CN109979823B - 一种屏蔽栅功率器件及制造方法 - Google Patents

一种屏蔽栅功率器件及制造方法 Download PDF

Info

Publication number
CN109979823B
CN109979823B CN201711466665.1A CN201711466665A CN109979823B CN 109979823 B CN109979823 B CN 109979823B CN 201711466665 A CN201711466665 A CN 201711466665A CN 109979823 B CN109979823 B CN 109979823B
Authority
CN
China
Prior art keywords
power device
groove
layer
manufacturing
field oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711466665.1A
Other languages
English (en)
Other versions
CN109979823A (zh
Inventor
李东升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Shangyangtong Technology Co ltd
Original Assignee
Shenzhen Sanrise Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Sanrise Tech Co ltd filed Critical Shenzhen Sanrise Tech Co ltd
Priority to CN201711466665.1A priority Critical patent/CN109979823B/zh
Publication of CN109979823A publication Critical patent/CN109979823A/zh
Application granted granted Critical
Publication of CN109979823B publication Critical patent/CN109979823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66484Unipolar field-effect transistors with an insulated gate, i.e. MISFET with multiple gate, at least one gate being an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • H01L29/7832Field effect transistors with field effect produced by an insulated gate with multiple gate structure the structure comprising a MOS gate and at least one non-MOS gate, e.g. JFET or MESFET gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供的一种屏蔽栅功率器件及制造方法中,通过把屏蔽栅功率器件中的屏蔽电极单独引出进行控制,使得屏蔽栅功率器件在导通过程中具有极低的导通电阻,在关断过程中也可以通过接入零点压或者负电压进行快速关断,避免了过高的开关频率对器件造成损伤。

