CN1101259C - 以铂或银为主要成分的载带双金属的催化剂,它的制备方法及其在电化学电池中的应用 - Google Patents

以铂或银为主要成分的载带双金属的催化剂,它的制备方法及其在电化学电池中的应用 Download PDF

Info

Publication number
CN1101259C
CN1101259C CN99103381A CN99103381A CN1101259C CN 1101259 C CN1101259 C CN 1101259C CN 99103381 A CN99103381 A CN 99103381A CN 99103381 A CN99103381 A CN 99103381A CN 1101259 C CN1101259 C CN 1101259C
Authority
CN
China
Prior art keywords
metal
platinum
silver
catalyst
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN99103381A
Other languages
English (en)
Other versions
CN1232719A (zh
Inventor
F·安多尔法托
S·米尔冲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Elf Atochem SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem SA filed Critical Elf Atochem SA
Publication of CN1232719A publication Critical patent/CN1232719A/zh
Application granted granted Critical
Publication of CN1101259C publication Critical patent/CN1101259C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • B01J35/77Compounds characterised by their crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明涉及稳定的双金属催化剂,该催化剂含有一种导电载体与一种金属沉积物,该沉积物由第一种金属M1和第二种金属M2组成,第一种金属选自铂与银,而第二种金属不同于第一种金属,它选自铂、银、金、钌、铱、铑、锇。本发明还涉及制备这种催化剂的方法。

