物3(0.076g,0.29mmol)和化合物4(0.303g,0.24mmol),四三苯基膦钯(16.80mg,0.014mmol),碘化亚铜(2.8mg,0.014mmol),加入无水THF 16mL,三乙胺4mL,氮气保护下65℃反应12h,停止反应,水洗,DCM萃取,干燥,旋干后过柱(展开剂:PE:DCM=3:1),得紫色固体产物Por1(0.222g,64%)。1H NMR(400MHz,CDCl3)δ:9.83-9.44(m,8H),8.22(d,1H),7.76(s,1H),7.25(s,1H),7.17(d,1H),5.20(s,2H),4.24(q,J=7.1Hz,2H),2.96(d,J=9.8Hz,4H),2.72(s,4H),2.57(s,3H),1.51(s,4H),1.34(t,J=7.1Hz,7H),1.25-1.20(m,3H),1.18-0.96(m,43H),0.81-0.68(m,12H).MALDI-TOF MS(C76H95Br2N5OS4Zn)m/z:calcd for1448.06,found:1447.192.
聚合物PL1的合成:氩气保护下,往10mL反应瓶中加入化合物S-Por(1.6mg,0.0011mmol),化合物BDT(100mg,0.111mmol)和化合物TT(48.4mg,0.11mmol),四(三苯基磷)合钯(6.38mg,0.0055mmol),通氩气10分钟后,用注射器打入2.4mL无水甲苯和0.6mL无水DMF,采用液氮速冻溶剂-抽真空-通氩气反复多次,每次10分钟左右。避光,在110℃下回流反应2天(随时观察状态)。停止反应,反应液冷却至室温,使用滴管吸取并逐滴加入到甲醇溶液当中,此时伴随着固体粗产物析出,过滤,真空干燥。通过索氏提取器,依次用丙酮、石油醚各抽提一天除去小分子及其它副产物,然后用色谱纯的氯仿抽提出我们需要的目标聚合物。旋干得到产物57mg,产率59%。
将本实施例制备的侧链型meso位取代金属卟啉三元共聚物光伏材料PL1溶于三氯甲烷溶液,得到三氯甲烷溶液的紫外可见光谱见图1。
将本实施例制备的侧链型meso位取代金属卟啉三元共聚物光伏材料PL1制备成薄膜,得到薄膜的紫外可见光谱见图2。
将本实施例制备的侧链型meso位取代金属卟啉三元共聚物光伏材料PL1制备成薄膜进行电化学测试,使用玻碳电极作为工作电极,铂线用作对电极,Ag/Ag+电极用作参比电极,使用Fc/Fc+校正所有电位,得到的PL1的CV曲线见图3。
将本实施例制备的侧链型meso位取代金属卟啉三元共聚物光伏材料PL1进行热失重测试,得到PL1的TGA曲线见图4。
利用本实施例的卟啉有机小分子光伏受体材料制备的光伏电池在AM1.5,100mW/cm2光照下的电流-电压曲线见图5,外量子效率见图6,器件结构ITO/PEDOT:PSS/PL1:PC71BM/ZrAcac/Al。所制备的器件光电转换效率为5.83%,开路电压为0.85V,短路电流为13.3mA/cm2,填充因子为51.6%。进一步我们采用狭缝涂布制备大面积电池器件,最后获得理想的效果。
实施例2
含2-己基噻吩卟啉单元、BDT和TT的三元共聚物材料PL2的的合成:
反应方程式如下:
Figure BDA0002095183020000091
化合物Por2
在250ml两口瓶中,称取化合物3(0.076g,0.29mmol)和化合物5(0.20g,0.24mmol),四三苯基膦钯(16.80mg,0.014mmol),碘化亚铜(2.8mg,0.014mmol),加入无水THF 16mL,三乙胺4mL,氮气保护下65℃反应12h,停止反应,水洗,DCM萃取,干燥,旋干后过柱(展开剂:PE:DCM=3:1),得紫色固体产物Por2(0.188g,82%)。1H NMR(400MHz,CDCl3)δ:9.98(s,1H),9.71(s,1H),9.33(s,1H),9.20(m,12H),9.12(m,12H),9.06(m,12H),7.69(m,12H)7.22(m,12H).3.23(m,12H),2.05(m,12H),1.68(m,12H),1.07-1.38(m,12H).13C NMR(100MHz,CDCl3)δ:150.58(d,J=11.8Hz),149.92,148.66,148.46,147.43,140.05,133.72,133.21,132.00,131.73,131.29,130.92,125.52,123.45,115.72,112.10,111.40,111.00,105.60,103.33,89.64,89.40,77.39,77.07,76.76,31.96,30.56,29.77,29.26,22.86,14.35.ppm.MALDI-TOF MS(m/z):970.2.
聚合物PL2的合成
将化合物Por2(1.07mg,0.001mmol),化合物BDT(100mg,0.11mmol)和TT(48.39mg,0.109mmol)加入到25mL茄形反应瓶中。加入四(三苯基膦)钯(6.4mg,0.0056mmol),Toluene2.4mL,DMF 0.6mL。氩气保护下回流3天后,冷却至室温,将混合物滴入100mL色谱甲醇中,会有絮状沉淀物析出。将沉淀物收集,在索氏提取器中依次用甲醇,正己烷,三氯甲烷抽提至无色。对三个聚合物的三氯甲烷抽提液旋除大部分的溶剂,再次用色谱甲醇沉降,对悬浊液进行离心分离,收集沉降物,真空干燥。