Description

一种屏蔽栅功率器件及制造方法
技术领域
本发明涉及半导体芯片技术领域,尤其涉及一种屏蔽栅功率器件及制造方法。
背景技术
目前,随着半导体集成电路的不断发展,屏蔽栅(Shield Gate Trench,SGT)功率器件已成为一种用途广泛的功率器件。SGT器件作为中低压的金属氧化物半导体场效应管(Metal Oxide Semiconductor Field Efficient Transistor,MOSFET)中的一种新型器件结构可以将传统的沟槽型MOSFET器件的比导通电阻降为原来的二分之一甚至是五分之一。传统的沟槽型MOSFET器件主要是为了增加平面器件的沟槽密度以提高器件的电流处理能力,SGT MOSFET器件作为一种改进的沟槽MOSFET器件结构不但能够降低沟槽密度还能进一步降低漂移区电阻。
然而,随着SGT MOSFET器件的发展和进步,SGT MOSFET器件具有更低的导通电阻和密勒电容,此时,SGT MOSFET器件的开关电源的开关频率和功率密度也不断上升,虽然开关频率的提高可以减小开关电源的体积和质量,但是过高的开关频率也会导致开关电源内部的电磁环境越来越复杂,产生的电磁干扰对开关电源本身及周围的电子设备都造成了威胁。
发明内容
本发明的目的在于提供一种屏蔽栅功率器件及制造方法,通过把屏蔽栅功率器件中的屏蔽电极单独引出进行控制,使得屏蔽栅功率器件在导通过程中具有极低的导通电阻,在关断过程中也可以通过接入零点压或者负电压进行快速关断,避免了过高的开关频率对器件造成损伤。
本发明提供的屏蔽栅功率器件的制造方法,包括以下步骤:
步骤一、采用第一掩膜在掺杂有第一类型元素的外延层中刻蚀形成第一沟槽;
步骤二、在所述第一沟槽中进行淀积形成场氧化层,所述场氧化层覆盖于所述第一沟槽的侧壁和底部,所述第一沟槽的两侧壁上的所述场氧化层之间形成第二沟槽;
步骤三、采用多晶硅淀积工艺在所述第二沟槽中形成第一多晶层,所述第一多晶层将所述第二沟槽完全填充;
步骤四、对所述场氧化层进行刻蚀,在所述第一多晶层两侧形成有第三沟槽;
步骤五、进行氧化工艺,所述第三沟槽之间的第一多晶层表面被氧化形成二氧化硅,所述第三沟槽侧壁形成有栅极氧化层;
步骤六、对所述第三沟槽进行多晶硅淀积形成栅极;
步骤七、对所述第一沟槽两侧的所述外延层进行第二类型元素掺杂形成阱区;
步骤八、采用第二掩膜对所述阱区进行掺杂,在所述第二掩膜定义的源区位置形成屏蔽栅功率器件的源极;
步骤九、采用第三掩膜进行刻蚀使得所述第一多晶层引出屏蔽线,所述栅极引出栅极线;
步骤十、淀积层间绝缘层,采用第四掩膜刻蚀形成接触孔,然后进行金属淀积形成金属层。
优选的,所述第一类型元素为N型元素,所述第二类型元素为P型元素。
优选的,所述屏蔽线通过屏蔽总线与屏蔽电极连接。
优选的,所述栅极线通过栅极总线引出与所述栅电极连接。
优选的,所述栅电极与所述屏蔽电极在封装后形成两个互不接触的外接电极。
优选的,所述第一沟槽两侧的所述场氧化层的厚度大于0.4微米。
本发明还提出了一种屏蔽栅功率器件,所述屏蔽栅功率器件由以上所述的屏蔽栅功率器件的制造方法制造所得。
本发明提供的一种屏蔽栅功率器件中形成屏蔽电极的方法中,通过把屏蔽栅功率器件中的屏蔽电极单独引出进行控制,使得屏蔽栅功率器件在导通过程中具有极低的导通电阻,在关断过程中也可以快速关断。
附图说明
图1为本发明实施例一中提供的屏蔽栅功率器件的制造方法中在外延层中形成第一沟槽的结构示意图;
图2为本发明实施例一中提供的屏蔽栅功率器件的制造方法中形成场氧化层的结构示意图;
图3为本发明实施例一中提供的屏蔽栅功率器件的制造方法中形成第一多晶层的结构示意图;
图4为本发明实施例一中提供的屏蔽栅功率器件的制造方法中形成第三沟槽的结构示意图;
图5为本发明实施例一中提供的屏蔽栅功率器件的制造方法中进行氧化工艺后的结构示意图;
图6为本发明实施例一中提供的屏蔽栅功率器件的制造方法中形成栅极的结构示意图;
图7为本发明实施例一中提供的屏蔽栅功率器件的制造方法中形成阱区的结构示意图;
图8为本发明实施例一中提供的屏蔽栅功率器件的制造方法中形成源区的结构示意图;
图9为本发明实施例一中提供的屏蔽栅功率器件的制造方法中形成金属层的结构示意图;
图10为本发明实施例一中提供的屏蔽栅功率器件的制造方法中栅极的截面结构示意图;