Description

以铂或银为主要成分的载带双金属的催化剂, 它的制备方法及其在电化学电池中的应用
本发明涉及一种用于电化学电池电极的以铂或银为主要成分的稳定载带双金属的催化剂。
更确切地,本发明涉及一种用于膜电解槽电极与氧还原阴极电解槽电极的以铂或银为主要成分的稳定载带双金属的催化剂,它们通过电解碱金属氯化物(NaCl、KCl)水溶液生产碱金属氢氧化物与氯气。
这样一种电解槽一般由阳离子交换膜构成,其膜将槽分成阳极室与至少一个放所述阴极的阴极室,所述的室由含有氧的气体加料。
在这样一些采用氧还原阴极的电解方法中阳极与阴极的反应是:
在阳极  
在阴极  
为了加速在阴极进行反应与降低以绝对值计反应过电压,使用一般沉积在导电载体上如铂、银、金之类的贵金属催化剂,所述导电载体尤其如具有大比表面的含碳材料或金属基体。
优选地,使用铂或银,更优选地是铂,尽管这种金属是很费钱的金属,但因为正是它具有以绝对值计最低的阴极过电压值。
本申请人观察到,特别是在如上述电解槽停止使用期间,铂或银微粒附聚在已使用的载体上。这样导致催化剂的“活性”比表面降低,其性能出现负面变化。尤其观察到电解槽电压升高,导致能量消耗的增加。
当由载带在碳上铂微粒构成的催化剂与碳酸钾接触时,Tomantscheger等人(能源杂志(J.Power Sources)1992,第39卷,第1期,第21-41页)观察到所述铂微粒大量附聚。在80℃与碳酸钾接触48小时后Pt微粒直径是50-200埃。
Pataki等人(电化学学会会议录(Electrochemical Soc.Meet.),多伦多,安大略省,1985年5月12-17日。Ext.Abstr.第659期924-925页)表明,用一氧化碳(CO)预处理由碳上载带铂微粒构成的催化剂时,观察到当如前所述让所述催化剂与碳酸钾接触时,所述的微粒附聚不多。
本申请人现在发现,当制备所述催化剂时,在该载体上同时沉积第一种金属M1和第二种金属M2,第一种金属选自铂与银,而第二种金属不同于第一种金属,它选自铂、银、金、钌、铱、铑、锇,有可能降低,甚至抑制已载带催化剂中铂或银微粒的附聚。
因此,本发明的目的是一种稳定的双金属催化剂,该催化剂含有导电载体与金属沉积物,而金属沉积物由第一种金属M1和第二种金属M2组成,第一种金属选自铂与银,而第二种金属不同于第一种金属,它选自铂、银、金、钌、铱、铑、锇。
优选地,M2是铂、银或钌。
根据本发明,金属沉积物中金属M1与M2的M1/M2质量比至少等于1,优选地是1-20。
根据本发明,应使用如石墨、炉黑、炭黑、碳粉之类的含碳材料作为导电载体,其比表面至少等于50米2/克,优选地是100-600米2/克。这些含碳材料可以预先进行处理,尤其在其含碳材料表面上生成官能团。
作为说明这样一些含碳载体,可列举标号TIMCAL HSAG-300石墨,其比表面为360米2/克,Sibunit5,它的比表面为360米2/克的碳、Carbone VULCANXC-72R,它是炉黑,其比表面是300米2/克。
可以根据一种下述方法对还原性金属盐混合物进行共还原制备本发明的双金属催化剂:该方法是用第一种金属M1金属盐溶液和第二种金属M2金属盐溶液在溶剂介质中同时浸渍该导电载体,所述的第一种金属选自铂与银,而所述的第二种金属不同于第一种金属,它选自铂、银、金、钌、铱、铑、锇;在搅拌下,在惰性气体鼓泡下,由金属M1与M2金属盐溶液与含碳载体组成的悬浮液缓慢蒸发至干;在温度60-80℃、大气压下,然后在温度90-110℃、减压下干燥所得到的粉末;在氢气流中,按照温升速度为每分钟0.2-1.5℃,优选地是每分钟0.2-1℃达到的温度300-600℃下处理所得到的干燥粉末,然后停止加热,或将达到的温度保持至多等于20小时,优选地是2-16小时。
优选地,使用金属M1与M2盐的醇溶液或稀醇溶液。优选的醇是乙醇。所述溶液中金属M1与M2盐的重量浓度可以变化很宽。这些浓度可以是从每升几克盐至几十克盐。这些浓度是如此计算的,当制备所述的含有金属M1与M2盐的溶液时,得到同时沉积在载体上金属M1与M2的M1/M2质量比至少等于1,优选地是1-20。
所述溶液混合物制备后,然后将含碳载体加入所述的混合物中、按照每克载体至少10毫升溶剂加入如苯、甲苯之类的溶剂,然后在搅拌与在氮气鼓泡下,得到的悬浮液在室温下保持几天。这样能够蒸去溶剂,金属盐可完美地浸渍载体。
