CN110042467A - 化合物锗酸锂铷和锗酸锂铷非线性光学晶体及制备方法和用途 - Google Patents

化合物锗酸锂铷和锗酸锂铷非线性光学晶体及制备方法和用途 Download PDF

Info

Publication number
CN110042467A
CN110042467A CN201910429376.7A CN201910429376A CN110042467A CN 110042467 A CN110042467 A CN 110042467A CN 201910429376 A CN201910429376 A CN 201910429376A CN 110042467 A CN110042467 A CN 110042467A
Authority
CN
China
Prior art keywords
rubidium
lithium
germanium
compound
germanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910429376.7A
Other languages
English (en)
Other versions
CN110042467B (zh
Inventor
俞洪伟
徐晶晶
吴红萍
胡章贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201910429376.7A priority Critical patent/CN110042467B/zh
Publication of CN110042467A publication Critical patent/CN110042467A/zh
Application granted granted Critical
Publication of CN110042467B publication Critical patent/CN110042467B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates

Abstract

化合物锗酸锂铷及锗酸锂铷非线性光学晶体的制备方法和用途,化合物锗酸锂铷及锗酸锂铷非线性光学晶体化学式均为LiRbGe2O5,晶体属正交晶系,空间群Pca21,晶胞参数为 分子量317.59,其粉末倍频效应约为1倍KDP(KH2PO4)。化合物锗酸锂铷采用固相反应法合成,锗酸锂铷非线性光学晶体采用高温熔液法或者提拉法生长,该锗酸锂铷非线性光学晶体机械硬度大,易于切割、抛光加工和保存,在制备倍频发生器、上频率转换器、下频率转换器或光参量振荡器等非线性光学器件中得到广泛应用。