图11为本发明实施例一中提供的屏蔽栅功率器件的制造方法中第一多晶层的截面结构示意图;
图12为本发明实施例一中提供的屏蔽栅功率器件的制造方法中第三掩膜的版图图案。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
图1至图11是本发明实施例一中的屏蔽栅功率器件的制造方法各步骤中的结构示意图,本发明实施例一的制造方法中包括以下步骤:
步骤一、采用第一掩膜101在掺杂有第一类型元素的外延层2中刻蚀形成第一沟槽201(如图1所示);具体的,外延层2形成在半导体衬底1上,通过在外延层2上形成第一掩膜101定义第一沟槽201的位置,然后对外延层2进行刻蚀形成第一沟槽201,第一沟槽的深度根据屏蔽栅器件的具体设计参数确定。步骤二、在第一沟槽201中进行淀积形成场氧化层3,场氧化层3覆盖于第一沟槽201的侧壁和底部,第一沟槽201的两侧壁上的场氧化层3之间形成第二沟槽202(如图2所示);具体的,在淀积过程中形成的场氧化层3还覆盖于第一掩膜101的表面,第一沟槽201侧壁形成的场氧化层3的厚度大于第一掩膜101表面场氧化层3的厚度。
步骤三、采用多晶硅淀积工艺在第二沟槽202中形成第一多晶层4,第一多晶层4将第二沟槽202完全填充(如图3所示);具体的,淀积形成的场氧化层3在第一沟槽201中呈“U”形结构,然后淀积第一多晶硅填充于“U”形结构的场氧化层3之间的沟槽中形成第一多晶层4,第一多晶硅淀积完成后将“U”形结构的场氧化层3之间的沟槽完全覆盖并覆盖于第一沟槽201以外区域的场氧化层3之上。
步骤四、对场氧化层3进行刻蚀,在第一多晶层4两侧形成有第三沟槽203(如图4所示);具体的,第三沟槽203位于第一多晶层4与外延层2之间,第一多晶层4两侧的两个第三沟槽203的深度根据屏蔽栅功率器件的具体设计参数确定。
步骤五、进行氧化工艺,第三沟槽203之间的第一多晶层4表面被氧化形成二氧化硅,第三沟槽203侧壁形成有栅极氧化层5(如图5所示);具体的,第一多晶层4的上部被氧化的部分位于两个第三沟槽203之间,且被氧化的部分形成二氧化硅与场氧化层3连为一体。
步骤六、对第三沟槽203进行多晶硅淀积形成栅极6(如图6所示);具体的,对第三沟槽203进行多晶硅淀积,淀积形成的多晶硅完全填满第三沟槽,该多晶硅淀积可以采用传统的化学气相淀积方法进行淀积,然后对淀积形成的多晶硅进行刻蚀形成屏蔽栅功率器件的栅极6,栅极6与外延层2被栅极氧化层5隔离,然后刻蚀去除第一光刻膜101。
步骤七、对第一沟槽201两侧的外延层2进行第二类型元素掺杂形成阱区7(如图7所示);具体的,通过外延层2中进行第二类型元素掺杂的区域为第一沟槽201两侧的外延层2的表面部分,阱区7的掺杂浓度和掺杂深度根据屏蔽栅功率器件的设计参数确定。
步骤八、采用第二掩膜102对阱区7进行掺杂,在第二掩膜102定义的源区位置形成屏蔽栅功率器件的源极8(如图8所示);具体的,第二掩膜102定义出源区位置,然后对所定义的源区位置进行第一类型元素掺杂形成源极8,源极8中掺杂的第一类型元素的浓度要远远大于半导体衬底1和外延层2中掺杂的第一类型元素的浓度。
步骤九、采用第三掩膜进行刻蚀使得第一多晶层4引出屏蔽线,栅极6引出栅极线;具体的,第三掩膜的版图图案如图12所示,通过如图12的版图设计图案,第一多晶层4引出独立的屏蔽线与器件外部的金属屏蔽电极连接(如图11所示),栅极6引出栅极线与栅电极连接(如图10所示)。步骤十、淀积层间绝缘层9,采用第四掩膜刻蚀形成接触孔,然后进行金属淀积形成金属层10(如图9所示)。具体的,接触孔的位置位于阱区7上方,将阱区7上方的层间绝缘层9全部刻蚀去除,然后淀积形成金属层10,此时,屏蔽栅功率器件的体区引出金属导线到源极电极,屏蔽线与源极金属互不接触。
在本实施例中,通过单独引出屏蔽线与器件外部的金属屏蔽电极连接,可以将金属屏蔽电极作为屏蔽栅功率器件的控制端,即在屏蔽栅功率器件导通时通过在屏蔽电极接入驱动电压使得导通电阻降低,在需要关断器件时在屏蔽电极接入负电压或者零电压使得屏蔽栅功率器件快速关断,避免了器件在较高的开关频率产生电磁干扰对器件周围的电子器件产生影响。
作为本发明一优选实施例,第一类型元素为N型元素,第二类型元素为P型元素。具体的,该N型元素包括氮、磷等第五主族元素,该P型元素包括硼、镓、铟等第三主族元素。