然后,首先,在温度60-80℃、大气压下,优选地是约70℃,然后在温度90-110℃、减压下,优选地是约100℃干燥所得到的粉末。
在这个阶段,载体用M1盐与M2盐浸渍。然后在氢气流下还原阳离子。
试验了如此得到的本发明双金属催化剂的稳定性。为此,在氧气流下,在温度60-90℃的碱性溶液中制悬浮液几小时,甚至几天。
在处理前后采用X射线衍射分析跟踪M1微粒尺寸与由M1与M2构成的金属沉积物的变化。
这种分析方法能够观察可得到稳定的载带双金属的催化剂。
事实上,当金属M1与不同于金属M1的金属M2微粒同时沉积在载体上时,金属M1微粒不再附聚。
本发明稳定的载带双金属的催化剂可以用于电化学电池。
具体地,这些催化剂可以用于制造氧还原阴极电解槽的电极。
本发明以铂或银为主要成分的双金属催化剂的优点是,每单位催化剂质量的定义为还原电流的质量活度保持不变,或催化剂的比活度保持不变,即每单位活性表面的还原电流不变。
下述实施例说明本发明。
实施例
催化剂的制备:
使用的材料:
含碳载体
Carbone VULCAN XC-72R是参比载体。涉及到炉黑,其比表面约300米2/克,微孔为120米2/克,而中孔为88米2/克。
金属
使用的两种金属是铂与银。铂为每升85.5克Pt的H2PtCl6含水溶液。银是AgNO3(固体)。
金属盐稀醇溶液或醇溶液所使用的醇
无水乙醇(99.85%)。
浸渍溶剂
甲苯(99.90%)。
根据本发明制备催化剂:
使用在载体上同时沉积金属M1与金属M2质量含量分别等于10%所需要的金属盐量,在VULCAN(未氧化)上进行这种制备。
为了制备铂催化剂(催化剂P),往烧杯倒入适量的H2PtCl6在乙醇中的含水溶液(82.5Pt/L)。对于银催化剂(催化剂A),称取适量的固体AgNO3,将硝酸银溶入乙醇中。对于催化剂Ag+Pt(催化剂AP),合并两种金属盐溶液,得到Pt/Ag质量比等于1。
然后加入4克载体VULCAN与40毫升甲苯。这种悬浮液在鼓氮气下在室温搅拌10天,这样导致溶剂蒸发。如此得到的粉末在85℃空气下干燥24小时,然后在100℃减压下干燥24小时。
在这个阶段,催化剂呈铂盐II和/或银盐I在含碳载体上的沉积物状。这些阳离子再根据下述方案用氢气流进行还原。
该试样以每分钟平均升温1℃的速度进行加热直到500℃。然后保持这个温度达16小时。
根据上述方法制备的催化剂可用BRUKER AXS D5000衍射仪在大角度(粉末法)的X射线衍射表征。该衍射仪配置了铜阳极管与采用珀尔帖效应冷却的Si(Li)固体探测器。
我们使用衍射图评价沉积在含碳载体上金属晶体的平均尺寸。在我们的情况下基于金属(铂与银)的线(111)与(220),测定在半高度处的宽度β。在用Pseudo-Voig函数建立所研究线的模型之后,在扣除连续本底,并考虑可能覆盖所测定峰的峰(PC的Profile/diffrac-At软件)之后得到上述在半高度处的宽度。注意用薄层(≈220微米)测定,以及校正所测定的宽度,因为用衍射仪测定可带来固有增宽作用。这时,借助下述Scherrer关系式在与所涉及结晶学平面垂直的方向得到平均晶体尺寸D(纳米): D = 0.9 × λ βc × cos θ
其中βc=(β2-βo2)1/2
    λ=0.15418纳米;
    β(弧度):在所分析金属线半高度处的宽度
    βo(弧度):接近所分析金属线、结晶非常好的标准样的线在半高度处的宽度,
    θ:布拉格角度。
这种测定是一个比较值。它用于估计这种处理对平均晶体尺寸的影响。由于本底噪声与基线以及在基线处峰宽度(积分边界)估算的误差,这种测定误差可达到约10-20%。
为了试验催化剂的稳定性,使用了下述设备。
六个串连PFA(聚氟代烷氧基聚合物)反应器平行供氧。每个反应器中装入90毫升50%氢氧化钠与0.5克催化剂,加入磁棒。然后将这些反应器放入油浴中。每个反应器通氧气。采用油浴与接触温度计将温度控制在90℃氧气流量高于鼓4泡/秒。处理时间100小时。在处理结束时,这些试样用亲水化PTFE过滤器在Millipores系统中在抽吸下(水泵)进行过滤。它们每次用10-20毫升软化水洗涤3次。然后在85℃烘箱中干燥48小时,再在减压下烘箱中在100℃干燥24小时。