Description

化合物锗酸锂铷和锗酸锂铷非线性光学晶体及制备方法和 用途
技术领域
本发明涉及化学式为LiRbGe2O5的化合物锗酸锂铷及锗酸锂铷非线性光学晶体,晶体的制备方法和利用该晶体制作的非线性光学器件。
背景技术
探索倍频效应大、透过波段宽、光损伤阈值大、物化性能稳定的新型非线性光学晶体,一直是激光变频领域的热点话题。目前主要非线性光学材料有:β-BaB2O4(BBO)晶体、LiB3O5(LBO)晶体、CsB3O5(CBO)晶体、CsLiB6O10(CLBO)晶体和KBe2BO3F2(KBBF)晶体。虽然这些材料的晶体生长技术已日趋成熟,但仍存在着明显的不足之处:如晶体易潮解、生长周期长、层状生长习性严重及价格昂贵等。因此,寻找新的非线性光学晶体材料仍然是一个非常重要而艰巨的工作。为弥补以上非线性光学晶体的不足,各国科学家仍旧在极力关注着各类新型非线性光学晶体的探索和研究,不仅注重晶体的光学性能和机械性能,而且越来越重视晶体的制备特性。
锗酸盐晶体是重要的半导体材料、红外材料,其性能受到广泛的关注,在光学领域、军事探索及激光医疗等领域有较为广泛的应用。由于其带隙较大,激光损伤阈值较高,物化性能稳定,利于获得较强的非线性光学效应,是新型紫外非线性光学晶体的理想选择,而碱金属阳离子(Li)引入到锗酸盐中,没有d-d的电子跃迁,是紫外区域透射的理想选择。因此,碱金属锗酸盐的合成将是设计大倍频效应紫外非线性光学材料的有效手段。
发明内容
本发明目的在于提供化合物锗酸锂铷及锗酸锂铷非线性光学晶体,化学式均为LiRbGe2O5
本发明另一目的在于提供采用固相反应法合成化合物锗酸锂铷及高温熔液法或者提拉法生长锗酸锂铷非线性光学晶体的制备方法;
本发明再一个目的是提供锗酸锂铷非线性光学器件的用途,用于制备倍频发生器、上或下频率转换器或光参量振荡器。
本发明的技术方案如下:
本发明提供的化合物锗酸锂铷,其化学式为LiRbGe2O5;制备过程包括:将含锂化合物、含铷化合物、含锗化合物原料混合均匀,研磨后放入马弗炉中,预烧排除原料中的水分和气体,冷却至室温,取出研磨之后放入马弗炉中煅烧,制得化合物锗酸锂铷;
所述含锂化合物包括有氢氧化锂、氧化锂、锂盐中的至少一种;锂盐包括氯化锂、溴化锂、硝酸锂、草酸锂、碳酸锂、碳酸氢锂、硫酸锂中的至少一种;
所述含铷化合物包括氧化铷、氢氧化铷及铷盐中的至少一种;铷盐包括氯化铷、溴化铷、硝酸铷、草酸铷、碳酸铷、碳酸氢铷、硫酸铷中的至少一种;
所述含锗化合物为氧化锗、氢氧化铷及锗盐;锗盐包括氯化锗、溴化锗、硝酸锗、草酸锗、碳酸锗、碳酸氢锗、硫酸锗中的至少一种;
其采用固相反应法可按下列化学反应式制备锗酸锂铷化合物:
1)Li2CO3+Rb2CO3+4GeO2→2LiRbGe2O5+2CO2
2)4LiNO3+2Rb2CO3+8GeO2→4LiRbGe2O5+4NO2↑+2CO2↑+O2
3)2LiOH+Rb2CO3+4GeO2→2LiRbGe2O5+CO2↑+H2O↑
4)2Li2SO4+2Rb2CO3+8GeO2→4LiRbGe2O5+2CO2↑+2SO2+O2
5)2LiCl+Rb2CO3+4GeO2→2LiRbGe2O5+CO↑+Cl2
6)2LiBr+Rb2CO3+4GeO2→2LiRbGe2O5+CO↑+Br2
7)Li2C2O4+Rb2CO3+4GeO2→2LiRbGe2O5+3CO↑+O2
8)Li2O+Rb2CO3+4GeO2→2LiRbGe2O5+CO2
9)2LiHCO3+Rb2CO3+4GeO2→2LiRbGe2O5+3CO2↑+H2O↑
10)2LiNO3+2RbNO3+4GeO2→2LiRbGe2O5+4NO2↑+O2
11)Li2CO3+2RbNO3+4GeO2→2LiRbGe2O5+CO↑+2NO2↑+O2
12)4LiOH+4RbNO3+8GeO2→4LiRbGe2O5+4NO2↑+2H2O↑+O2
13)Li2SO4+2RbNO3+4GeO2→2LiRbGe2O5+2NO2↑+SO2↑+O2
14)2LiCl+2RbNO3+4GeO2→2LiRbGe2O5+2NO2↑+Cl2
15)2LiBr+2RbNO3+4GeO2→2LiRbGe2O5+2NO2↑+Br2
16)Li2C2O4+2RbNO3+4GeO2→2LiRbGe2O5+2NO2↑+2CO2
17)2Li2O+4RbNO3+8GeO2→4LiRbGe2O5+4NO2↑+O2
18)2LiHCO3+2RbNO3+4GeO2→2LiRbGe2O5+2CO2↑+2NO2↑+H2↑+O2
本发明提供的锗酸锂铷非线性光学晶体,其特征在于该晶体的化学式为LiRbGe2O5,分子量317.59,不具有对称中心,属正交晶系,空间群Pca21,晶胞参数为 其粉末倍频效应约为1倍KDP(KH2PO4)。
本发明提供的锗酸锂铷非线性光学晶体的制备方法,采用高温熔液法或者提拉法生长锗酸锂铷非线性光学晶体,具体操作按下列步骤进行:
a、将化合物锗酸锂铷单相多晶粉末与助熔剂混合均匀,以温度1-30℃/h的升温速率将其加热至温度650-1000℃,恒温5-80小时,得到混合熔液,再降温至温度500-800℃,其中化合物锗酸锂铷单相多晶粉末与助熔剂的摩尔比为1:0-20;
或直接将含锂化合物、含铷化合物和含锗化合物的混合物或含锂化合物、含铷化合物和含锗化合物与助熔剂的混合物,以温度1-30℃/h的升温速率将其加热至温度650-1000℃,恒温5-80小时,得到混合熔液,再降温至温度500-800℃,其中含锂化合物、含铷化合物和含锗化合物与助熔剂的摩尔比为1:1:2:0-20;