作为本发明一优选实施例,屏蔽线通过屏蔽总线与屏蔽电极连接。具体的,通过屏蔽线引出与屏蔽电极电极连接,可以对屏蔽栅功率器件的屏蔽电极进行独立控制,通过驱动芯片设计,使器件在导通时对屏蔽电极接入的驱动电压更高,具有的导通电阻更低,而在需要关断时对屏蔽电极接入零电压或者负电压,此时器件可以快速关断,避免了器件产生电磁干扰。
作为本发明一优选实施例,栅极线通过栅极总线引出与栅电极连接。具体的,栅极线通过栅极总线引出与栅电极连接后,由于栅电极是外接电极,因此可以根据用户需要将栅电极与屏蔽电极连接,此时形成传统的具有三电极的屏蔽栅功率器件,具体的,传统的三电极为栅极、源极及漏极。
作为本发明一优选实施例,栅电极与屏蔽电极在封装后形成两个互不接触的外接电极。
作为本发明一优选实施例,第一沟槽201两侧的场氧化层的厚度大于0.4微米。
为了解决上述技术问题,本发明还提出了一种屏蔽栅功率器件,该屏蔽栅功率器件由前述屏蔽栅功率器件的制造方法制造所得(如图9所示),在该屏蔽栅功率器件中,通过将第一多晶层引出形成独立的屏蔽电极(如图11所示),用户可以对屏蔽栅功率器件的屏蔽电极进行独立控制,当器件在导通时对屏蔽电极接入的驱动电压更高,具有的导通电阻更低,而在需要关断时对屏蔽电极接入零电压或者负电压,此时器件可以快速关断,避免了器件产生电磁干扰。
本发明提供的一种屏蔽栅功率器件制造方法中,通过把屏蔽栅功率器件中的屏蔽电极单独引出进行控制,使得屏蔽栅功率器件在导通过程中具有极低的导通电阻,在关断过程中也可以通过接入零电压或者负电压进行快速关断,避免了过高的开关频率对器件造成损伤。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种屏蔽栅功率器件的制造方法,其特征在于,包括以下步骤:
步骤一、采用第一掩膜在掺杂有第一类型元素的外延层中刻蚀形成第一沟槽;
步骤二、在所述第一沟槽中进行淀积形成场氧化层,所述场氧化层覆盖于所述第一沟槽的侧壁和底部,所述第一沟槽的两侧壁上的所述场氧化层之间形成第二沟槽,其中所述第一沟槽侧壁的场氧化层的厚度大于所述第一掩膜表面场氧化层的厚度;
步骤三、采用多晶硅淀积工艺在所述第二沟槽中形成第一多晶层,所述第一多晶层将所述第二沟槽完全填充;
步骤四、对所述场氧化层进行刻蚀,在所述第一多晶层两侧形成有第三沟槽;
步骤五、进行氧化工艺,所述第三沟槽之间的第一多晶层表面被氧化形成二氧化硅,所述第三沟槽侧壁形成有栅极氧化层;
步骤六、对所述第三沟槽进行多晶硅淀积形成栅极;
步骤七、对所述第一沟槽两侧的所述外延层进行第二类型元素掺杂形成阱区;
步骤八、采用第二掩膜对所述阱区进行掺杂,在所述第二掩膜定义的源区位置形成屏蔽栅功率器件的源极;
步骤九、采用第三掩膜进行刻蚀使得所述第一多晶层引出屏蔽线,所述栅极引出栅极线;
步骤十、淀积层间绝缘层,采用第四掩膜刻蚀形成接触孔,然后进行金属淀积形成金属层,其中,所述屏蔽线与源极接触金属互不接触。
2.如权利要求1所述的制造方法,其特征在于,所述第一类型元素为N型元素,所述第二类型元素为P型元素。
3.如权利要求1所述的制造方法,其特征在于,所述屏蔽线通过屏蔽总线与屏蔽电极连接。
4.如权利要求1所述的制造方法,其特征在于,所述栅极线通过栅极总线引出与栅电极连接。
5.如权利要求3所述的制造方法,其特征在于,栅电极与所述屏蔽电极在封装后形成两个互不接触的外接电极。
6.如权利要求1所述的制造方法,其特征在于,所述第一沟槽两侧的所述场氧化层的厚度大于0.4微米。
7.一种屏蔽栅功率器件,其特征在于,所述屏蔽栅功率器件由权利要求1至6任一项所述的屏蔽栅功率器件的制造方法制造所得。
CN201711466665.1A 2017-12-28 2017-12-28 一种屏蔽栅功率器件及制造方法 Active CN109979823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711466665.1A CN109979823B (zh) 2017-12-28 2017-12-28 一种屏蔽栅功率器件及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711466665.1A CN109979823B (zh) 2017-12-28 2017-12-28 一种屏蔽栅功率器件及制造方法