催化剂A、P(非本发明)与AP(本发明)进行了试验:
-A:仅以银为主要成分的催化剂,10%沉积在VULCAN的银,
-P:仅以铂为主要成分的催化剂,10%沉积在VULCAN的铂,
-AP:本发明的催化剂,含有同时沉积在VULCAN的10%铂与10%银。
在90℃与50%氢氧化钠接触100小时之前或之后,采用X射线衍射测定的特征列如下。
催化剂P(非本发明)
处理之前的结晶粒种:
Pt:线(111)IR*=100  :D=5纳米
线(220)IR=25      :  D=4.5纳米
[IR*表示线的强度]
基本晶胞尺寸 a=3.9213埃
处理之后结晶粒种:
Pt:线(111)IR=100  :D=12纳米
线(220)IR=25  :  D=9.5纳米
基本晶胞尺寸a=3.9213埃
观察到Pt结晶粒种大量附聚。
催化剂A(非本发明)
处理之前的结晶粒种:
Ag:线(111)IR*=100  :D=80纳米
线(220)IR=25       :  D=25纳米
处理之后结晶粒种:
Ag:线(111)IR=100   :D=120纳米
线(220)IR=25       : D=50纳米
观察到银结晶粒种大量附聚。
催化剂AP(本发明)
处理之前的结晶粒种:
高Pt含量合金:具有约11%银原子的Pt/Ag固熔体:
线(111):  D=4.5纳米
线(220):  D=4纳米(a=3.9410埃)高Ag含量合金:具有约23%铂原子的Ag-Pt固熔体:
线(111):  D=12.5纳米
线(220):  D=7.9纳米
在VULCAN炭上,有两种结晶粒种(以Pt-Ag与Ag-Pt固熔体),它们不同之处在于它们的Ag与Pt各自含量;已知在VULCAN含碳载体上,Pt/Ag质量比等于1(10%(重量)铂、10%(重量)银)。
处理之后结晶粒种:
Pt-Ag固熔体:线(111)  :D=4.9纳米
           线(220)  : D=3.8纳米
Ag-Pt固熔体:线(111)  :D=12.7纳米
           线(220)  : D=7.2纳米
未观察到任何附聚。
在碱性介质中催化剂对氧还原反应活性的评价:
用于活性测定的电极制备
将催化剂粉末、超纯净水与乙醇混合物制备成悬浮液。这种悬浮液采用超声波搅拌均化2小时。往这种混合物中加入一种PTFE悬浮液,最后的混合物再用超声波均化。
玻璃状碳接头预先用含金刚石的浆体抛光(低于1微米),接着相继用丙酮、乙醇与超纯净水超声波洗涤15分钟。然后在烘箱中干燥。
这时用微注射器将10微升最后悬浮液加到玻璃碳接头。在室温下干燥一夜,然后在200℃炉中干燥15分钟以便保证沉积物的机械含量。这样得到的电极安装在图1所示的电解槽中。
该电解槽由其上安装预先制备接头(2)的旋转盘电极(1)、与参比电极(4)连接的Luggin毛细管(3)、铂反电极(5)与供氧洗涤瓶(6)组成。旋转电极(1)、参比电极(4)与反电极(5)与电极电位计(图1未绘出)相连。
活性测定
在氢气吸收与解吸范围内,在氮气氛下,在1MH2SO4(超纯)介质中,由环形伏安法曲线轨迹评价电极中铂活性表面。将电极插入装有由超纯MERCK氢氧化钠与超纯水制备的1摩尔/升氢氧化钠溶液的类似电解槽中。电解槽的温度固定在25℃。在试验开始前让氧气在氢氧化钠溶液中鼓泡几分钟,以便使氢氧化钠被溶解的氧饱和。然后在电位+0.1V(Hg/HgO)至-0.6V(Hg/HgO)之间,对于旋转电极的不同旋转速度(500、1000、2000与4000转/分钟)以1毫伏/秒进行扫描,对于电极的不同旋转速度,对于电位为-60毫伏(Hg/HgO),记录到所观察的电流。由这些电流值与催化剂活性表面值,利用Levich方程式与稳定态时Fick定律,有可能测定出电位为-60毫伏(Hg-HgO)时的iK,即与催化剂固有活性相关的电流密度。(“电化学:原理、方法与应用”,A.J.Bard, C.R.Faulkner,Eds MASSON,1983,第8章)。
结果
如此评价了催化剂P。测定活性表面为14.6厘米2,还测定了电位为-60毫伏(Hg-HgO)时的iK为0.76毫安,即比活度为52微安/厘米2
同样评价了催化剂AP。它的活性表面是15.9厘米2,ik为0.87毫安,即比活度为55微安/厘米2