将本实施例制备的侧链型meso位取代金属卟啉三元共聚物光伏材料PL2溶于三氯甲烷溶液,得到三氯甲烷溶液的紫外可见光谱见图1。
将本实施例制备的侧链型meso位取代金属卟啉三元共聚物光伏材料PL2制备成薄膜,得到薄膜的紫外可见光谱见图2。
将本实施例制备的侧链型meso位取代金属卟啉三元共聚物光伏材料PL2制备成薄膜进行电化学测试,使用玻碳电极作为工作电极,铂线用作对电极,Ag/Ag+电极用作参比电极,使用Fc/Fc+校正所有电位,得到的PL2的CV曲线见图3。
将本实施例制备的侧链型meso位取代金属卟啉三元共聚物光伏材料PL2进行热失重测试,得到PL2的TGA曲线见图4。
利用本实施例的卟啉有机小分子光伏受体材料制备的光伏电池在AM1.5,100mW/cm2光照下的电流-电压曲线见图5,外量子效率见图6,器件结构ITO/PEDOT:PSS/PL2:PC71BM/ZrAcac/Al。所制备的器件光电转换效率为7.14%,开路电压为0.84V,短路电流为15.2mA/cm2,填充因子为55.9%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式不受所述实施例的限制,其他的任何背离本发明的精神实质及原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一类侧链型meso位取代金属卟啉三元共聚物,其特征在于,其分子结构如式Ⅰ所示:
式Ⅰ:
Figure DEST_PATH_IMAGE002
其中:P为取代或未取代的卟啉单元;T为取代或未取代的烷氧基、硫烷基或噻吩基团;0<x<1。
2.根据权利要求1所述一类侧链型meso位取代金属卟啉三元共聚物,其特征在于:所述P选用式Ⅱ或式Ⅲ中所示的卟啉单元,其中M为金属离子;Ar为氢、烷基或取代或未取代的芳香基团;
式Ⅱ:
Figure DEST_PATH_IMAGE004
式Ⅲ:
Figure DEST_PATH_IMAGE006
3.根据权利要求2所述一类侧链型meso位取代金属卟啉三元共聚物,其特征在于:所述Ar为结构式1~5中的一种:
Figure DEST_PATH_IMAGE008
其中,R1与R2相同或不同,为含碳数为0-20的直链或支链烷基、烷氧基或硫烷基,碳为0时为氢。
4.根据权利要求2所述一类侧链型meso位取代金属卟啉三元共聚物,其特征在于:所述M为金属离子时,金属离子为锌离子、铁离子、镍离子、镁离子、铜离子或铱离子。
5.根据权利要求1~4任一项所述一类侧链型meso位取代金属卟啉三元共聚物的制备方法,其特征在于,包括以下步骤:
(1)氩气保护下,3-碘噻吩,溴代丁二酰亚胺(NBS)和乙酸,在100℃在回流反应12h以上停止反应后用二氯甲烷萃取,采用硅胶柱层析纯化,得到化合物1;
(2) 氩气保护下,往两口反应瓶中加入化合物1,双(三苯基磷)二氯化钯,碘化亚铜,三苯基磷,通氩气10分钟,用注射器打入无水THF,无水三乙胺和三甲基硅乙炔,80℃下回流反应24小时;停止反应旋干,二氯甲烷萃取,过柱纯化,得到化合物2;
(3) 氩气保护下,将化合物2和碳酸钾,以及用注射器加入的THF和甲醇,在室温反应1小时;二氯甲烷萃取,采用硅胶柱层析纯化,得到化合物3;
(4) 氩气保护下,往两口反应瓶中加入溴化卟啉,化合物3,碘化亚铜,四(三苯基磷)钯,用注射器打入无水THF和无水三乙胺;60℃下回流反应24小时,二氯甲烷萃取,得到化合物POR;
(5)将化合物POR、BDT和4,6-二溴-3-氟-2-(1-(2-乙基己酮))-噻吩并[3,4-B]噻吩以及无水甲苯,在110℃和Pd(PPh3)4 催化下并在保护氩气球保护下避光回流反应三天;加入到搅拌的甲醇中,析出大量片状薄膜;经抽提纯化得到目标共聚物,所述BDT具有如下结构式:
Figure DEST_PATH_IMAGE010
6.根据权利要求1~4任一项所述一类侧链型meso位取代金属卟啉三元共聚物光伏材料的应用,其特征在于:将所述meso位取代金属卟啉三元共聚物光伏材料用于印刷制备太阳能电池。
CN201910516370.3A 2019-06-14 2019-06-14 一种侧链型卟啉三元共聚物的合成及其太阳能电池大面积制备 Active CN110183625B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910516370.3A CN110183625B (zh) 2019-06-14 2019-06-14 一种侧链型卟啉三元共聚物的合成及其太阳能电池大面积制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910516370.3A CN110183625B (zh) 2019-06-14 2019-06-14 一种侧链型卟啉三元共聚物的合成及其太阳能电池大面积制备