所述助熔剂主要有自助熔剂,比如Li2CO3、LiF、LiOH、Li2O、LiCl、RbF、Rb2CO3、Rb2O、RbCl、GeO2等及其他复合助熔剂,比如Rb2CO3-GeO2、Li2CO3-GeO2、Rb2O-GeO2、Li2O-GeO2、RbF-GeO2、RbCl-GeO2、LiCl-GeO2、LiF-GeO2、Li2O-TeO2、Li2CO3-TeO2、LiF-TeO2、Rb2O-TeO2、Rb2CO3-TeO2、RbF-TeO2、GeO2-TeO2、RbF-Li2CO3、Li2O-Rb2CO3、Rb2O-Li2CO3、LiF-Rb2CO3、GeO2-Rb2O-Li2O、GeO2-RbF-LiF、GeO2-RbCl-LiCl、GeO2-TeO2-Li2O或GeO2-TeO2-Rb2O等。
所述化合物锗酸锂铷单相多晶粉末采用固相合成法制备,包括以下步骤:将含锂化合物、含铷化合物、含锗化合物混合采用固相反应法制得所述化合物锗酸锂铷,含锂化合物中元素锂、含铷化合物中元素铷、含锗化合物中元素锗的摩尔比为1:1:2,将含锂化合物、含铷化合物、含锗化合物原料混合均匀,研磨后放入马弗炉中,预烧排除原料中的水分和气体,冷却至室温,取出研磨之后放入马弗炉中煅烧,升温至500-900℃,恒温72小时,冷却至室温,取出经研磨制得化合物锗酸锂铷单相多晶粉末。
b、制备锗酸锂铷籽晶:步骤a得到的混合熔液以温度0.5-10℃/h的速率缓慢降至室温,自发结晶获得锗酸锂铷籽晶;
c、将盛有步骤a制得混合熔液的坩埚置入晶体生长炉中,将步骤b得到的籽晶固定于籽晶杆上,从晶体生长炉顶部下籽晶,先预热籽晶5-60分钟,将籽晶下至接触混合熔液液面或混合熔液中进行回熔,恒温5-60分钟,以温度1-60℃/h的速率降至饱和温度;
d、再以温度0.1-5℃/天的速率缓慢降温,以0-60rpm转速旋转籽晶杆进行晶体的生长,待单晶生长到所需尺度后,将晶体提离混合熔液表面,并以温度1-80℃/h速率降至室温,然后将晶体从炉膛中取出,即可得到锗酸锂铷非线性光学晶体。
所述助熔剂Rb2O-GeO2体系中Rb2O与GeO2的摩尔比为1-3:2-5;Li2O-GeO2体系中Li2O与GeO2摩尔比为1-3:3-6;Rb2CO3-GeO2体系中Rb2CO3与GeO2摩尔比为1-3:2-5;Li2CO3-GeO2体系中Li2CO3与GeO2摩尔比为1-3:3-6;RbF-GeO2体系中RbF与GeO2的摩尔比为1-9:2-5;LiF-GeO2体系中LiF与GeO2的摩尔比为1-10:2-5;RbCl-GeO2体系中RbCl与GeO2的摩尔比为1-5:2-5;LiCl-GeO2体系中LiCl与GeO2的摩尔比为1-6:2-5;LiF-TeO2体系中LiF与TeO2摩尔比为1-10:3-6;RbF-TeO2体系中RbF与TeO2摩尔比为1-9:3-6;Li2O-TeO2体系中Li2O与TeO2摩尔比为1-6:3-6;Rb2O-TeO2体系中Rb2O与TeO2摩尔比为1-5:3-6;GeO2-TeO2体系中GeO2与TeO2摩尔比为2-5:1-3;RbF-Li2CO3体系中RbF与Li2CO3摩尔比为1-8:3-6;Rb2O-Li2CO3体系中Rb2O与Li2CO3摩尔比为1-8:3-6;LiF-Rb2CO3体系中LiF与Rb2CO3摩尔比为1-10:3-6;Li2O-Rb2CO3体系中Li2O与Rb2CO3摩尔比为1-8:3-6;GeO2-Rb2O-Li2O体系中GeO2、Rb2O与Li2O摩尔比为2-5:1-6:3-8;GeO2-RbF-LiF体系中GeO2、RbF与LiF摩尔比为2-5:1-6:3-10;GeO2-RbCl-LiCl体系中GeO2、RbCl与LiCl摩尔比为2-5:1-6:1-5;GeO2-TeO2-Rb2O体系中GeO2、Rb2O与TeO2摩尔比为2-5:1-6:3-8;GeO2-TeO2-Li2O体系中GeO2、Li2O与TeO2摩尔比为2-5:1-9:3-8。
本发明制备的锗酸锂铷非线性光学晶体,其特征在于该晶体的化学式为LiRbGe2O5,分子量为317.59,不具有对称中心,属正交晶系,空间群Pca21,晶胞参数为 其粉末倍频效应约为1倍KDP(KH2PO4)。
由于在生长锗酸锂铷非线性光学晶体过程中,使用了比如Li2CO3、LiF、LiOH、Li2O、LiCl、RbF、Rb2CO3、Rb2O、RbCl、GeO2等自助熔剂以及比如Rb2CO3-GeO2、Li2CO3-GeO2、Rb2O-GeO2、Li2O-GeO2、RbF-GeO2、RbCl-GeO2、LiCl-GeO2、LiF-GeO2、Li2O-TeO2、Li2CO3-TeO2、LiF-TeO2、Rb2O-TeO2、Rb2CO3-TeO2、RbF-TeO2、GeO2-TeO2、RbF-Li2CO3、Li2O-Rb2CO3、Rb2O-Li2CO3、LiF-Rb2CO3、GeO2-Rb2O-Li2O、GeO2-RbF-LiF、GeO2-RbCl-LiCl、GeO2-TeO2-Li2O或GeO2-TeO2-Rb2O等其他复合助溶剂,产品纯度高,晶体易长大且透明无包裹,具有生长速度较快,成本低,容易获得较大尺寸晶体等优点;所获晶体具有比较宽的透光波段,硬度较大,机械性能好,不易碎裂和潮解,易于加工和保存等优点。采用本发明所述方法获得的化合物锗酸锂铷非线性光学晶体制成的非线性光学器件,在室温下,用Nd:YAG调Q激光器作光源,入射波长为1064nm的红外光,输出波长为532nm的绿色激光,激光强度相当于KDP(KH2PO4)的1倍。
附图说明
图1为本发明LiRbGe2O5粉末的x-射线衍射图。
图2为本发明LiRbGe2O5晶体制作的非线性光学器件的工作原理图,其中1为激光器,2为发出光束,3为LiRbGe2O5晶体,4为出射光束,5为滤波片。
具体实施方式
以下结合附图和实施例对本发明进行详细说明:
实施例1:
按反应式:Li2CO3+Rb2CO3+4GeO2→2LiRbGe2O5+2CO2↑合成化合物LiRbGe2O5
