CN110143812A - 一种低介电常数低温共烧陶瓷材料及制备方法 - Google Patents

一种低介电常数低温共烧陶瓷材料及制备方法 Download PDF

Info

Publication number
CN110143812A
CN110143812A CN201910494259.9A CN201910494259A CN110143812A CN 110143812 A CN110143812 A CN 110143812A CN 201910494259 A CN201910494259 A CN 201910494259A CN 110143812 A CN110143812 A CN 110143812A
Authority
CN
China
Prior art keywords
temperature
ball milling
burning
ball
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910494259.9A
Other languages
English (en)
Inventor
张欣杨
宋开新
林乾毕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Hangzhou Electronic Science and Technology University
Original Assignee
Hangzhou Electronic Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Electronic Science and Technology University filed Critical Hangzhou Electronic Science and Technology University
Priority to CN201910494259.9A priority Critical patent/CN110143812A/zh
Publication of CN110143812A publication Critical patent/CN110143812A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开一种低介电常数低温共烧陶瓷材料及制备方法,其为Mg2Al4Si5O18(堇青石)‑TiO2‑BBS(铋酸盐玻璃)体系微波陶瓷材料,原料成分为MgO‑Al2O3‑SiO2‑TiO2‑BBS(Bi2O3‑B2O3‑SiO2)。所述原料MgO‑Al2O3‑SiO2以1:1:2.5的化学计量比进行配比,合成Mg2Al4Si5O18微波介质陶瓷,然后Mg2Al4Si5O18与TiO2以7:3的化学计量比进行配比,合成0.7Mg2Al4Si5O18‑0.3TiO2微波介质陶瓷,最后加入不同比例的BBS(Bi2O3‑B2O3‑SiO2)玻璃,合成(0.7Mg2Al4Si5O18‑0.3TiO2)‑BBS陶瓷材料。

Description

一种低介电常数低温共烧陶瓷材料及制备方法
技术领域
本发明属于无线通讯与电子陶瓷材料技术领域,具体涉及一种低介电常数低温共烧陶瓷材料及制备方法,具体为Mg2Al4Si5O18-TiO2-BBS体系低温共烧陶瓷材料及其制备方法。
背景技术
近年来,移动通讯、物联网(IoT)、微波通信、直播卫星电视(DBS TV)、卫星广播、蓝牙、WIFI、智能交通系统(ITS)和工业4.0等信息通信技术(ICT)以爆炸性的方式迅速发展给我们的生活带来了巨大的变化。特别是移动通信技术向着5G高频化、集成化、高稳定性和小尺寸的方向发展,对在5G通信系统中作为谐振器、滤波器、介质天线、介质基板、介质导波回路等的微波陶瓷介质需求量增大和市场前景广阔,5G技术发展使得开发高品质微波-毫米波微波介质陶瓷材料已经成为目前电子陶瓷材料领域中最活跃的一部分。为了满足5G通讯技术对信号低延迟要求,科学家们正在寻找具有超低介电常数、高品质因数(以Qf值衡量)与工作频率稳定性好的新型微波陶瓷材料来抑制能量损失,降低信号传输延迟时间,保证器件在工作环境温度稳定。本发明提供一种介电常数10以下有着较高的品质因数且温度系数稳定的微波介质陶瓷,有助于丰富此类产品的需求。
针对目前现有产品种类的不足和技术中存在的缺陷,解决现有技术中存在的缺陷,本发明专利提供一种Mg2Al4Si5O18-TiO2-BBS体系微波介质材料及其制备方法。
发明内容
为解决上述问题,本发明的目的在于提供一种低介电常数低温共烧陶瓷材料及制备方法,采用Mg2Al4Si5O18-TiO2-BBS体系微波介质陶瓷材料,该陶瓷材料介电常数在4.5~6.9左右,有着优良微波介电性能。
为实现上述目的,本发明的技术方案为:
一种低介电常数低温共烧陶瓷材料,采用Mg2Al4Si5O18-TiO2-BBS体系微波陶瓷材料,其原料成分为MgO-Al2O3-SiO2-TiO2-BBS,其中,BBS的化学式为Bi2O3-B2O3-SiO2;原料MgO-Al2O3-SiO2以1:1:2.5的化学计量比进行配比,在1400℃左右合成Mg2Al4Si5O18微波介质陶瓷粉末;然后Mg2Al4Si5O18与TiO2以7:3的化学计量比进行配比,在1200℃左右合成0.7Mg2Al4Si5O18-0.3TiO2复合陶瓷粉;在此基础上进一步加入低熔点玻璃粉BBS形成(100-x)(0.7Mg2Al4Si5O18-0.3TiO2)-xBBS,以降低0.7Mg2Al4Si5O18-0.3TiO2陶瓷致密化的烧结温度,实现与银电极共烧。