Publications (2)

Publication Number Publication Date
CN110183625A CN110183625A (zh) 2019-08-30
CN110183625B true CN110183625B (zh) 2021-08-17

Family

ID=67721757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910516370.3A Active CN110183625B (zh) 2019-06-14 2019-06-14 一种侧链型卟啉三元共聚物的合成及其太阳能电池大面积制备

Country Status (1)

Country Link
CN (1) CN110183625B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206328A (zh) * 2010-03-31 2011-10-05 海洋王照明科技股份有限公司 含苯并噻二唑单元卟啉共聚物、其制备方法和应用
CN102417586A (zh) * 2010-09-28 2012-04-18 海洋王照明科技股份有限公司 金属卟啉-苯并噻二唑有机半导体材料及其制备方法和应用
CN102417584A (zh) * 2010-09-28 2012-04-18 海洋王照明科技股份有限公司 金属卟啉-蒽有机半导体材料及其制备方法和应用
KR20150072731A (ko) * 2013-12-20 2015-06-30 주식회사 엘지화학 유기 태양 전지 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206328A (zh) * 2010-03-31 2011-10-05 海洋王照明科技股份有限公司 含苯并噻二唑单元卟啉共聚物、其制备方法和应用
CN102417586A (zh) * 2010-09-28 2012-04-18 海洋王照明科技股份有限公司 金属卟啉-苯并噻二唑有机半导体材料及其制备方法和应用
CN102417584A (zh) * 2010-09-28 2012-04-18 海洋王照明科技股份有限公司 金属卟啉-蒽有机半导体材料及其制备方法和应用
KR20150072731A (ko) * 2013-12-20 2015-06-30 주식회사 엘지화학 유기 태양 전지 및 이의 제조방법