将Li2CO3、Rb2CO3、GeO2按摩尔比1:1:4称取放入研钵中,混合并仔细研磨,然后装入Φ100mm×100mm的开口刚玉坩埚中,放入马弗炉中,缓慢升温至300℃,恒温24小时,冷却至室温,取出经第二次研磨之后放入马弗炉中,再升温至750℃,恒温24小时,冷却至室温,取出经第三次研磨后放入马弗炉中,再在750℃恒温48小时,取出经研磨制得化合物锗酸锂铷单相多晶粉末,对该产物进行X射线分析,所得X射线谱图与锗酸锂铷LiRbGe2O5单晶结构得到的X射线谱图是一致的;
将得到的化合物锗酸锂铷LiRbGe2O5单相多晶粉末与助熔剂RbF-GeO2按摩尔比LiRbGe2O5:RbF-GeO2=1:3,其中RbF与GeO2的摩尔比为3:5,进行混配,装入Φ80mm×80mm的开口铂金坩埚中,以温度30℃/h的升温速率将其加热至850℃,恒温15小时,得到混合熔液,再降温至650℃;
以温度0.5℃/h的速率缓慢降温至室温,自发结晶获得锗酸锂铷籽晶;
在化合物熔液中生长晶体:将获得的LiRbGe2O5籽晶固定于籽晶杆上从晶体生长炉顶部下籽晶,先在混合熔液表面上预热籽晶10分钟,浸入液面中,使籽晶在混合熔液中进行回熔,恒温30分钟,快速降温至饱和温度650℃;
再以温度2℃/天的速率降温,以10rpm的转速旋转籽晶杆,待晶体生长结束后,使晶体脱离液面,以温度10℃/小时的速率降至室温,即可获得尺寸为56mm×40mm×30mm的LiRbGe2O5晶体。
反应式中的原料碳酸锂可以用氧化锂或氯化锂或溴化锂或硝酸锂或草酸锂或氢氧化锂或碳酸氢锂或硫酸锂等其他含锂盐替换,碳酸铷可以用氧化铷或氯化铷或溴化铷或硝酸铷或草酸铷或氢氧化铷或碳酸氢铷等其他含铷盐替换,氧化锗用其他锗盐替换。
实施例2:
按反应式:4LiNO3+2Rb2CO3+8GeO2→4LiRbGe2O5+4NO2↑+2CO2↑+O2↑合成化合物LiRbGe2O5
将LiNO3、Rb2CO3、GeO2按摩尔比2:1:4直接称取原料,将称取的原料与助熔剂Rb2O-GeO2按摩尔比1:4进行混配,其中Rb2O与GeO2的摩尔比为3:5,装入Φ80mm×80mm的开口铂金坩埚中,升温至温度800℃,恒温60小时,得到混合熔液,在冷却降温至温度650℃;
以温度1.5℃/h的速率缓慢降温至室温,自发结晶获得锗酸锂铷籽晶;
将获得的LiRbGe2O5籽晶固定于籽晶杆上从晶体生长炉顶部下籽晶,先在混合熔液表面上预热籽晶10分钟,浸入液面下,使籽晶在混合熔液中进行回熔,恒温30分钟,快速降温至饱和温度600℃;
再以温度1℃/天的速率缓慢降温,不旋转籽晶杆,待晶体生长到所需尺度后,将晶体提离熔液表面,以温度20℃/h速率降至室温,然后将晶体从炉膛中取出,即可获得尺寸为36mm×22mm×15mm的LiRbGe2O5晶体。
反应式中的原料硝酸锂可以用氧化锂或氯化锂或溴化锂或碳酸锂或草酸锂或氢氧化锂或碳酸氢锂或硫酸锂等其他含锂盐替换,碳酸铷可以用氧化铷或氯化铷或溴化铷或硝酸铷或草酸铷或氢氧化铷或碳酸氢铷等其他含铷盐替换,氧化锗用其他锗盐替换。
实施例3:
按反应式:2LiOH+Rb2CO3+4GeO2→2LiRbGe2O5+CO2↑+H2O↑合成化合物LiRbGe2O5
将LiOH、Rb2CO3、GeO2按摩尔比2:1:4直接称取原料,将称取的原料与助熔剂LiF-TeO2按摩尔比1:3,进行混配,其中LiF与TeO2摩尔比为3:1,装入Φ80mm×80mm的开口铂坩埚中,升温至温度780℃,恒温60小时,得到混合熔液,再降至温度620℃;
以温度3.5℃/h的速率缓慢降温至室温,自发结晶获得锗酸锂铷籽晶;
将获得的LiRbGe2O5籽晶固定于籽晶杆上从晶体生长炉顶部下籽晶,先在混合熔液表面上预热籽晶15分钟,浸入液面下,使籽晶在混合熔液中进行回熔,恒温30分钟,快速降温至饱和温度615℃;
再以温度3℃/天的速率缓慢降温,以5rpm的转速旋转籽晶坩埚,待晶体生长到所需尺度后,将晶体提离熔液表面,以温度1℃/h速率降至室温,然后将晶体从炉膛中取出,即可获得尺寸为25mm×24mm×10mm的LiRbGe2O5晶体。
反应式中的原料氢氧化锂可以用氧化锂或氯化锂或溴化锂或硝酸锂或草酸锂或碳酸锂或碳酸氢锂或硫酸锂等其他含锂盐替换,碳酸铷可以用氧化铷或氯化铷或溴化铷或硝酸铷或草酸铷或氢氧化铷或碳酸氢铷等其他含铷盐替换,氧化锗用其他锗盐替换。
实施例4:
按反应式:2Li2SO4+2Rb2CO3+8GeO2→4LiRbGe2O5+2CO2↑+2SO2↑+O2↑合成化合物LiRbGe2O5
将Li2SO4、Rb2CO3、GeO2按摩尔比1:1:4直接称取原料,将称取的原料与助熔剂GeO2-TeO2按摩尔比1:3进行混配,其中GeO2与TeO2摩尔比为5:1,装入Φ80mm×80mm的开口铂坩埚中,升温至温度750℃,恒温80小时,得到混合熔液,再降至温度615℃;
以温度5℃/h的速率缓慢降温至室温,自发结晶获得锗酸锂铷籽晶;
将获得的LiRbGe2O5籽晶固定于籽晶杆上从晶体生长炉顶部下籽晶,先在混合熔液表面上预热籽晶20分钟,浸入液面下,使籽晶在混合熔液中进行回熔,恒温5分钟,快速降温至饱和温度600℃;
然后以温度3℃/天的速率缓慢降温,以15rpm的转速旋转籽晶杆,待晶体生长到所需尺度后,将晶体体离熔液表面,以温度15℃/h速率降至室温,然后将晶体从炉膛中取出,即可获得尺寸为35mm×25mm×20mm的LiRbGe2O5晶体。
反应式中的原料硫酸锂可以用氧化锂或氯化锂或溴化锂或碳酸锂或草酸锂或氢氧化锂或碳酸氢锂或硝酸锂等其他含锂盐替换,碳酸铷可以用氧化铷或氯化铷或溴化铷或硝酸铷或草酸铷或氢氧化铷或碳酸氢铷等其他含铷盐替换,氧化锗用其他锗盐替换。
实施例5
按反应式:2LiCl+Rb2CO3+4GeO2→2LiRbGe2O5+CO↑+Cl2↑合成化合物LiRbGe2O5
将LiCl、Rb2CO3、GeO2按摩尔比2:1:4直接称取原料,将称取的原料与助熔剂LiF-TeO2按摩尔比1:2进行混配,其中LiF与TeO2摩尔比为5:1装入Φ80mm×80mm的开口铂坩埚中,升温至温度760℃,恒温80小时,得到混合熔液,再降至温度650℃;