作为进一步的改进方案,x为0wt%、4wt%、6wt%、8wt%、10wt%或12wt%。
作为进一步的改进方案,该陶瓷材料的介电常数范围是4.5~6.9,品质因数范围是10310GHz~53070GHz,温度系数范围是-6.5ppm/℃~3.3ppm/℃。
本发明还公开了一种低介电常数低温共烧陶瓷材料的制备方法,制备依次包括以下几个步骤:
(1)配料:MgO(纯度99.99%)、Al2O3(纯度99.99%)、SiO2(纯度99.99%)按照1:1:2.5的化学计量比进行配比;
(2)混料:分别称取7.9091g的MgO,20.0083g的Al2O3,29.4764g的SiO2,置于行星式球磨机中进行湿法球磨,球磨时间为24h,得到泥浆状原料;
(3)烘干:将球磨后的浆料倒出,置入烘箱中于80℃~100℃下干燥至恒重,得到干燥的混合料;
(4)预烧:将上一步得到的恒重混合料先过60目标准筛,分散混合料后,置入高温炉中预烧4h,预烧温度为1400℃,使混合料初步反应合成堇青石;
(5)球磨:将预烧合成的Mg2Al4Si5O18化合物加入无水乙醇置于球磨机中研磨24h,形成Mg2Al4Si5O18化合物浆料;
(6)烘干:将Mg2Al4Si5O18化合物浆料取出,置于烘箱中80℃~100℃干燥至恒重,得到Mg2Al4Si5O18化合物粉末;
(7)配料:将Mg2Al4Si5O18和TiO2按照7:3的化学计量比配比;
(8)混料:再称取2.3531g TiO2(纯度99.9%)加入到合成的Mg2Al4Si5O18陶瓷中。
(9)球磨:将混好的混料一起加入到球磨罐中,再加入一定量的无水乙醇作为介质,放入球磨机中球磨12h,设置的转速为240r/min,球磨完之后将浆料放入到烘干中烘干至恒重。
(10)预烧:将烘干之后的粉末过90目的筛子,使颗粒的大小均匀,再放入氧化铝坩埚中置于高温炉中以4℃/min的升温速率升温到1200℃保温4h。
(11)球磨:将预烧之后的原料再次放入球磨罐中球磨,再加入一定量的无水乙醇作为介质,放入球磨机中球磨12h,设置的转速为240r/min,球磨完之后将浆料放入到烘干中烘干至恒重。
(12)烘干:将预烧过的0.7Mg2Al4Si5O18-0.3TiO2陶瓷粉和BBS低温玻璃粉都放入烘干箱中烘4h。
(13)混料:按照(100-x)(0.7Mg2Al4Si5O18-0.3TiO2)-xBBS(x=0wt%、4wt%、6wt%、8wt%、10wt%、12wt%)分别进行称量配料。
(14)球磨:将称量好的原料直接倒入到球磨罐中,然后以无水乙醇作为介质,放在球磨机中球磨12h,设置的转速为240r/min。
(15)干燥:将球磨完之后的浆料倒入密封的容器中,放入干燥箱中烘24h至恒重。
(16)预烧:将干燥完之后的原料研磨成粉末,过60目的筛子之后倒入氧化铝坩埚中,再放入高温炉中以4℃/min的升温速率升温到850℃温度保温4h,然后关闭程序,随炉冷却到室温。
(17)球磨:将预烧之后的粉末再次倒入球磨罐中加入无水乙醇作为介质,以转速为240r/min的转速球磨12h。球磨完之后再放入到烘干箱中烘干24h至恒重。
(18)造粒:将烘干之后的块状的原料利用玛瑙研钵研磨成粉状,然后再加入8wt%的PVA作为粘合剂,使之和原料混合均匀之后,分别通过60目、90目、140目的筛子,将通过90目但是没有通过140目的粉末作为我们下一步的原料,通过140目的混合粉末作为烧结的垫料。
(19)压制成型:称取一定量的粉末倒入到模具中,然后放在压片机中以8MPa的压强下保持一分钟,就可以压制成直径是12mm,高度为8mm的陶瓷生坯。
(20)排胶烧结:将压制好的生坯放入到高温炉中,设置炉子的升温速率为4℃/min,升温到650℃的温度下保温4h排胶,然后再按照相同的升温速率升高到致密化烧结温度点下保温4h,然后以4℃/min的降温速率降到800℃后将程序停止,使炉子自然降温。
(21)样品后期处理与测试:将烧结之后的陶瓷样品用抛光机将陶瓷表面抛光处理,然后再超声清洗处理。
优选地,所述球磨机为行星式球磨机。
优选地,所述MgO的纯度为99.99%。
优选地,所述Al2O3的纯度为99.99%。
优选地,所述SiO2的纯度为99.99%。
优选地,所述TiO2的纯度为99.9%。
优选地,所述粘合剂为2.5ml~3ml的5wt%的聚乙烯醇溶液(PVA)。
优选地,所述圆柱体直径为12~15mm、厚度约为6~9mm。
与现有技术的微波介质陶瓷材料及其制备方法相比,本发明具有以下有益效果:本发明采用BBS降低0.7Mg2Al4Si5O18-0.3TiO2致密化烧结温度实现与银电极共烧,节约能源消耗,降低生产成本,通过设定不同的烧结温度,能够得到一种微波性能良好的低介电常数的微波介质陶瓷材料(100-x)(0.7Mg2Al4Si5O18-0.3TiO2)-xBBS(x=0wt%、4wt%、6wt%、8wt%、10wt%、12wt%)。
该微波介质陶瓷材料在各自最佳烧结温度下的介电常数范围是4.5~6.9,品质因数范围是10310GHz~53070GHz,温度系数范围是-6.5ppm/℃~3.3ppm/℃。BBS是一种常用的助烧剂,本发明采用BBS降低0.7Mg2Al4Si5O18-0.3TiO2陶瓷致密化烧结温度,传统的Mg2Al4Si5O18-TiO2的烧结温度在1400℃,当加入12%wt的BBS玻璃陶瓷时其致密化烧结温度只有950℃,并获得了良好的微波介电性能,可以实现与银电极共烧,制备方法简单,可以在5G通信系统中作为基板、滤波器与天线等器件介质使用。