Also Published As

Publication number Publication date
CN110183625A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
CN108484569B (zh) 一种噻吩桥联四胺芘空穴传输材料及其在钙钛矿太阳能电池中的应用
CN108164547B (zh) 多并稠环共轭大分子及其制备方法和应用
CN110229315B (zh) 一种基于苝二酰亚胺的宽带隙共聚物受体材料及其制备方法
CN105017264A (zh) 一种有机小分子光电功能材料及其制备方法
CN110148672B (zh) 一种空穴传输材料及其制备方法和应用、包含其的钙钛矿太阳能电池
CN104163785A (zh) 一系列含吲哚啉衍生物结构的不对称方酸菁小分子及其应用
CN108084409B (zh) 一种宽带隙有机半导体材料及其制备方法和应用
CN112961169B (zh) 一种酰亚胺化合物及其制备方法和钙钛矿太阳能电池应用
CN102329418B (zh) 一种基于1,2,4,5-四嗪的共轭聚合物及用于制备太阳能电池
CN112521403B (zh) 七元稠环化合物与有机光伏电池
KR101828012B1 (ko) 유기 태양전지용 공액 고분자 및 이의 제조방법
CN110183625B (zh) 一种侧链型卟啉三元共聚物的合成及其太阳能电池大面积制备
CN112062777A (zh) 一种基于二噻吩苯并二噻吩给体核的有机小分子光伏材料及其制备方法和应用
CN106589325A (zh) 一种含有苯并[c]噌啉的共轭聚合物及其合成方法与应用
CN105367584A (zh) 一种含硫的取代基取代的二噻吩衍生物及其共轭聚合物的制备方法及应用
CN116375732A (zh) 一种非富勒烯受体材料及其制备方法和应用
CN102898626A (zh) 含萘并[1,2-c:5,6-c]二(2-烷基-[1,2,3]三唑)的有机半导体材料及其应用
CN113402700B (zh) 一种基于苯并二噻吩和苯并三氮唑的d-a型聚合物给体材料及其制备方法
CN103965210A (zh) 二噻并[2,3-d:2′,3′-d′]萘并[1,2-b:3,4-b′]二噻吩衍生物及共轭聚合物的制备方法及应用
CN109810121B (zh) 基于硫芴的稠环非富勒烯受体化合物、其制备方法及在太阳能电池中的应用
CN112608333B (zh) 基于双噻二唑咔唑衍生物小分子及其合成方法与在有机光电器件中的应用
CN109776767B (zh) 一种含二氟萘并噻吩二酮吸电子单元的共轭聚合物及其合成方法与应用
CN110606937B (zh) 一种含4-乙烯基苯胺衍生物合Zn(II)的聚合配合物及其制备方法与用途
CN102796244B (zh) 含蒽醌单元的共轭聚合物及其制备方法和应用
CN110256459A (zh) 一种含烷基苯共轭侧链的有机小分子及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wang Xingzhu

Inventor after: Liu Zhixin

Inventor after: Yan Lei

Inventor after: Chen Yuzhuo

Inventor after: Xie Liuping

Inventor after: Cheng Ji

Inventor before: Wang Xingzhu

Inventor before: Li Zhixin

Inventor before: Yan Lei

Inventor before: Chen Yuzhuo

Inventor before: Xie Liuping

Inventor before: Cheng Ji

GR01 Patent grant
GR01 Patent grant