以温度10℃/h的速率缓慢降温至室温,自发结晶获得锗酸锂铷籽晶;
将获得的籽晶固定于籽晶杆上从晶体生长炉顶部下籽晶,先在混合熔液表面上预热籽晶25分钟,部分浸入液面下,使籽晶在混合熔液中进行回熔,恒温25分钟,快速降温至饱和温度615℃;
再以温度5℃/天的速率降温,以30rpm的转速旋转籽晶杆,待晶体生长到所需尺度后,将晶体提离熔液表面,以温度35℃/h速率降至室温,然后将晶体从炉膛中取出,即可获得尺寸为22mm×32mm×20mm的LiRbGe2O5晶体。
反应式中的原料氯化锂可以用氧化锂或硫酸锂或溴化锂或碳酸锂或草酸锂或氢氧化锂或碳酸氢锂或硝酸锂等其他含锂盐替换,碳酸铷可以用氧化铷或氯化铷或溴化铷或硝酸铷或草酸铷或氢氧化铷或碳酸氢铷等其他含铷盐替换,氧化锗用其他锗盐替换。
实施例6
按反应式:2LiBr+Rb2CO3+4GeO2→2LiRbGe2O5+CO↑+Br2↑合成化合物LiRbGe2O5
将LiBr、Rb2CO3、GeO2按摩尔比2:1:4直接称取原料,将称取的原料与助熔剂LiF-TeO2按摩尔比1:3进行混配,其中LiF与TeO2摩尔比为5:1,装入Φ80mm×80mm的开口铂坩埚中,升温至温度800℃,恒温5小时得到混合熔液,再降至温度620℃;
以温度4.0℃/h的速率缓慢降温至室温,自发结晶获得锗酸锂铷籽晶;
将获得的LiRbGe2O5籽晶固定于籽晶杆上从晶体生长炉顶部下籽晶,先在混合熔液表面上预热籽晶20分钟,浸入液面下,使籽晶在混合熔液中进行回熔,恒温25分钟,快速降温至饱和温度605℃;
然后以温度3℃/天的速率降温,以50rpm的转速旋转籽晶杆,待晶体生长到所需尺度后,将晶体体离熔液表面,以温度70℃/h速率降至室温,然后将晶体从炉膛中取出,即可获得尺寸为22mm×21mm×16mm的LiRbGe2O5晶体。
反应式中的原料溴化锂可以用氧化锂或硫酸锂或氯化锂或碳酸锂或草酸锂或氢氧化锂或碳酸氢锂或硝酸锂等其他含锂盐替换,碳酸铷可以用氧化铷或氯化铷或溴化铷或硝酸铷或草酸铷或氢氧化铷或碳酸氢铷等其他含铷盐替换,氧化锗用其他锗盐替换。
实施例7
按反应式:Li2C2O4+Rb2CO3+4GeO2→2LiRbGe2O 5+3CO↑+O2↑合成化合物LiRbGe2O5
将Li2C2O4、Rb2CO3、GeO2按摩尔比1:1:4放入研钵中,混合并仔细研磨,然后装入Φ100mm×100mm的开口刚玉坩埚中,将其压紧,放入马弗炉中,缓慢升温至温度500℃,恒温4小时,待冷却后取出坩埚,此时样品较疏松,接着取出样品重新研磨均匀,再置于坩埚中,在马弗炉内于温度750℃又恒温48小时,将其取出,放入研钵中捣碎研磨即得化合物LiRbGe2O5,对该产物进行X射线分析,所得X射线谱图与锗酸锂铷LiRbGe2O5单晶结构得到的X射线谱图是一致的;、
将合成的化合物LiRbGe2O5与助熔剂Li2O-TeO2按摩尔比1:3进行混配,其中Li2O与TeO2摩尔比为5:1,装入Φ80mm×80mm的开口铂坩埚中,升温至温度900℃,恒温50小时得到混合熔液,再降至温度750℃;以温度4.0℃/h的速率缓慢降温至室温,自发结晶获得锗酸锂铷籽晶;
将获得的LiRbGe2O5籽晶固定于籽晶杆上从晶体生长炉顶部下籽晶,先在混合熔液表面上预热籽晶20分钟,浸入液面下,使籽晶在混合熔液中进行回熔,恒温25分钟,降温至饱和温度715℃;
然后以温度2℃/天的速率降温,以28rpm的转速旋转籽晶杆,待晶体生长到所需尺度后,将晶体体离熔液表面,以温度25℃/h速率降至室温,然后将晶体从炉膛中取出,即可获得尺寸为30mm×22mm×15mm的LiRbGe2O5晶体。
反应式中的原料草酸锂可以用氧化锂或硫酸锂或溴化锂或碳酸锂或氯化锂或氢氧化锂或碳酸氢锂或硝酸锂等其他含锂盐替换,碳酸铷可以用氧化铷或氯化铷或溴化铷或硝酸铷或草酸铷或氢氧化铷或碳酸氢铷等其他含铷盐替换,氧化锗用其他锗盐替换。
实施例8
按反应式:Li2O+Rb2CO3+4GeO2→2LiRbGe2O5+CO2↑合成化合物LiRbGe2O5
将Li2O、Rb2CO3、GeO2按摩尔比1:1:4放入研钵中,将称取的原料与助熔剂GeO2-Rb2O-TeO2按摩尔比1:1进行混配,其中GeO2、Rb2O与TeO2摩尔比为6:3:4,装入Φ80mm×80mm的开口铂坩埚中,升温至温度760℃,恒温80小时,得到混合熔液,再降至温度650℃;
以温度10℃/h的速率缓慢降温至室温,自发结晶获得锗酸锂铷籽晶;
将获得的籽晶固定于籽晶杆上从晶体生长炉顶部下籽晶,先在混合熔液表面上预热籽晶25分钟,部分浸入液面下,使籽晶在混合熔液中进行回熔,恒温25分钟,快速降温至饱和温度615℃;
再以温度5℃/天的速率降温,以30rpm的转速旋转籽晶杆,待晶体生长到所需尺度后,将晶体提离熔液表面,以温度35℃/h速率降至室温,然后将晶体从炉膛中取出,即可获得尺寸为22mm×32mm×20mm的LiRbGe2O5晶体。
反应式中的原料氧化锂可以用草酸锂或硫酸锂或溴化锂或碳酸锂或氯化锂或氢氧化锂或碳酸氢锂或硝酸锂等其他含锂盐替换,碳酸铷可以用氧化铷或氯化铷或溴化铷或硝酸铷或草酸铷或氢氧化铷或碳酸氢铷等其他含铷盐替换,氧化锗用其他锗盐替换。
实施例9
将实施例1-8所得任意的LiRbGe2O5晶体按相匹配方向加工一块尺寸5mm×5mm×6mm的倍频器件,按附图2所示安置在3的位置上,在室温下,用调Q Nd:YAG激光器作光源,入射波长为1064nm,由调QNd:YAG激光器1发出波长为1064nm的红外光束2射入LiRbGe2O5单晶3,产生波长为532nm的绿色倍频光,输出强度为同等条件KDP的0.6倍,出射光束4含有波长为1064nm的红外光和532nm的绿光,经滤波片5滤去后得到波长为532nm的绿色激光。