附图说明
图1为本发明实施案例1~6制备得到的Mg2Al4Si5O18-TiO2-BBS陶瓷材料XRD图谱;
图2为本发明实施3制备得到的复合陶瓷加入10wt%的银浆在925℃温度下的XRD附图。
图3为本发明实施3制备得到的复合陶瓷加入10wt%的银浆的EDS元素分析图。
图4为本发明实施2,3,4,6制备得到的复合陶瓷的扫描电镜附图。
图5为本发明实施3制备得到的复合陶瓷的介电能谱图。
图6为本发明实施案例1~6制备得到的Mg2Al4Si5O18-TiO2-BBS微波陶瓷材料的致密化温度点与微波介电性能。
具体实施方式
下面对本发明的具体的实施例进行详细阐述,以使本发明的优点和特征被本领域的技术人才理解。一种Mg2Al4Si5O18-TiO2-BBS微波介质陶瓷材料及其制备方法的权利要求中0.7Mg2Al4Si5O18-0.3TiO2复合粉的合成为该权利要求各实施例的共同部分,其过程如下:
(1)配料:MgO(纯度99.99%)、Al2O3(纯度99.99%)、SiO2(纯度99.99%)按照1:1:2.5的化学计量比进行配比;
(2)混料:分别称取7.9091g的MgO,20.0083g的Al2O3,29.4764g的SiO2,置于行星式球磨机中进行湿法球磨,球磨时间为24h,得到泥浆状原料;
(3)烘干:将球磨后的浆料倒出,置入烘箱中于80℃~100℃下干燥至恒重,得到干燥的混合料;
(4)预烧:将上一步得到的恒重混合料先过60目标准筛,分散混合料后,置入高温炉中预烧4h,预烧温度为1400℃,使混合料初步反应合成堇青石;
(5)球磨:将预烧合成的Mg2Al4Si5O18化合物加入无水乙醇置于球磨机中研磨24h,形成Mg2Al4Si5O18化合物浆料;
(6)烘干:将Mg2Al4Si5O18化合物浆料取出,置于烘箱中80℃~100℃干燥至恒重,得到Mg2Al4Si5O18化合物粉末;
(7)配料:将Mg2Al4Si5O18和TiO2按照7:3的化学计量比配比;
(8)混料:再称取2.3531g TiO2(纯度99.9%)加入到合成的Mg2Al4Si5O18陶瓷中。
(9)球磨:将混好的混料一起加入到球磨罐中,再加入一定量的无水乙醇作为介质,放入球磨机中球磨12h,设置的转速为240r/min,球磨完之后将浆料放入到烘干中烘干至恒重。
(10)预烧:将烘干之后的粉末过90目的筛子,使颗粒的大小均匀,再放入氧化铝坩埚中置于高温炉中以4℃/min的升温速率升温到1200℃保温4h。
(11)球磨:将预烧之后的原料再次放入球磨罐中球磨,再加入一定量的无水乙醇作为介质,放入球磨机中球磨12h,设置的转速为240r/min,球磨完之后将浆料放入到烘干中烘干至恒重。
(12)烘干:将预烧过的0.7Mg2Al4Si5O18-0.3TiO2陶瓷粉和BBS低温玻璃粉都放入烘干箱中烘4h。
实施例1
0.7Mg2Al4Si5O18-0.3TiO2微波介质陶瓷材料及其制备方法,制备过程依次包括以下几个步骤:
(1)造粒:将烘干之后的块状的原料利用玛瑙研钵研磨成粉状,然后再加入8wt%的PVA作为粘合剂,使之和原料混合均匀之后,分别通过60目、90目、140目的筛子,将通过90目但是没有通过140目的粉末作为我们下一步的原料,通过140目的混合粉末作为烧结的垫料。
(2)压制成型:称取一定量的粉末倒入到模具中,然后放在压片机中以8MPa的压强下保持一分钟,就可以压制成直径是12mm,高度为8mm的陶瓷生坯。
(3)排胶烧结:将压制好的生坯放入到高温炉中,本次实验的烧结温度设置成:1400℃。然后设置炉子的升温速率为4℃/min,升温到650℃的温度下保温4h排胶,然后再按照相同的升温速率升高到致密化烧结温度点1400℃下保温4h,然后以4℃/min的降温速率降到800℃后将程序停止,使炉子自然降温。
(4)样品后期处理与测试:将烧结之后的陶瓷样品用抛光机将陶瓷表面抛光处理,然后再超声清洗处理。
优选地,所述球磨机为行星式球磨机。
优选地,所述MgO的纯度为99.99%。
优选地,所述Al2O3的纯度为99.99%。
优选地,所述SiO2的纯度为99.99%。
优选地,所述TiO2的纯度为99.9%。
优选地,所述粘合剂为2.5ml~3ml的5wt%的聚乙烯醇溶液(PVA)。
优选地,所述圆柱体直径为12~15mm、厚度约为6~9mm。
在具体应用实施例中,微波介质陶瓷材料介电常数εr为6.864。
在具体应用实施例中,微波介质陶瓷材料品质因数Qf的值为53069GHz。
在具体应用实施例中,微波介质陶瓷材料的频率温度系数τf值为3.3ppm/℃。
实施例2
0.96(0.7Mg2Al4Si5O18-0.3iO2)-0.04BBS微波介质陶瓷材料及其制备方法,制备过程依次包括以下几个步骤:
(1)混料:按照0.96(0.7Mg2Al4Si5O18-0.3iO2)-0.04BBS(即x=4wt%)进行称量配料。
(2)球磨:将称量好的原料直接倒入到球磨罐中,然后以无水乙醇作为介质,放在球磨机中球磨12h,设置的转速为240r/min。
(3)干燥:将球磨完之后的浆料倒入密封的容器中,放入干燥箱中烘24h至恒重。
(4)预烧:将干燥完之后的原料研磨成粉末,过60目的筛子之后倒入氧化铝坩埚中,再放入高温炉中以4℃/min的升温速率升温到850℃温度保温4h,然后关闭程序,随炉冷却到室温。
(5)球磨:将预烧之后的粉末再次倒入球磨罐中加入无水乙醇作为介质,以转速为240r/min的转速球磨12h。球磨完之后再放入到烘干箱中烘干24h至恒重。
(6)造粒:将烘干之后的块状的原料利用玛瑙研钵研磨成粉状,然后再加入8wt%的PVA作为粘合剂,使之和原料混合均匀之后,分别通过60目、90目、140目的筛子,将通过90目但是没有通过140目的粉末作为我们下一步的原料,通过140目的混合粉末作为烧结的垫料。
(7)压制成型:称取一定量的粉末倒入到模具中,然后放在压片机中以8MPa的压强下保持一分钟,就可以压制成直径是12mm,高度为8mm的陶瓷生坯。
(8)排胶烧结:将压制好的生坯放入到高温炉中,本次实验的烧结温度设置成:1050℃。然后设置炉子的升温速率为4℃/min,升温到650℃的温度下保温4h排胶,然后再按照相同的升温速率升高到致密化烧结温度点1050℃下保温4h,然后以4℃/min的降温速率降到800℃后将程序停止,使炉子自然降温。
(9)样品后期处理与测试:将烧结之后的陶瓷样品用抛光机将陶瓷表面抛光处理,然后再超声清洗处理。
优选地,所述球磨机为行星式球磨机。
优选地,所述MgO的纯度为99.99%。
优选地,所述Al2O3的纯度为99.99%。
优选地,所述SiO2的纯度为99.99%。
优选地,所述TiO2的纯度为99.9%。
优选地,所述粘合剂为2.5ml~3ml的5wt%的聚乙烯醇溶液(PVA)。
优选地,所述圆柱体直径为12~15mm、厚度约为6~9mm。
在具体应用实施例中,微波介质陶瓷材料介电常数εr值为4.876。
在具体应用实施例中,微波介质陶瓷材料品质因数Qf值为20356.95GHz。
在具体应用实施例中,微波介质陶瓷材料的频率温度系数τf值为-5.0ppm/℃。
实施例3
0.94(0.7g2Al4Si5O18-0.3iO2)-0.06BBS微波介质陶瓷材料及其制备方法,制备过程依次包括以下几个步骤:
(1)混料:按照0.94(0.7g2Al4Si5O18-0.3iO2)-0.06BBS(即x=6wt%)进行称量配料。
(2)球磨:将称量好的原料直接倒入到球磨罐中,然后以无水乙醇作为介质,放在球磨机中球磨12h,设置的转速为240r/min。
(3)干燥:将球磨完之后的浆料倒入密封的容器中,放入干燥箱中烘24h至恒重。
(4)预烧:将干燥完之后的原料研磨成粉末,过60目的筛子之后倒入氧化铝坩埚中,再放入高温炉中以4℃/min的升温速率升温到850℃温度保温4h,然后关闭程序,随炉冷却到室温。
(5)球磨:将预烧之后的粉末再次倒入球磨罐中加入无水乙醇作为介质,以转速为240r/min的转速球磨12h。球磨完之后再放入到烘干箱中烘干24h至恒重。
(6)造粒:将烘干之后的块状的原料利用玛瑙研钵研磨成粉状,然后再加入8wt%的PVA作为粘合剂,使之和原料混合均匀之后,分别通过60目、90目、140目的筛子,将通过90目但是没有通过140目的粉末作为我们下一步的原料,通过140目的混合粉末作为烧结的垫料。
(7)压制成型:称取一定量的粉末倒入到模具中,然后放在压片机中以8MPa的压强下保持一分钟,就可以压制成直径是12mm,高度为8mm的陶瓷生坯。
(8)排胶烧结:将压制好的生坯放入到高温炉中,本次实验的烧结温度设置成:1025℃。然后设置炉子的升温速率为4℃/min,升温到650℃的温度下保温4h排胶,然后再按照相同的升温速率升高到致密化烧结温度点1025℃下保温4h,然后以4℃/min的降温速率降到800℃后将程序停止,使炉子自然降温。
(9)样品后期处理与测试:将烧结之后的陶瓷样品用抛光机将陶瓷表面抛光处理,然后再超声清洗处理。
优选地,所述球磨机为行星式球磨机。
优选地,所述MgO的纯度为99.99%。
优选地,所述Al2O3的纯度为99.99%。
优选地,所述SiO2的纯度为99.99%。
优选地,所述TiO2的纯度为99.9%。
优选地,所述粘合剂为2.5ml~3ml的5wt%的聚乙烯醇溶液(PVA)。
优选地,所述圆柱体直径为12~15mm、厚度约为6~9mm。
在具体应用实施例中,微波介质陶瓷材料的介电常数εr值为5.367。
在具体应用实施例中,微波介质陶瓷材料的品质因数Qf值为26946.3GHz。
在具体应用实施例中,微波介质陶瓷材料的频率温度系数τf值为-4.49ppm/℃。
实施例4
0.92(0.7Mg2Al4Si5O18-0.3TiO2)-0.08BBS微波介质陶瓷材料及其制备方法,制备过程依次包括以下几个步骤:
(1)混料:按照0.92(0.7Mg2Al4Si5O18-0.3TiO2)-0.08BBS(即x=8wt%)进行称量配料。
(2)球磨:将称量好的原料直接倒入到球磨罐中,然后以无水乙醇作为介质,放在球磨机中球磨12h,设置的转速为240r/min。
(3)干燥:将球磨完之后的浆料倒入密封的容器中,放入干燥箱中烘24h至恒重。
(4)预烧:将干燥完之后的原料研磨成粉末,过60目的筛子之后倒入氧化铝坩埚中,再放入高温炉中以4℃/min的升温速率升温到850℃温度保温4h,然后关闭程序,随炉冷却到室温。
(5)球磨:将预烧之后的粉末再次倒入球磨罐中加入无水乙醇作为介质,以转速为240r/min的转速球磨12h。球磨完之后再放入到烘干箱中烘干24h至恒重。
(6)造粒:将烘干之后的块状的原料利用玛瑙研钵研磨成粉状,然后再加入8wt%的PVA作为粘合剂,使之和原料混合均匀之后,分别通过60目、90目、140目的筛子,将通过90目但是没有通过140目的粉末作为我们下一步的原料,通过140目的混合粉末作为烧结的垫料。
(7)压制成型:称取一定量的粉末倒入到模具中,然后放在压片机中以8MPa的压强下保持一分钟,就可以压制成直径是12mm,高度为8mm的陶瓷生坯。
(8)排胶烧结:将压制好的生坯放入到高温炉中,本次实验的烧结温度设置成:1025℃。然后设置炉子的升温速率为4℃/min,升温到650℃的温度下保温4h排胶,然后再按照相同的升温速率升高到致密化烧结温度点1025℃下保温4h,然后以4℃/min的降温速率降到800℃后将程序停止,使炉子自然降温。
(9)样品后期处理与测试:将烧结之后的陶瓷样品用抛光机将陶瓷表面抛光处理,然后再超声清洗处理。
优选地,所述球磨机为行星式球磨机。
优选地,所述MgO的纯度为99.99%。
优选地,所述Al2O3的纯度为99.99%。
优选地,所述SiO2的纯度为99.99%。
优选地,所述TiO2的纯度为99.9%。
优选地,所述粘合剂为2.5ml~3ml的5wt%的聚乙烯醇溶液(PVA)。
优选地,所述圆柱体直径为12~15mm、厚度约为6~9mm。
在具体应用实施例中,微波介质陶瓷材料的介电常数εr值为5.547。
在具体应用实施例中,微波介质陶瓷材料的品质因数Qf值为23809.65GHz。
在具体应用实施例中,微波介质陶瓷材料的频率温度系数τf值为-6.48ppm/℃。
实施例5
0.9(0.7Mg2Al4Si5O18-0.3TiO2)-0.1BBS微波介质陶瓷材料及其制备方法,制备过程依次包括以下几个步骤:
(1)混料:按照0.9(0.7Mg2Al4Si5O18-0.3TiO2)-0.1BBS(即x=10wt%)进行称量配料。
(2)球磨:将称量好的原料直接倒入到球磨罐中,然后以无水乙醇作为介质,放在球磨机中球磨12h,设置的转速为240r/min。
(3)干燥:将球磨完之后的浆料倒入密封的容器中,放入干燥箱中烘24h至恒重。
(4)预烧:将干燥完之后的原料研磨成粉末,过60目的筛子之后倒入氧化铝坩埚中,再放入高温炉中以4℃/min的升温速率升温到850℃温度保温4h,然后关闭程序,随炉冷却到室温。
(5)球磨:将预烧之后的粉末再次倒入球磨罐中加入无水乙醇作为介质,以转速为240r/min的转速球磨12h。球磨完之后再放入到烘干箱中烘干24h至恒重。
(6)造粒:将烘干之后的块状的原料利用玛瑙研钵研磨成粉状,然后再加入8wt%的PVA作为粘合剂,使之和原料混合均匀之后,分别通过60目、90目、140目的筛子,将通过90目但是没有通过140目的粉末作为我们下一步的原料,通过140目的混合粉末作为烧结的垫料。
(7)压制成型:称取一定量的粉末倒入到模具中,然后放在压片机中以8MPa的压强下保持一分钟,就可以压制成直径是12mm,高度为8mm的陶瓷生坯。
(8)排胶烧结:将压制好的生坯放入到高温炉中,本次实验的烧结温度设置成:975℃。然后设置炉子的升温速率为4℃/min,升温到650℃的温度下保温4h排胶,然后再按照相同的升温速率升高到致密化烧结温度点975℃下保温4h,然后以4℃/min的降温速率降到800℃后将程序停止,使炉子自然降温。
(9)样品后期处理与测试:将烧结之后的陶瓷样品用抛光机将陶瓷表面抛光处理,然后再超声清洗处理。
优选地,所述球磨机为行星式球磨机。
优选地,所述MgO的纯度为99.99%。
优选地,所述Al2O3的纯度为99.99%。
优选地,所述SiO2的纯度为99.99%。
优选地,所述TiO2的纯度为99.9%。
优选地,所述粘合剂为2.5ml~3ml的5wt%的聚乙烯醇溶液(PVA)。
优选地,所述圆柱体直径为12~15mm、厚度约为6~9mm。
在具体应用实施例中,微波介质陶瓷材料的介电常数εr为4.925。
在具体应用实施例中,微波介质陶瓷材料的品质因数Qf值为13119.6GHz。
在具体应用实施例中,微波介质陶瓷材料的频率温度系数τf值为-6.32ppm/℃。
实施例6
0.88(0.7Mg2Al4Si5O18-0.3TiO2)-0.12BBS微波介质陶瓷材料及其制备方法,制备过程依次包括以下几个步骤:
(1)混料:按照0.88(0.7Mg2Al4Si5O18-0.3TiO2)-0.12BBS(即x=12wt%)分别进行称量配料。
(2)球磨:将称量好的原料直接倒入到球磨罐中,然后以无水乙醇作为介质,放在球磨机中球磨12h,设置的转速为240r/min。
(3)干燥:将球磨完之后的浆料倒入密封的容器中,放入干燥箱中烘24h至恒重。
(4)预烧:将干燥完之后的原料研磨成粉末,过60目的筛子之后倒入氧化铝坩埚中,再放入高温炉中以4℃/min的升温速率升温到850℃温度保温4h,然后关闭程序,随炉冷却到室温。
(5)球磨:将预烧之后的粉末再次倒入球磨罐中加入无水乙醇作为介质,以转速为240r/min的转速球磨12h。球磨完之后再放入到烘干箱中烘干24h至恒重。
(6)造粒:将烘干之后的块状的原料利用玛瑙研钵研磨成粉状,然后再加入8wt%的PVA作为粘合剂,使之和原料混合均匀之后,分别通过60目、90目、140目的筛子,将通过90目但是没有通过140目的粉末作为我们下一步的原料,通过140目的混合粉末作为烧结的垫料。
(7)压制成型:称取一定量的粉末倒入到模具中,然后放在压片机中以8MPa的压强下保持一分钟,就可以压制成直径是12mm,高度为8mm的陶瓷生坯。
(8)排胶烧结:将压制好的生坯放入到高温炉中,本次实验的烧结温度设置成:950℃。然后设置炉子的升温速率为4℃/min,升温到650℃的温度下保温4h排胶,然后再按照相同的升温速率升高到致密化烧结温度点950℃下保温4h,然后以4℃/min的降温速率降到800℃后将程序停止,使炉子自然降温。
(9)样品后期处理与测试:将烧结之后的陶瓷样品用抛光机将陶瓷表面抛光处理,然后再超声清洗处理。
优选地,所述球磨机为行星式球磨机。
优选地,所述MgO的纯度为99.99%。
优选地,所述Al2O3的纯度为99.99%。
优选地,所述SiO2的纯度为99.99%。
优选地,所述TiO2的纯度为99.9%。
优选地,所述粘合剂为2.5ml~3ml的5wt%的聚乙烯醇溶液(PVA)。
优选地,所述圆柱体直径为12~15mm、厚度约为6~9mm。
在具体应用实施例中,微波介质陶瓷材料的介电常数εr值为4.597。
在具体应用实施例中,微波介质陶瓷材料的品质因数Qf值为10311.15GHz。
在具体应用实施例中,微波介质陶瓷材料的频率温度系数τf值为-5.28ppm/℃。
上述的6个具体实施例中,实施例6得到了最低的介电常数,介电常数值为4.597。实施例1得到最高的品质因数53069GHz。实施例1中获得最好的谐振频率温度系数3.3ppm/℃,稳定性最好。随着BBS含量的增加烧结温度从1400℃降到了950℃,满足节能减排本的要求。发明采用Hakki-Coleman提出的介质谐振腔法测试圆柱体陶瓷在谐振频率下的介电常数(εr)、品质因数(Qf)与谐振频率温度系数(τf),具体的性能参数见图6。
上述实施例并非是对于本发明的限制,本发明并非仅限于上述实例,只要符合本发明要求,均属于本发明的保护范围。

Claims (4)

1.一种低介电常数低温共烧陶瓷材料,其特征在于,采用Mg2Al4Si5O18-TiO2-BBS体系微波陶瓷材料,其原料成分为MgO-Al2O3-SiO2-TiO2-BBS,其中,BBS的化学式为Bi2O3-B2O3-SiO2;原料MgO-Al2O3-SiO2以1:1:2.5的化学计量比进行配比,在1400℃左右合成Mg2Al4Si5O18微波介质陶瓷粉末;然后Mg2Al4Si5O18与TiO2以7:3的化学计量比进行配比,在1200℃左右合成0.7Mg2Al4Si5O18-0.3TiO2复合陶瓷粉;在此基础上进一步加入低熔点玻璃粉BBS形成(100-x)(0.7Mg2Al4Si5O18-0.3TiO2)-xBBS,以降低0.7Mg2Al4Si5O18-0.3TiO2陶瓷致密化的烧结温度,实现与银电极共烧。
2.根据权利要求1所述的低介电常数低温共烧陶瓷材料,其特征在于,x为0wt%、4wt%、6wt%、8wt%、10wt%或12wt%。
3.根据权利要求1或2所述的低介电常数低温共烧陶瓷材料,其特征在于,该陶瓷材料的介电常数范围是4.5~6.9,品质因数范围是10310GHz~53070GHz,温度系数范围是-6.5ppm/℃~3.3ppm/℃。
4.制备如权利要求1-3所述低介电常数低温共烧陶瓷材料的制备方法,其特征在于,该方法包括以下步骤:
(1)配料:MgO(纯度99.99%)、Al2O3(纯度99.99%)、SiO2(纯度99.99%)按照1:1:2.5的化学计量比进行配比;
(2)混料:分别称取7.9091g的MgO,20.0083g的Al2O3,29.4764g的SiO2,置于行星式球磨机中进行湿法球磨,球磨时间为24h,得到泥浆状原料;
(3)烘干:将球磨后的浆料倒出,置入烘箱中于80℃~100℃下干燥至恒重,得到干燥的混合料;
(4)预烧:将上一步得到的恒重混合料先过60目标准筛,分散混合料后,置入高温炉中预烧4h,预烧温度为1400℃,使混合料初步反应合成堇青石;
(5)球磨:将预烧合成的Mg2Al4Si5O18化合物加入无水乙醇置于球磨机中研磨24h,形成Mg2Al4Si5O18化合物浆料;
(6)烘干:将Mg2Al4Si5O18化合物浆料取出,置于烘箱中80℃~100℃干燥至恒重,得到Mg2Al4Si5O18化合物粉末;
(7)配料:将Mg2Al4Si5O18和TiO2按照7:3的化学计量比配比;
(8)混料:再称取2.3531g TiO2(纯度99.9%)加入到合成的Mg2Al4Si5O18陶瓷中;
(9)球磨:将混好的混料一起加入到球磨罐中,再加入一定量的无水乙醇作为介质,放入球磨机中球磨12h,设置的转速为240r/min,球磨完之后将浆料放入到烘干中烘干至恒重;
(10)预烧:将烘干之后的粉末过90目的筛子,使颗粒的大小均匀,再放入氧化铝坩埚中置于高温炉中以4℃/min的升温速率升温到1200℃保温4h;
(11)球磨:将预烧之后的原料再次放入球磨罐中球磨,再加入一定量的无水乙醇作为介质,放入球磨机中球磨12h,设置的转速为240r/min,球磨完之后将浆料放入到烘干中烘干至恒重;
(12)烘干:将预烧过的0.7Mg2Al4Si5O18-0.3TiO2陶瓷粉和BBS低温玻璃粉都放入烘干箱中烘4h;
(13)混料:按照(100-x)(0.7Mg2Al4Si5O18-0.3TiO2)-xBBS(x=0wt%、4wt%、6wt%、8wt%、10wt%、12wt%)分别进行称量配料;
(14)球磨:将称量好的原料直接倒入到球磨罐中,然后以无水乙醇作为介质,放在球磨机中球磨12h,设置的转速为240r/min;
(15)干燥:将球磨完之后的浆料倒入密封的容器中,放入干燥箱中烘24h至恒重;
(16)预烧:将干燥完之后的原料研磨成粉末,过60目的筛子之后倒入氧化铝坩埚中,再放入高温炉中以4℃/min的升温速率升温到850℃温度保温4h,然后关闭程序,随炉冷却到室温;
(17)球磨:将预烧之后的粉末再次倒入球磨罐中加入无水乙醇作为介质,以转速为240r/min的转速球磨12h;球磨完之后再放入到烘干箱中烘干24h至恒重;