Claims (14)

1、稳定的双金属催化剂,该催化剂含有一种含碳材料导电载体与一种金属沉积物,该沉积物由第一种金属M1和第二种金属M2组成,第一种金属选自铂与银,而第二种金属不同于第一种金属,当M1是银时,它选自铂、金、钌、铱、铑、锇;当M1是铂时,它选自银、金、铱和铑,金属M1与M2的M1/M2质量比至少等于1。
2、根据权利要求1所述的催化剂,其特征在于含碳材料的比表面至少为50米2/克。
3、根据权利要求2所述的催化剂,其特征在于含碳材料的比表面为100-600米2/克。
4、根据权利要求1-3中任一权利要求所述的催化剂,其特征在于M1是铂,而M2是银。
5、根据权利要求1-3中任一权利要求所述的催化剂,其特征在于M1是银,而M2是铂。
6、根据权利要求1-5中任一权利要求所述的催化剂,其特征在于金属沉积物中金属M1与M2的M1/M2质量比是1-20。
7、根据权利要求1-6中任一权利要求所述双金属催化剂的制备方法,其特征在于该方法是用第一种金属M1金属盐溶液和第二种金属M2金属盐溶液在溶剂介质中同时浸渍该导电载体,所述的第一种金属选自铂与银,而所述的第二种金属不同于第一种金属,它选自铂、银、金、钌、铱、铑、锇;在搅拌下,在惰性气体鼓泡下,由金属M1与M2金属盐溶液与含碳载体组成的悬浮液缓慢蒸发至干;在温度60-80℃、大气压下,然后在温度90-110℃、减压下干燥所得到的粉末;在氢气流中,按照温升速度为每分钟0.2-1.5℃达到的温度300-600℃下处理所得到的干燥粉末,然后停止加热,或将达到的温度保持至多等于20小时。
8、根据权利要求7所述的方法,其特征在于将达到的温度保持2-16小时。
9、根据权利要求7所述的方法,其特征在于金属M1与M2的金属盐溶液是醇溶液或稀醇溶液。
10、根据权利要求7-9中任一权利要求所述的方法,其特征在于金属M1与M2的金属盐溶液的重量浓度是这样的,金属M1与M2同时沉积在该载体上时金属M1与M2的质量比M1/M2等于1。
11、根据权利要求10所述的方法,其特征在于金属M1与M2的质量比M1/M2是1-20。
12、根据权利要求7所述的方法,其特征在于浸渍溶剂是甲苯。
13、根据权利要求1-6中任一权利要求所述催化剂应用于制备电化学电解槽的电极。
14、根据权利要求13所述的应用,其特征在于电化学电解槽是一种氧还原阴极电解槽。
CN99103381A 1998-03-03 1999-03-03 以铂或银为主要成分的载带双金属的催化剂,它的制备方法及其在电化学电池中的应用 Expired - Fee Related CN1101259C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9802555A FR2775622A1 (fr) 1998-03-03 1998-03-03 Catalyseur bimetallique supporte a base de platine ou d'argent, son procede de fabrication et son utilisation pour les cellules electrochimiques
FR98/02555 1998-03-03