Claims (9)

1.化合物锗酸锂铷,其特征在于,该化合物锗酸锂铷化学式为LiRbGe2O5
2.根据权利要求1所述的化合物锗酸锂铷的制备方法,其特征在于,包括以下步骤:将含锂化合物、含铷化合物、含锗化合物混合采用固相反应法制得所述化合物锗酸锂铷,其中,含锂化合物中元素锂、含铷化合物中元素铷、含锗化合物中元素锗的摩尔比为1:1:2。
3.权利要求2所述化合物锗酸锂铷的制备方法,其特征在于,所述化合物锗酸锂铷采用固相反应法制备,过程包括:将含锂化合物、含铷化合物、含锗化合物原料混合均匀,研磨后放入马弗炉中,预烧排除原料中的水分和气体,冷却至室温,取出研磨之后放入马弗炉中煅烧,制得化合物锗酸锂铷;
所述含锂化合物包括有氢氧化锂、氧化锂、锂盐中的至少一种;锂盐包括氯化锂、溴化锂、硝酸锂、草酸锂、碳酸锂、碳酸氢锂、硫酸锂中的至少一种;
所述含铷化合物包括氧化铷、氢氧化铷及铷盐中的至少一种;铷盐包括氯化铷、溴化铷、硝酸铷、草酸铷、碳酸铷、碳酸氢铷、硫酸铷中的至少一种;
所述含锗化合物为氧化锗、氢氧化铷及锗盐;锗盐包括氯化锗、溴化锗、硝酸锗、草酸锗、碳酸锗、碳酸氢锗、硫酸锗中的至少一种。
4.锗酸锂铷非线性光学晶体,其特征在于,该晶体的化学式为LiRbGe2O5,分子量317.59,不具有对称中心,属正交晶系,空间群Pca21,晶胞参数为
5.权利要求4所述的锗酸锂铷非线性光学晶体的制备方法,其特征在于,采用高温熔液法或者提拉法生长锗酸锂铷非线性光学晶体。
6.根据权利要求5所述方法,其特征在于,所述锗酸锂铷非线性光学晶体采用高温熔液法或者提拉法制备,过程包括:
a、将权利要求1-3任一所得的化合物锗酸锂铷单相多晶粉末或权利要求1-3任一所得的化合物锗酸锂铷单相多晶粉末与助熔剂的混合物,升温至熔化得到混合熔液;
或直接将含锂化合物、含铷化合物和含锗化合物的混合物或含锂化合物、含铷化合物和含锗化合物与助熔剂的混合物,升温至熔化得到混合熔液;
b、盛有步骤a制得的混合熔液的坩埚置入晶体生长炉中,将籽晶固定于籽晶杆上,将籽晶下至接触混合熔液液面或混合熔液中进行回熔,降至饱和温度;降温或恒温生长,制备出锗酸锂铷非线性光学晶体。
7.根据权利要求6所述方法,其特征在于其中化合物锗酸锂铷单相多晶粉末与助熔剂的摩尔比为1:0-20;或者其中含锂化合物、含铷化合物和含锗化合物与助熔剂的摩尔比为1:1:2:0-20;助熔剂包括氢氧化锂、氢氧化铷、氢氧化锗、氧化锂、氧化铷、氧化锗、锂盐、铷盐、锗盐中的至少一、氧化铅、复合助熔剂Rb2O-GeO2、Li2O-TeO2、RbF-GeO2、LiF-TeO2、GeO2-TeO2、GeO2-TeO2-Rb2O中一种或多种。
8.根据权利要求7所述方法,其特征在于,复合助熔剂Rb2O-GeO2体系中Rb2O与GeO2的摩尔比为1-3:2-5;Li2O-TeO2体系中Li2O与TeO2摩尔比为1-3:3-6;RbF-GeO2体系中RbF与GeO2的摩尔比为1-6:2-5;LiF-TeO2体系中LiF与TeO2摩尔比为1-6:3-6;GeO2-TeO2体系中GeO2与TeO2摩尔比为2-5:1-3;GeO2-TeO2-Rb2O体系中GeO2、Rb2O与TeO2摩尔比为2-5:1-6:3-8。
9.根据权利要求4所述的锗酸锂铷非线性光学晶体的用途,其特征在于,该锗酸锂铷非线性光学晶体用于制备倍频发生器、上频率转换器、下频率转换器或光参量振荡器。
CN201910429376.7A 2019-05-22 2019-05-22 化合物锗酸锂铷和锗酸锂铷非线性光学晶体及制备方法和用途 Active CN110042467B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910429376.7A CN110042467B (zh) 2019-05-22 2019-05-22 化合物锗酸锂铷和锗酸锂铷非线性光学晶体及制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910429376.7A CN110042467B (zh) 2019-05-22 2019-05-22 化合物锗酸锂铷和锗酸锂铷非线性光学晶体及制备方法和用途