(18)造粒:将烘干之后的块状的原料利用玛瑙研钵研磨成粉状,然后再加入8wt%的PVA作为粘合剂,使之和原料混合均匀之后,分别通过60目、90目、140目的筛子,将通过90目但是没有通过140目的粉末作为我们下一步的原料,通过140目的混合粉末作为烧结的垫料;
(19)压制成型:称取一定量的粉末倒入到模具中,然后放在压片机中以8MPa的压强下保持一分钟,就可以压制成直径是12mm,高度为8mm的陶瓷生坯;
(20)排胶烧结:将压制好的生坯放入到高温炉中,设置炉子的升温速率为4℃/min,升温到650℃的温度下保温4h排胶,然后再按照相同的升温速率升高到致密化烧结温度下保温4h,然后以4℃/min的降温速率降到800℃后将程序停止,使炉子自然降温;
(21)样品后期处理与测试:将烧结之后的陶瓷样品用抛光机将陶瓷表面抛光处理,然后再超声清洗处理。
CN201910494259.9A 2019-06-09 2019-06-09 一种低介电常数低温共烧陶瓷材料及制备方法 Pending CN110143812A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910494259.9A CN110143812A (zh) 2019-06-09 2019-06-09 一种低介电常数低温共烧陶瓷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910494259.9A CN110143812A (zh) 2019-06-09 2019-06-09 一种低介电常数低温共烧陶瓷材料及制备方法

Publications (1)

Publication Number Publication Date
CN110143812A true CN110143812A (zh) 2019-08-20

Family

ID=67590810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910494259.9A Pending CN110143812A (zh) 2019-06-09 2019-06-09 一种低介电常数低温共烧陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN110143812A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627480A (zh) * 2019-09-01 2019-12-31 桂林理工大学 MgO-Al2O3-GeO2三元体系微波介质材料的制备方法
CN111620680A (zh) * 2020-06-04 2020-09-04 山东国瓷功能材料股份有限公司 一种毫米波器件用陶瓷材料及其制备方法与应用
CN111662096A (zh) * 2020-05-13 2020-09-15 江苏大学 一种陶瓷电容压力传感器芯片的封接方法
CN112174653A (zh) * 2020-10-23 2021-01-05 厦门松元电子有限公司 一种高Qf低介电常数的微波介质陶瓷材料及其制备方法
CN112250434A (zh) * 2020-10-23 2021-01-22 厦门松元电子有限公司 一种zmat系微波陶瓷材料及其制备方法与应用
CN112266238A (zh) * 2020-10-23 2021-01-26 厦门松元电子有限公司 一种微波器件用的低介电常数陶瓷材料及其制备方法
CN114213115A (zh) * 2022-01-04 2022-03-22 浙江嘉康电子股份有限公司 一种微波介质材料及其制备方法
CN115141006A (zh) * 2022-07-04 2022-10-04 杭州电子科技大学 一种微波介质陶瓷材料、复合材料及其制备方法、用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188677A (ja) * 1996-12-24 1998-07-21 Kyocera Corp 誘電体磁器組成物および誘電体共振器
JP2002016405A (ja) * 2000-06-30 2002-01-18 Kyocera Corp 非放射性誘電体線路およびミリ波送受信器
CN103467099A (zh) * 2013-10-08 2013-12-25 云南云天化股份有限公司 一种低温共烧陶瓷材料及其制备方法
CN103693966A (zh) * 2013-12-13 2014-04-02 云南云天化股份有限公司 一种低温共烧陶瓷材料及其制备方法
CN104310980A (zh) * 2014-09-30 2015-01-28 杭州电子科技大学 一种微波介质陶瓷材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188677A (ja) * 1996-12-24 1998-07-21 Kyocera Corp 誘電体磁器組成物および誘電体共振器
JP2002016405A (ja) * 2000-06-30 2002-01-18 Kyocera Corp 非放射性誘電体線路およびミリ波送受信器
CN103467099A (zh) * 2013-10-08 2013-12-25 云南云天化股份有限公司 一种低温共烧陶瓷材料及其制备方法
CN103693966A (zh) * 2013-12-13 2014-04-02 云南云天化股份有限公司 一种低温共烧陶瓷材料及其制备方法
CN104310980A (zh) * 2014-09-30 2015-01-28 杭州电子科技大学 一种微波介质陶瓷材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KH. A. NEKOUEE: "Sintering behavior and microwave dielectric properties of SiO2–MgO–Al2O3–TiO2 ceramics", 《J MATER SCI: MATER ELECTRON》 *
SONG WU: "Effect of TiO2 Doping on the Structure and Microwave Dielectric Properties of Cordierite Ceramics", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY 》 *
吴松: "堇青石基化合物的结构调控和微波介电性能研究", 《工程科技Ⅰ辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627480A (zh) * 2019-09-01 2019-12-31 桂林理工大学 MgO-Al2O3-GeO2三元体系微波介质材料的制备方法
CN110627480B (zh) * 2019-09-01 2022-07-22 桂林理工大学 MgO-Al2O3-GeO2三元体系微波介质材料的制备方法
CN111662096A (zh) * 2020-05-13 2020-09-15 江苏大学 一种陶瓷电容压力传感器芯片的封接方法
CN111620680A (zh) * 2020-06-04 2020-09-04 山东国瓷功能材料股份有限公司 一种毫米波器件用陶瓷材料及其制备方法与应用
CN112174653A (zh) * 2020-10-23 2021-01-05 厦门松元电子有限公司 一种高Qf低介电常数的微波介质陶瓷材料及其制备方法
CN112250434A (zh) * 2020-10-23 2021-01-22 厦门松元电子有限公司 一种zmat系微波陶瓷材料及其制备方法与应用
CN112266238A (zh) * 2020-10-23 2021-01-26 厦门松元电子有限公司 一种微波器件用的低介电常数陶瓷材料及其制备方法
CN114213115A (zh) * 2022-01-04 2022-03-22 浙江嘉康电子股份有限公司 一种微波介质材料及其制备方法
CN115141006A (zh) * 2022-07-04 2022-10-04 杭州电子科技大学 一种微波介质陶瓷材料、复合材料及其制备方法、用途
CN115141006B (zh) * 2022-07-04 2023-02-28 杭州电子科技大学 一种微波介质陶瓷材料、复合材料及其制备方法、用途

Similar Documents

Publication Publication Date Title
CN110143812A (zh) 一种低介电常数低温共烧陶瓷材料及制备方法
CN104310980B (zh) 一种微波介质陶瓷材料及其制备方法
CN105819846A (zh) 一种堇青石型微波介质陶瓷材料及其制备方法
CN105000877A (zh) 一种高品质因数温度稳定型微波介质材料及其制备方法
CN109928753A (zh) 一种低介电常数硅基微波介质陶瓷材料及其制备方法
CN114349493B (zh) 一种铜离子掺杂硅酸钙微波介质陶瓷及其制备方法
CN103613369A (zh) 一种硅酸盐低温共烧陶瓷基板材料及其制备方法
CN102659399A (zh) 一种微波介质陶瓷及其制备方法
CN107032774A (zh) 高致密化低热膨胀陶瓷制备方法
CN104860672A (zh) 一种高介微波陶瓷介质材料及其制备方法
CN110183227A (zh) 一种Li2MoO4-Mg2SiO4基复合陶瓷微波材料及其制备方法
CN105347781B (zh) 一种陶瓷材料及其制备方法
CN105254293A (zh) 一种微波介质陶瓷材料及其制备方法
CN102153342B (zh) 一种复合掺杂改性的Y2Ti2O7微波介质陶瓷材料
CN109942295A (zh) 一种用作5g通讯器件的微波介质陶瓷材料及制备方法
CN106007707B (zh) Mg-Nb掺杂钛酸铋微波介质陶瓷及其制备方法
CN111908897B (zh) MgO基微波陶瓷介质材料及其制备方法
CN102295457B (zh) 一种低损耗的Sm2O3-TiO2系微波介质陶瓷及其制备方法
CN105693220A (zh) 一种正温度系数硅酸盐微波介质陶瓷材料及其制备方法
CN107555986A (zh) 一种低损耗岩盐矿结构微波介质陶瓷及制备方法
CN102219501A (zh) 一种锂基低损耗温度稳定型微波介质陶瓷材料及其制备方法
CN111960821B (zh) 一种微波介质陶瓷材料及其制备方法和应用
CN102617141A (zh) 中温烧结微波介质陶瓷
CN106966722A (zh) 一种低温烧结高品质因数铌酸镧系微波介质陶瓷
CN102765933B (zh) 一种高Q×f值微波介质陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190820

RJ01 Rejection of invention patent application after publication