Publications (2)

Publication Number Publication Date
CN1232719A CN1232719A (zh) 1999-10-27
CN1101259C true CN1101259C (zh) 2003-02-12

Family

ID=9523582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN99103381A Expired - Fee Related CN1101259C (zh) 1998-03-03 1999-03-03 以铂或银为主要成分的载带双金属的催化剂,它的制备方法及其在电化学电池中的应用

Country Status (11)

Country Link
US (1) US6194338B1 (zh)
EP (1) EP0940867B1 (zh)
JP (1) JP3101261B2 (zh)
KR (1) KR100358550B1 (zh)
CN (1) CN1101259C (zh)
AT (1) ATE346386T1 (zh)
CA (1) CA2262828C (zh)
DE (1) DE69934038T2 (zh)
ES (1) ES2277415T3 (zh)
FR (1) FR2775622A1 (zh)
TW (1) TW491730B (zh)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576214B2 (en) * 2000-12-08 2003-06-10 Hydrocarbon Technologies, Inc. Catalytic direct production of hydrogen peroxide from hydrogen and oxygen feeds
US6558951B1 (en) * 1999-02-11 2003-05-06 3M Innovative Properties Company Maturation of dendritic cells with immune response modifying compounds
US6514948B1 (en) * 1999-07-02 2003-02-04 The Regents Of The University Of California Method for enhancing an immune response
PT1078959E (pt) * 1999-08-27 2002-08-30 Degussa Negro de fumo metodo para a sua producao e sua utilizacao
US6586650B2 (en) * 2000-07-21 2003-07-01 Exxonmobil Research And Engineering Company Ring opening with group VIII metal catalysts supported on modified substrate
US6670301B2 (en) * 2001-03-19 2003-12-30 Brookhaven Science Associates Llc Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation
PT1719511E (pt) * 2001-11-16 2009-03-06 Coley Pharm Group Inc N-[4-(4-amino-2-etil-1h-imidazo[4,5-c]quinolina-1- -il)-butil]-metano-sulfonamida, uma composição farmacêutica que a contém e sua utilização
CA2365732A1 (en) * 2001-12-20 2003-06-20 Ibm Canada Limited-Ibm Canada Limitee Testing measurements
US6746597B2 (en) * 2002-01-31 2004-06-08 Hydrocarbon Technologies, Inc. Supported noble metal nanometer catalyst particles containing controlled (111) crystal face exposure
HUE025145T2 (en) * 2002-02-22 2016-01-28 Meda Ab A method for reducing and treating immunosuppression induced by ultraviolet B radiation
NZ538812A (en) 2002-08-15 2009-02-28 3M Innovative Properties Co Immunostimulatory compositions and methods of stimulating an immune response
AU2003287316A1 (en) * 2002-12-11 2004-06-30 3M Innovative Properties Company Assays relating to toll-like receptor activity
WO2004053057A2 (en) * 2002-12-11 2004-06-24 3M Innovative Properties Company Gene expression systems and recombinant cell lines
US7067103B2 (en) 2003-03-28 2006-06-27 Headwaters Nanokinetix, Inc. Direct hydrogen peroxide production using staged hydrogen addition
US7569508B2 (en) * 2004-11-17 2009-08-04 Headwaters Technology Innovation, Llc Reforming nanocatalysts and method of making and using such catalysts
US7011807B2 (en) * 2003-07-14 2006-03-14 Headwaters Nanokinetix, Inc. Supported catalysts having a controlled coordination structure and methods for preparing such catalysts
US7045479B2 (en) * 2003-07-14 2006-05-16 Headwaters Nanokinetix, Inc. Intermediate precursor compositions used to make supported catalysts having a controlled coordination structure and methods for preparing such compositions
US7655137B2 (en) 2003-07-14 2010-02-02 Headwaters Technology Innovation, Llc Reforming catalysts having a controlled coordination structure and methods for preparing such compositions
US7144565B2 (en) * 2003-07-29 2006-12-05 Headwaters Nanokinetix, Inc. Process for direct catalytic hydrogen peroxide production
JP2007535787A (ja) * 2004-03-15 2007-12-06 キャボット コーポレイション 修飾炭素生成物、燃料電池および類似の装置における修飾炭素生成物の使用、および修飾炭素生成物に関する方法
KR100872952B1 (ko) * 2004-05-31 2008-12-08 닛산 지도우샤 가부시키가이샤 광 전기 화학 전지
WO2006083326A2 (en) * 2004-08-07 2006-08-10 Cabot Corporation Gas dispersion manufacture of nanoparticulates and nanoparticulate-containing products and processing thereof
US20060083694A1 (en) 2004-08-07 2006-04-20 Cabot Corporation Multi-component particles comprising inorganic nanoparticles distributed in an organic matrix and processes for making and using same
JP4341838B2 (ja) * 2004-10-01 2009-10-14 ペルメレック電極株式会社 電解用陰極
US7632775B2 (en) * 2004-11-17 2009-12-15 Headwaters Technology Innovation, Llc Multicomponent nanoparticles formed using a dispersing agent
US7691780B2 (en) * 2004-12-22 2010-04-06 Brookhaven Science Associates, Llc Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof
US7855021B2 (en) * 2004-12-22 2010-12-21 Brookhaven Science Associates, Llc Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof
US9005331B2 (en) 2004-12-22 2015-04-14 Brookhaven Science Associates, Llc Platinum-coated non-noble metal-noble metal core-shell electrocatalysts
US7449423B2 (en) * 2005-01-14 2008-11-11 Headwaters Technology Innovation, Llc Heat treatment of anchored nanocatalysts in a non-zero oxidation state and catalysts made by such method
US7856992B2 (en) * 2005-02-09 2010-12-28 Headwaters Technology Innovation, Llc Tobacco catalyst and methods for reducing the amount of undesirable small molecules in tobacco smoke
US7803201B2 (en) * 2005-02-09 2010-09-28 Headwaters Technology Innovation, Llc Organically complexed nanocatalysts for improving combustion properties of fuels and fuel compositions incorporating such catalysts
JP2006253147A (ja) * 2005-03-09 2006-09-21 Samsung Sdi Co Ltd 陽イオン交換膜燃料電池用の電極触媒の製造方法
US7357903B2 (en) * 2005-04-12 2008-04-15 Headwaters Heavy Oil, Llc Method for reducing NOx during combustion of coal in a burner
US7045481B1 (en) 2005-04-12 2006-05-16 Headwaters Nanokinetix, Inc. Nanocatalyst anchored onto acid functionalized solid support and methods of making and using same
US7326399B2 (en) * 2005-04-15 2008-02-05 Headwaters Technology Innovation, Llc Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same
US20060258875A1 (en) * 2005-05-10 2006-11-16 Clementine Reyes Methods for manufacturing supported nanocatalysts and methods for using supported nanocatalysts
US7396795B2 (en) * 2005-08-31 2008-07-08 Headwaters Technology Innovation, Llc Low temperature preparation of supported nanoparticle catalysts having increased dispersion
US7758660B2 (en) * 2006-02-09 2010-07-20 Headwaters Technology Innovation, Llc Crystalline nanocatalysts for improving combustion properties of fuels and fuel compositions incorporating such catalysts
US7718710B2 (en) * 2006-03-17 2010-05-18 Headwaters Technology Innovation, Llc Stable concentrated metal colloids and methods of making same
US7632774B2 (en) * 2006-03-30 2009-12-15 Headwaters Technology Innovation, Llc Method for manufacturing supported nanocatalysts having an acid-functionalized support
US7541309B2 (en) * 2006-05-16 2009-06-02 Headwaters Technology Innovation, Llc Reforming nanocatalysts and methods of making and using such catalysts
US7601668B2 (en) * 2006-09-29 2009-10-13 Headwaters Technology Innovation, Llc Methods for manufacturing bi-metallic catalysts having a controlled crystal face exposure
US7534741B2 (en) * 2007-02-09 2009-05-19 Headwaters Technology Innovation, Llc Supported nanocatalyst particles manufactured by heating complexed catalyst atoms
KR100844752B1 (ko) 2007-06-26 2008-07-07 현대자동차주식회사 고체 전해질 연료전지용 혼합 전극 촉매 소재의 제조방법
DE102007044171A1 (de) * 2007-09-15 2009-03-19 Bayer Materialscience Ag Verfahren zur Herstellung von Graphitelektroden für elektrolytische Prozesse
DE102008039072A1 (de) * 2008-08-21 2010-02-25 Bayer Materialscience Ag Elektrodenmaterial, Elektrode und ein Verfahren zur Chlorwasserstoffelektrolyse
US10038198B2 (en) 2010-02-12 2018-07-31 Audi Ag Platinum nanoparticles having hollow skeletal structures and methods of making
US8921260B2 (en) 2010-02-12 2014-12-30 Ballard Power Systems Inc. Platinum monolayer on hollow, porous nanoparticles with high surface areas and method of making
US9115621B2 (en) * 2011-03-04 2015-08-25 Toyota Jidosha Kabushiki Kaisha Metal particles, exhaust gas purifying catalyst comprising metal particles, and methods for producing them
EP2749352B1 (en) 2011-08-23 2019-11-06 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst, and method for producing same
CN104870087A (zh) * 2012-11-09 2015-08-26 巴斯夫欧洲公司 生产碳负载镍-钴氧化物催化剂的方法及其在可再充电电化学金属-氧电池中的用途
WO2014088538A1 (en) 2012-12-03 2014-06-12 United Technologies Corporation Core-shell catalyst and method for palladium-based core particle
CN105603465B (zh) * 2016-01-13 2017-08-08 武汉大学 一种纳米多孔银基金属催化剂的电化学制备方法
WO2019186480A1 (en) * 2018-03-29 2019-10-03 Tata Chemicals Limited An electrochemical catalyst composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1077128A (en) * 1963-07-17 1967-07-26 Engelhard Ind Inc Improvements in or relating to fuel cells
US4115322A (en) * 1976-01-07 1978-09-19 Hydro-Quebec Method for obtaining high activity electrocatalysts on pyrolytic graphite
EP0050300A2 (en) * 1980-10-14 1982-04-28 Hitachi, Ltd. Fuel cell
EP0715889A2 (de) * 1994-12-08 1996-06-12 Degussa Aktiengesellschaft Schalenkatalysatoren, Verfahren zu ihrer Herstellung und ihre Verwendung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1102725A (en) * 1965-05-28 1968-02-07 Exxon Research Engineering Co Carbon electrode and method for preparation thereof
US4293396A (en) * 1979-09-27 1981-10-06 Prototech Company Thin carbon-cloth-based electrocatalytic gas diffusion electrodes, and electrochemical cells comprising the same
JPS57152479A (en) * 1981-03-16 1982-09-20 Toyo Soda Mfg Co Ltd Production of gas diffusion electrode
JPS5869786A (ja) * 1981-10-19 1983-04-26 花王株式会社 多孔性導電性焼結体およびその製造方法
JPS60211774A (ja) * 1984-04-03 1985-10-24 Hitachi Ltd 撥水性触媒電極とその製造方法
FR2628417B1 (fr) * 1988-03-08 1990-07-27 Rhone Poulenc Sante Procede de preparation d'alcools insatures
US5051156A (en) * 1990-01-31 1991-09-24 Intevep, S.A. Electrocatalyst for the oxidation of methane and an electrocatalytic process
GB9507012D0 (en) * 1995-04-05 1995-05-31 Johnson Matthey Plc Improved electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1077128A (en) * 1963-07-17 1967-07-26 Engelhard Ind Inc Improvements in or relating to fuel cells
US4115322A (en) * 1976-01-07 1978-09-19 Hydro-Quebec Method for obtaining high activity electrocatalysts on pyrolytic graphite
EP0050300A2 (en) * 1980-10-14 1982-04-28 Hitachi, Ltd. Fuel cell
EP0715889A2 (de) * 1994-12-08 1996-06-12 Degussa Aktiengesellschaft Schalenkatalysatoren, Verfahren zu ihrer Herstellung und ihre Verwendung

Also Published As

Publication number Publication date
EP0940867B1 (fr) 2006-11-22
CA2262828A1 (fr) 1999-09-03
ES2277415T3 (es) 2007-07-01
US6194338B1 (en) 2001-02-27
KR100358550B1 (ko) 2002-10-25
KR20000034808A (ko) 2000-06-26
FR2775622A1 (fr) 1999-09-03
JPH11310893A (ja) 1999-11-09
CN1232719A (zh) 1999-10-27
EP0940867A1 (fr) 1999-09-08
DE69934038D1 (de) 2007-01-04
TW491730B (en) 2002-06-21
DE69934038T2 (de) 2007-06-21
JP3101261B2 (ja) 2000-10-23
CA2262828C (fr) 2003-05-27
ATE346386T1 (de) 2006-12-15

Similar Documents

Publication Publication Date Title
CN1101259C (zh) 以铂或银为主要成分的载带双金属的催化剂,它的制备方法及其在电化学电池中的应用
Swesi et al. Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction
JP5638433B2 (ja) 電解装置および冷蔵庫
JP6001793B2 (ja) 燃料電池用触媒の製造方法
JP2022169613A (ja) 酸化スズ上に担持された貴金属酸化物を含む電極触媒組成物
FR2484865A1 (fr) Catalyseur en alliage metal noble-chrome
JP6541373B2 (ja) PdRu合金電極材料およびその製造方法
US20160289849A1 (en) Bifunctional water splitting catalysts and associated methods
JP4223958B2 (ja) 改良されたロジウム電気触媒の製造方法
CN110743594B (zh) 氮掺杂碳负载锡和氧化锡的纳米复合材料及其制备和应用
WO2021262323A2 (en) Electrocatalysts and electrolyzers
CN114040996A (zh) 电解水的方法和装置、以及确定电解水的驱动电位的方法
CN112206797A (zh) Cu(I)@Ti3C2TxMXene催化材料及电极与在硝酸根还原中的应用
EP0444138B1 (en) Electrocatalyst, methods for preparing it, electrodes prepared therefrom and methods for using them
Spătaru et al. Electrochemical Deposition of Pt–RuO x⋅ n H 2 O Composites on Conductive Diamond and Its Application to Methanol Oxidation in Acidic Media
Touny et al. Enhanced methanol oxidation on nanoporous nickel phosphate modified platinum electrode in alkaline solution
JP5823587B2 (ja) 電解装置、冷蔵庫、電解装置の運転方法及び冷蔵庫の運転方法
Li et al. Development of polyoxometalate-based Ag-H 2 biim inorganic–organic hybrid compounds functionalized for the acid electrocatalytic hydrogen evolution reaction
Novomlinskiy et al. Platinum electrocatalysts deposited onto composite carbon black–metal oxide support
CN114068950B (zh) 基于多孔碳支撑的超细亚纳米金复合材料电催化剂及其制备方法和应用
Awad et al. Electroactivity regeneration of sulfur-poisoned platinum nanoparticle-modified glassy carbon electrode at low anodic potentials
Majidi et al. Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
Rahimnejad et al. Organic template-free synthesis of Ni-ZSM-5 nanozeolite: A novel cata-lyst for formaldehyde electrooxidation onto modified Ni-ZSM-5/CPE
ZOU et al. Electroactivities of Pd/Fe 3 O 4-C catalysts for electro-oxidation of methanol, ethanol and propanol
CN113930801B (zh) 一种双金属电解水催化剂及其制备方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030212