Publications (2)

Publication Number Publication Date
CN110042467A true CN110042467A (zh) 2019-07-23
CN110042467B CN110042467B (zh) 2021-07-13

Family

ID=67283035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910429376.7A Active CN110042467B (zh) 2019-05-22 2019-05-22 化合物锗酸锂铷和锗酸锂铷非线性光学晶体及制备方法和用途

Country Status (1)

Country Link
CN (1) CN110042467B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110528080A (zh) * 2019-08-27 2019-12-03 天津理工大学 化合物砷酸碲锌铅和砷酸碲锌铅非线性光学晶体及制备方法和用途
CN110777434A (zh) * 2019-11-12 2020-02-11 中国工程物理研究院化工材料研究所 一种混合阴离子红外非线性光学晶体/粉末及其制备方法
CN112442737A (zh) * 2019-08-27 2021-03-05 天津理工大学 化合物砷酸碲锌锶和砷酸碲锌锶非线性光学晶体的制备方法和用途
CN113981540A (zh) * 2021-10-29 2022-01-28 上海应用技术大学 铷氯硒氧氢双折射晶体及其制备方法和应用
CN114791449A (zh) * 2022-03-28 2022-07-26 苏州科技大学 一种气体传感器及其制备方法与应用
CN114941175A (zh) * 2022-06-10 2022-08-26 天津理工大学 一种中红外锗酸锌钾非线性光学晶体及其制备方法和用途
CN115198343A (zh) * 2021-04-09 2022-10-18 中国科学院理化技术研究所 氟硅酸钪铷锂非线性光学晶体及其制备方法和应用
CN115198364A (zh) * 2021-04-09 2022-10-18 中国科学院理化技术研究所 氟锗酸钪铷锂非线性光学晶体及其制备方法和应用
CN116254606A (zh) * 2021-12-10 2023-06-13 天津理工大学 化合物钡锡锗酸和钡锡锗酸非线性光学晶体及制备方法和用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914809A (zh) * 2010-08-11 2010-12-15 中国科学院新疆理化技术研究所 化合物氯硼酸钾非线性光学晶体及制备方法和用途
CN102071021A (zh) * 2011-01-17 2011-05-25 中国计量学院 一种用于led的橙红色荧光粉及其制备方法
CN102127811A (zh) * 2010-12-27 2011-07-20 中国科学院新疆理化技术研究所 化合物氟硼酸铅非线性光学晶体及其制备方法和用途
CN102337586A (zh) * 2010-07-20 2012-02-01 中国科学院新疆理化技术研究所 化合物氟硼酸钡非线性光学晶体及其制备方法和用途
CN106811800A (zh) * 2015-11-28 2017-06-09 中国科学院新疆理化技术研究所 铝硅酸锂非线性光学晶体及其制备方法和用途
CN106868587A (zh) * 2017-03-29 2017-06-20 中国科学院新疆理化技术研究所 锂铷钡铝硼氧氟和锂铷钡铝硼氧氟非线性光学晶体及制备方法和用途
CN108505110A (zh) * 2018-04-08 2018-09-07 中国科学院理化技术研究所 锗酸钛铷锂化合物、锗酸钛铷锂非线性光学晶体及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337586A (zh) * 2010-07-20 2012-02-01 中国科学院新疆理化技术研究所 化合物氟硼酸钡非线性光学晶体及其制备方法和用途
CN101914809A (zh) * 2010-08-11 2010-12-15 中国科学院新疆理化技术研究所 化合物氯硼酸钾非线性光学晶体及制备方法和用途
CN102127811A (zh) * 2010-12-27 2011-07-20 中国科学院新疆理化技术研究所 化合物氟硼酸铅非线性光学晶体及其制备方法和用途
CN102071021A (zh) * 2011-01-17 2011-05-25 中国计量学院 一种用于led的橙红色荧光粉及其制备方法
CN106811800A (zh) * 2015-11-28 2017-06-09 中国科学院新疆理化技术研究所 铝硅酸锂非线性光学晶体及其制备方法和用途
CN106868587A (zh) * 2017-03-29 2017-06-20 中国科学院新疆理化技术研究所 锂铷钡铝硼氧氟和锂铷钡铝硼氧氟非线性光学晶体及制备方法和用途
CN108505110A (zh) * 2018-04-08 2018-09-07 中国科学院理化技术研究所 锗酸钛铷锂化合物、锗酸钛铷锂非线性光学晶体及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H. VOLLENKLE等: "Die Verfeinerung der Kristallstruktur yon Li2Ge205", 《MONATSHEFTE FUR CHEMIE》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112442737A (zh) * 2019-08-27 2021-03-05 天津理工大学 化合物砷酸碲锌锶和砷酸碲锌锶非线性光学晶体的制备方法和用途
CN110528080A (zh) * 2019-08-27 2019-12-03 天津理工大学 化合物砷酸碲锌铅和砷酸碲锌铅非线性光学晶体及制备方法和用途
CN110777434A (zh) * 2019-11-12 2020-02-11 中国工程物理研究院化工材料研究所 一种混合阴离子红外非线性光学晶体/粉末及其制备方法
CN110777434B (zh) * 2019-11-12 2020-07-28 中国工程物理研究院化工材料研究所 一种混合阴离子红外非线性光学晶体/粉末及其制备方法
CN115198343B (zh) * 2021-04-09 2023-11-28 中国科学院理化技术研究所 氟硅酸钪铷锂非线性光学晶体及其制备方法和应用
CN115198364B (zh) * 2021-04-09 2023-11-28 中国科学院理化技术研究所 氟锗酸钪铷锂非线性光学晶体及其制备方法和应用
CN115198343A (zh) * 2021-04-09 2022-10-18 中国科学院理化技术研究所 氟硅酸钪铷锂非线性光学晶体及其制备方法和应用
CN115198364A (zh) * 2021-04-09 2022-10-18 中国科学院理化技术研究所 氟锗酸钪铷锂非线性光学晶体及其制备方法和应用
CN113981540B (zh) * 2021-10-29 2023-07-21 上海应用技术大学 铷氯硒氧氢双折射晶体及其制备方法和应用
CN113981540A (zh) * 2021-10-29 2022-01-28 上海应用技术大学 铷氯硒氧氢双折射晶体及其制备方法和应用
CN116254606A (zh) * 2021-12-10 2023-06-13 天津理工大学 化合物钡锡锗酸和钡锡锗酸非线性光学晶体及制备方法和用途
CN114791449A (zh) * 2022-03-28 2022-07-26 苏州科技大学 一种气体传感器及其制备方法与应用
CN114941175A (zh) * 2022-06-10 2022-08-26 天津理工大学 一种中红外锗酸锌钾非线性光学晶体及其制备方法和用途