Publications (2)

Publication Number Publication Date
CN109979823A CN109979823A (zh) 2019-07-05
CN109979823B true CN109979823B (zh) 2022-07-12

Family

ID=67075422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711466665.1A Active CN109979823B (zh) 2017-12-28 2017-12-28 一种屏蔽栅功率器件及制造方法

Country Status (1)

Country Link
CN (1) CN109979823B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110890427B (zh) * 2019-09-09 2021-07-27 电子科技大学 可调电容的屏蔽栅mosfet器件
CN112687735B (zh) * 2019-10-14 2024-10-18 无锡先瞳半导体科技有限公司 一种屏蔽栅功率器件及其制备方法
CN111739928B (zh) * 2020-06-02 2024-05-31 杭州士兰微电子股份有限公司 功率半导体器件及其制造方法
CN112271134B (zh) * 2020-10-20 2021-10-22 苏州东微半导体股份有限公司 半导体功率器件的制造方法
CN114496917A (zh) * 2020-11-12 2022-05-13 苏州东微半导体股份有限公司 半导体功率器件的制造方法
CN113421921A (zh) * 2021-06-24 2021-09-21 电子科技大学 一种槽栅中具有空穴通路的屏蔽栅沟槽igbt结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050539A (zh) * 2012-12-18 2013-04-17 上海华虹Nec电子有限公司 超级结器件终端保护结构
CN105810724A (zh) * 2016-04-29 2016-07-27 深圳尚阳通科技有限公司 屏蔽栅功率器件及其制造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633119B2 (en) * 2006-02-17 2009-12-15 Alpha & Omega Semiconductor, Ltd Shielded gate trench (SGT) MOSFET devices and manufacturing processes
US8022474B2 (en) * 2008-09-30 2011-09-20 Infineon Technologies Austria Ag Semiconductor device
US8299494B2 (en) * 2009-06-12 2012-10-30 Alpha & Omega Semiconductor, Inc. Nanotube semiconductor devices
CN102054845B (zh) * 2009-10-28 2012-11-21 中国科学院微电子研究所 基于soi的射频ldmos器件及对其进行注入的方法
CN102254944A (zh) * 2010-05-21 2011-11-23 上海新进半导体制造有限公司 一种沟槽mosfet功率整流器件及制造方法
US8779510B2 (en) * 2010-06-01 2014-07-15 Alpha And Omega Semiconductor Incorporated Semiconductor power devices manufactured with self-aligned processes and more reliable electrical contacts
JP5627494B2 (ja) * 2011-02-09 2014-11-19 株式会社東芝 半導体装置およびその製造方法
US8907415B2 (en) * 2011-05-16 2014-12-09 Force Mos Technology Co., Ltd. High switching trench MOSFET
CN103050408A (zh) * 2012-05-31 2013-04-17 上海华虹Nec电子有限公司 超级结制作方法
WO2014141832A1 (ja) * 2013-03-12 2014-09-18 シャープ株式会社 アクティブマトリクス基板、及び、表示装置
CN104103576A (zh) * 2013-04-15 2014-10-15 上海华虹宏力半导体制造有限公司 沟槽型双层栅功率mos器件的接触孔工艺方法
CN103336395B (zh) * 2013-06-18 2016-08-17 南京中电熊猫液晶显示科技有限公司 一种配线结构
US9331068B2 (en) * 2013-10-30 2016-05-03 United Silicon Carbide, Inc. Hybrid wide-bandgap semiconductor bipolar switches
CN104009087B (zh) * 2014-05-29 2017-02-15 深圳市盛元半导体有限公司 一种静电屏蔽效应晶体管及其设计方法
CN105448741A (zh) * 2015-12-31 2016-03-30 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽型mosfet工艺方法
CN105742185B (zh) * 2016-02-23 2019-06-11 深圳尚阳通科技有限公司 屏蔽栅功率器件及其制造方法
CN105895526B (zh) * 2016-04-26 2019-02-01 中国科学院微电子研究所 一种GaN基功率电子器件及其制备方法
CN105895516B (zh) * 2016-04-29 2018-08-31 深圳尚阳通科技有限公司 具有屏蔽栅的沟槽栅mosfet的制造方法
CN106098777A (zh) * 2016-06-22 2016-11-09 电子科技大学 一种分裂栅积累型dmos器件
CN106298941B (zh) * 2016-09-13 2019-04-09 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽功率器件及其制造方法
CN106505106A (zh) * 2016-10-11 2017-03-15 东南大学 一种高雪崩耐量的屏蔽栅功率晶体管及其制备方法
CN106876278A (zh) * 2017-03-01 2017-06-20 上海华虹宏力半导体制造有限公司 具有屏蔽栅的沟槽栅器件的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050539A (zh) * 2012-12-18 2013-04-17 上海华虹Nec电子有限公司 超级结器件终端保护结构
CN105810724A (zh) * 2016-04-29 2016-07-27 深圳尚阳通科技有限公司 屏蔽栅功率器件及其制造方法

Also Published As

Publication number Publication date
CN109979823A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN109979823B (zh) 一种屏蔽栅功率器件及制造方法
CN105870022B (zh) 屏蔽栅沟槽mosfet的制造方法
US8120100B2 (en) Overlapping trench gate semiconductor device
CN106057674A (zh) 屏蔽栅沟槽mosfet的制造方法
JP2008509557A (ja) 陥没トレンチを用いた表面側ドレインを有する半導体電力素子
JP2000252468A (ja) 埋め込みゲートを有するmosゲート装置およびその製造方法
CN104037228B (zh) 半导体器件及其制造方法
CN110957318A (zh) 一种半导体结构及其制作方法
CN104752218B (zh) 半导体器件的形成方法
CN113053738A (zh) 一种分裂栅型沟槽mos器件及其制备方法
CN114334661B (zh) 一种沟槽型双层栅功率mosfet及其制造方法
TWI426597B (zh) 降低寄生電晶體導通之功率元件及其製作方法
TWI430449B (zh) 橫向堆疊式超級接面功率半導體元件
CN106684126A (zh) 一种沟槽型晶体管器件结构及制作方法
EP3933895B1 (en) Trench field effect transistor structure, and manufacturing method for same
CN117174738A (zh) 一种沟槽屏蔽栅mosfet器件及其制造方法和电子设备
US20140117379A1 (en) Semiconductor device and method of manufacturing the same
CN104103576A (zh) 沟槽型双层栅功率mos器件的接触孔工艺方法
TWI524525B (zh) 具有汲極在頂部的功率電晶體及其形成方法
CN210926025U (zh) 具有底部厚氧化层的沟槽栅mos结构
CN113013228A (zh) 一种提升ldmos性能的方法
TWI548090B (zh) 半導體裝置及其製作方法
TWI431695B (zh) 溝槽式金屬氧化半導體場效電晶體的製造方法
KR20100074503A (ko) 트렌치 게이트형 모스트랜지스터의 제조방법
TWI511293B (zh) 雙溝渠式mos電晶體結構及其製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 518000 unit 601-602, building B, tefa information port, No.2 Kefeng Road, high tech Zone, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen Shangyangtong Technology Co.,Ltd.

Address before: 518000 unit 601-602, building B, tefa information port, No.2 Kefeng Road, high tech Zone, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN SANRISE-TECH Co.,Ltd.