Also Published As

Publication number Publication date
CN110042467B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN110042467A (zh) 化合物锗酸锂铷和锗酸锂铷非线性光学晶体及制备方法和用途
CN102337586B (zh) 化合物氟硼酸钡非线性光学晶体及其制备方法和用途
CN101914809B (zh) 化合物氯硼酸钾非线性光学晶体及制备方法和用途
CN102127811B (zh) 化合物氟硼酸铅非线性光学晶体及其制备方法和用途
CN102978702B (zh) 化合物氟硼酸钡和氟硼酸钡非线性光学晶体及制备方法和用途
CN110029397A (zh) 化合物锗酸锂铯和锗酸锂铯非线性光学晶体及制备方法和用途
CN101498040B (zh) 溴硼酸钾非线性光学晶体的制备方法和用途
CN101435108B (zh) 大尺寸非线性光学晶体硼酸铅溴的制备方法
CN103628136B (zh) 化合物硼磷酸铷铅和硼磷酸铷铅非线性光学晶体及制备方法和用途
CN101311370A (zh) 大尺寸硼酸铋锌非线性光学晶体及制备方法和用途
CN101876772A (zh) 化合物硼磷酸钾铅非线性光学晶体及制备方法和用途
CN104556084B (zh) Rb3Al3B3O10F非线性光学晶体及其制法
CN103950912B (zh) RbBa2(PO3)5化合物、RbBa2(PO3)5非线性光学晶体及其制法和用途
CN105668577A (zh) K3Ba3Li2Al4B6O20F化合物、K3Ba3Li2Al4B6O20F非线性光学晶体及其制法和用途
CN106544731A (zh) 氯酸铅红外非线性光学晶体及制备方法和用途
CN103803572B (zh) 化合物氟硼酸锂钙和氟硼酸锂钙非线性光学晶体及制备方法和用途
CN103173859B (zh) 化合物硼磷酸钠镉和硼磷酸钠镉非线性光学晶体及制备方法和用途
CN110143610A (zh) 化合物锂钾钛锗酸盐和锂钾钛锗酸盐非线性光学晶体及制备方法和用途
CN103088423A (zh) 化合物钡硼氧氟和钡硼氧氟非线性光学晶体及制备方法和用途
CN101974783B (zh) 化合物硼酸锂铯非线性光学晶体及其制备方法和用途
CN105839185A (zh) Cs2LiPO4化合物、Cs2LiPO4非线性光学晶体及其制法和用途
CN104746140B (zh) 化合物钾钠硼氧溴非线性光学晶体及制备方法和用途
CN103628135B (zh) 化合物磷钼酸铷和磷钼酸铷非线性光学晶体及制备方法和用途
CN103359755B (zh) 化合物一氟三硼酸五钡和一氟三硼酸五钡非线性光学晶体及制备方法和用途
CN107217301B (zh) 化合物氟硼酸锂钾和氟硼酸锂钾非线性光学晶体及制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant