CN109935815B - 一种炭包覆的多元硫化物异质结材料及制备方法和应用 - Google Patents

一种炭包覆的多元硫化物异质结材料及制备方法和应用 Download PDF

Info

Publication number
CN109935815B
CN109935815B CN201910211821.2A CN201910211821A CN109935815B CN 109935815 B CN109935815 B CN 109935815B CN 201910211821 A CN201910211821 A CN 201910211821A CN 109935815 B CN109935815 B CN 109935815B
Authority
CN
China
Prior art keywords
carbon
coated
preparation
sulfide heterojunction
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910211821.2A
Other languages
English (en)
Other versions
CN109935815A (zh
Inventor
韩飞
张成智
刘金水
张福全
王飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201910211821.2A priority Critical patent/CN109935815B/zh
Publication of CN109935815A publication Critical patent/CN109935815A/zh
Application granted granted Critical
Publication of CN109935815B publication Critical patent/CN109935815B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及电化学电池电极材料的制备技术领域,提供了一种炭包覆多元硫化物异质结材料,由包括核体和包覆于核体外部的壳体构成,所述的核体为多元硫化物异质结,所述壳体为炭层。所述的多元硫化物异质结为过渡金属硫化物中的两种或两种以上混合物。并提供了一种操作简单,处理成本低、处理效果好、应用范围广、可循环利用和环境友好的多元硫化物异质结材料的制备方法并对该材料进行炭包覆处理,作为电化学电池的电极材料使用,解决现有技术中电极材料内部离子和电子传输速度慢的技术问题,使其具有可逆容量高、倍率性能好的特点。

Description

一种炭包覆的多元硫化物异质结材料及制备方法和应用
技术领域
本发明涉及电化学电池电极材料的制备技术领域,具体是涉及一种炭包覆多元硫化物异质结材料及制备方法和应用。
背景技术
无论是世界电网的发展和可再生能源(太阳能、风能、潮汐能)的高效利用,还是基于电动车辆的未来清洁交通的需求,均需要廉价高效的电化学储能技术作为支持。电化学储能的载体是电池,在现有储能电池体系中,锂离子电池由于具有工作电压高、容量高、自放电小和循环寿命长等优点而征服了便携式电子市场,并成为电动汽车(包括 EV和 HEV等)和大规模储能系统用动力电源的首要选择。但是,随着电动汽车、智能电网时代的真正到来,全球的锂资源将无法有效满足动力锂离子电池的巨大需求,从而将进一步推高与锂相关材料的价格,增大电池成本,最终阻碍新能源产业的发展。因此,开发其他廉价可替代锂离子电池的钠、钾、镁、锌离子电池技术非常关键。
然而,钠、钾、镁、锌离子的半径尺寸均远大于锂离子的半径尺寸,这将导致离子在材料中迁移缓慢,嵌入脱出更困难,活性材料的电化学利用率相对较低,最终导致电池的可逆容量低、倍率性能不理想。研究发现,通过整合不同的活性组分,构筑具有异质结构的电极材料,在不同相之间存在的异质界面会引发协同效应,促进电子和离子的扩散传输,有效提升电极材料的可逆容量和倍率性能。但是,当前构筑异质结构的方法普遍采用以一种材料为基地,在上面生长另一种材料的策略(如:CN201811100693.6,CN201811267252.5),该策略制备方法复杂,且形成的异质界面有限,无法表现出优异的异质界面效应。为了保证活性组分在纳米级水平上的充分混合,构筑有效的异质结构,促进电子和离子在材料内部的扩散传输,亟需开发更加高效的异质结材料制备方法。除此之外,作为电极材料使用,为了稳定电极与电解液接触界面,需对电极材料进行炭包覆处理。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种操作简单,处理成本低、处理效果好、应用范围广、可循环利用和环境友好的多元硫化物异质结材料的制备方法并对该材料进行炭包覆处理,作为电化学电池的电极材料使用,解决现有技术中电极材料内部离子和电子传输速度慢的技术问题,使其具有可逆容量高、倍率性能好的特点。
为了实现上述目的,本发明材料以下技术方案:
一种炭包覆多元硫化物异质结材料,由包括核体和包覆于核体外部的壳体构成,所述的核体为多元硫化物异质结,所述壳体为炭层。
所述的多元硫化物异质结为过渡金属硫化物中的两种或两种以上混合物。
优选地,所述的多元硫化物异质结为FenSm、ZnS、SnxSy、MoS2、CoS、NiS、MnS、CuS和WS2中的两种或两种以上混合物,其中m、n、x、y为自然数。
一种炭包覆多元硫化物异质结材料的制备方法,包括以下步骤:
(1)多元金属氧化物的制备:以两种或两种以上过渡金属盐类为前驱体,以氢氧化锂、氢氧化钠或氢氧化钾为络合剂,以双氧水为沉淀剂,形成沉淀混合物,将混合物与无水氯化物盐混合研磨,在空气中于350-650°C加热处理1-4 h,得到混合的多元金属氧化物;
(2)炭包覆处理:将多元金属氧化物分散于炭前驱体溶液中,经过反应得到聚合物包覆的多元金属氧化物,在惰性气体保护下加热到400-800°C保温1-4h;
(3)硫化处理:样品置于加热器中,温度升高至300-550°C,在硫源气氛下处理1-5h,得到炭包覆的多元硫化物异质结材料。
优选地,所述的步骤(1)的过渡金属为Fe、Zn、Sn、Mo、Co、Ni、Mn、Cu或W。
所述的步骤(1)的无水氯化物盐包括LiCl+KCl、NaCl+KCl、LiCl+NaCl、LiCl+CaCl2、LiCl+MgCl2、KCl+MgCl2、MgCl2+CaCl2中的一种或多种。
所述的步骤(2)的炭前驱体包括多巴胺、葡萄糖、酚酸树脂、沥青、苯胺中的一种或多种。
所述的步骤(3)的硫源包括二硫化碳、硫磺、硫脲,硫化氢中的一种或多种。
上述方法制备的炭包覆多元硫化物异质结材料在钠离子电池、钾离子电池、镁离子电池和锌离子电池电极材料中的应用。
与现有技术相比,本发明的优势在于:
(1)显著的异质结效应
熔盐体系下促进不同组分之间的相互融合,增加相互接触面积,形成更有效的异质界面,使异质结效应更加显著;
(2)工艺简单,适合大规模生产
本发明提供了一种操作简单易控、处理成本低、处理效果好、工艺重复性好、产品性能稳定且适合大规模生产的制备方法;炭包覆处理有效避免活性材料与电解液的直接接触,提升电极-电解液界面稳定性,增加电极材料的循环寿命;
(3)有超强的倍率性能
该电极材料具有优异的电子离子传输能力,作为钠离子电池负极材料使用,可逆容量高达625 mAh g-1,在20 A g-1的大电流密度下,可逆容量仍有339 mAh g-1左右,显示出超强的倍率性能。
附图1说明
图1为本发明实施例1的炭包覆Fe9S10/ZnS的XRD图;
图2为本发明实施例1的炭包覆Fe9S10/ZnS的透射电子显微镜(TEM)图;
图3为本发明实施例1的炭包覆Fe9S10/ZnS和对比例1中炭包覆Fe9S10材料作为钠离子负极材料的循环性能图;
图4为本发明实施例1的炭包覆Fe9S10/ZnS的倍率性能图;
图5为本发明实施例2的炭包覆Sn2S3/ZnS的XRD图。
具体实施方式
以下通过实施例进一步详细说明本发明,以使本领域技术人员更好地理解本发明,但本发明不局限于以下实施例。
实施例1
Fe2O3/ZnO前驱体的制备:取16g无水氯化铁和14g无水氯化锌溶解在500ml去离子水和100ml酒精的混合液中,接着依次倒入5g一水氢氧化锂和缓慢滴加40mL的双氧水,持续搅拌2h。经分离、洗涤、干燥后,得到多元的混合物。取10g混合物与4.5g无水氯化锂和5.5g无水氯化钾混合研磨均匀,后转移至马弗炉中,在空气条件下于450°C加热处理2 h,使得Fe2O3和ZnO在熔盐环境中充分混合均匀。最后采用水洗的方式除去可溶性盐,该盐可回收利用,经过过滤、干燥后得到Fe2O3/ZnO前驱体粉末。
炭包覆Fe9S10/ZnS异质结的制备:取6g Fe2O3/ZnO前驱体粉末超声分散于200mL pH=8.5的Tris溶液中,在搅拌的情况下加入2g 多巴胺。接着在水浴条件下于30°C持续搅拌24h,经过滤、洗涤、干燥后得到聚多巴胺包覆的前驱体。样品转移至管式炉中,在N2气氛下加热到450°C保温2h。最后,将样品温度升高至550°C,以N2为载气,通入CS2气体,在CS2气氛下处理2h,得到炭包覆的Fe9S10/ZnS异质结材料。
在附图1的XRD中,可以明显的看出Fe9S10/ZnS异质结中具有显著的Fe9S10和ZnS组分的特征峰。在图2的TEM图片可观察到清晰的Fe9S10和ZnS异质界面,说明形成了良好的Fe9S10/ZnS异质结构。
以Fe9S10/ZnS@C异质结材料作为钠离子电池负极材料,如图3所示,以大电流密度500 mA g-1进行充放电,首效高达85%,100个循环之后Fe9S10/ZnS@C异质结仍然保持接近600mAh g-1的超高容量。另外,材料的倍率性能优异(图4),当电流密度达到10和20 A g-1时,可逆容量可保持在408和339 mAh g-1左右,进一步证明该材料具有超强的电子离子运输能力。
实施例2
SnO2/ZnO前驱体的制备:取10g无水氯化亚锡和20g无水氯化锌溶解在500ml去离子水和100ml酒精的混合液中,接着依次倒入5g一水氢氧化钠和缓慢滴加40mL的双氧水,持续搅拌2h。经分离、洗涤、干燥后,得到多元的混合物。取10g混合物与6g无水氯化钠和4g无水氯化钾混合研磨均匀,后转移至马弗炉中,在空气条件下于450°C加热处理2 h,使得SnO2和ZnO在熔盐环境中充分混合均匀。最后采用水洗的方式除去可溶性盐,该盐可回收利用,经过过滤、干燥后得到SnO2/ZnO前驱体粉末。
炭包覆Sn2S3/ZnS异质结的制备:取6g SnO2/ZnO前驱体粉末超声分散于200mL 水溶液中,在搅拌的情况下加入2g 葡萄糖。接着将悬浮液转移至水热釜中在170°C持续加热处理24h,经过滤、洗涤、干燥后得到聚多糖包覆的前驱体。样品转移至管式炉中,在N2气氛下加热到450°C保温2h。最后,将样品温度升高至550°C,以N2为载气,通入CS2气体,在CS2气氛下处理2h,得到炭包覆的Sn2S3/ZnS异质结材料。
附图5的XRD显示Sn2S3/ZnS异质结中具有显著的Sn2S3和ZnS组分的特征峰,说明成功构建Sn2S3/ZnS异质结。以Sn2S3/ZnS@C异质结材料做为钠离子电池负极材料,在大电流密度500 mA g-1进行充放电,首效高达80%,100个循环之后,可逆容量保持在500 mAh g-1左右。
实施例3
MoO3/Fe2O3前驱体的制备:取15g无水氯化铁和15g四水钼酸铵溶解在500ml去离子水和100ml酒精的混合液中,接着依次倒入5g一水氢氧化锂和缓慢滴加40mL的双氧水,持续搅拌2h。经分离、洗涤、干燥后,得到多元的混合物。取10g混合物与7.5g无水氯化钠和2.5g无水氯化钙混合研磨均匀,后转移至马弗炉中,在空气条件下于350°C加热处理4h,使得Fe2O3和MoO3在熔盐环境中充分混合均匀。最后采用水洗的方式除去可溶性盐,该盐可回收利用,经过过滤、干燥后得到MoO3/Fe2O3前驱体粉末。
炭包覆MoS2/Fe9S10异质结的制备:取6g MoO3/Fe2O3前驱体粉末超声分散于200mL水溶液中,在搅拌的情况下依次加入1.1g的间苯二酚、10mL氨水和1.5mL甲醛溶液。接着在水浴条件下于60°C持续搅拌5h,经过滤、洗涤、干燥后得到酚醛树脂包覆的前驱体。样品转移至管式炉中,在N2气氛下加热到550°C保温2h。最后,将样品与硫磺进行混合,再次置于加热器中,温度升高至300°C处理5h,得到炭包覆的MoS2/Fe9S10异质结材料。
实施例4
MnO2/CoO前驱体的制备:取14g无水氯化锰和16g无水氯化钴溶解在500ml去离子水和100ml酒精的混合液中,接着依次倒入5g一水氢氧化钾和缓慢滴加40mL的双氧水,持续搅拌2h。经分离、洗涤、干燥后,得到多元的混合物。取10g混合物与5.5g无水氯化锂和4.5g无水氯化镁混合研磨均匀,后转移至马弗炉中,在空气条件下于650°C加热处理3 h,使得MnO2和CoO在熔盐环境中充分混合均匀。最后采用水洗的方式除去可溶性盐,该盐可回收利用,经过过滤、干燥后得到MnO2/CoO前驱体粉末。
炭包覆MnS/CoS异质结的制备:取6g MnO2/CoO前驱体粉末超声分散于200mL pH=8.5的Tris溶液中,在搅拌的情况下加入2g 多巴胺。接着在水浴条件下于30°C持续搅拌24h,经过滤、洗涤、干燥后得到聚多巴胺包覆的前驱体。样品转移至管式炉中,在N2气氛下加热到800°C保温1h。最后,将样品温度升高至450°C,以N2为载气,通入CS2气体,在CS2气氛下处理2h,得到炭包覆的MnS/CoS异质结材料。
实施例5
NiO/SnO2/CoO前驱体的制备:取14g无水氯化镍、10g无水氯化亚锡和16g无水氯化钴溶解在500ml去离子水和100ml酒精的混合液中,接着倒入10g无水硝酸锂和7g一水氢氧化锂,持续搅拌1h。然后再缓慢滴加60mL的双氧水,继续搅拌2h。搅拌结束后,采用加热减压蒸馏的方式除去溶剂,得到干燥的混合物。该混合物经过研磨之后,转移至马弗炉中,在空气条件下于550°C加热处理2 h,使得NiO、SnO2和CoO在熔盐环境中充分混合均匀。最后采用水洗的方式除去可溶性盐,该盐可回收利用,经过过滤、干燥后得到NiO/SnO2/CoO前驱体粉末。
炭包覆NiS/Sn2O3/CoS异质结的制备:取6g NiO/SnO2/CoO前驱体粉末超声分散于200mL pH=8.5的Tris溶液中,在搅拌的情况下加入2g 多巴胺。接着在水浴条件下于30°C持续搅拌24h,经过滤、洗涤、干燥后得到聚多巴胺包覆的前驱体。样品转移至管式炉中,在N2气氛下加热到650°C保温4h。最后,将样品温度升高至550°C,以N2为载气,通入CS2气体,在CS2气氛下处理2h,得到炭包覆的NiS/Sn2O3/CoS异质结材料。
对比例1
Fe2O3前驱体的制备:取16g无水氯化铁溶解在500ml去离子水和100ml酒精的混合液中,接着倒入5g无水硝酸锂和3g一水氢氧化锂,持续搅拌1h。然后再缓慢滴加30mL的双氧水,继续搅拌2h。搅拌结束后,采用加热减压蒸馏的方式除去溶剂,得到干燥的混合物。该混合物经过研磨之后,转移至马弗炉中,在空气条件下于450°C加热处理2 h。最后采用水洗的方式除去可溶性盐,该盐可回收利用,经过过滤、干燥后得到Fe2O3前驱体粉末。
炭包覆Fe9S10的制备:取6g Fe2O3前驱体粉末超声分散于200mL pH=8.5的Tris溶液中,在搅拌的情况下加入2g 多巴胺。接着在水浴条件下于30°C持续搅拌24h,经过滤、洗涤、干燥后得到聚多巴胺包覆的前驱体。样品转移至管式炉中,在N2气氛下加热到450°C保温2h。最后,将样品温度升高至550°C,以N2为载气,通入CS2气体,在CS2气氛下处理2h,得到炭包覆的Fe9S10材料。
该材料无异质结构,作为钠离子电池负极材料,在0.5A/g的电流密度下,容量仅为295 mAh/g,且循环性能较差,经过100次循环后,容量衰减至221mAh/g,容量保持率为74.5%。
对比例2
Fe2O3/ZnO前驱体的制备:取16g无水氯化铁和14g无水氯化锌溶解在500ml去离子水和100ml酒精的混合液中,接着倒入7g无水硝酸锂和5g一水氢氧化锂,持续搅拌1h。然后再缓慢滴加40mL的双氧水,继续搅拌2h。搅拌结束后,采用加热减压蒸馏的方式除去溶剂,得到干燥的混合物。该混合物经过研磨之后,转移至马弗炉中,在空气条件下于450°C加热处理2 h,使得Fe2O3和ZnO在熔盐环境中充分混合均匀。最后采用水洗的方式除去可溶性盐,该盐可回收利用,经过过滤、干燥后得到Fe2O3/ZnO前驱体粉末。
Fe9S10/ZnS异质结的制备:取6g Fe2O3/ZnO前驱体粉末转移至管式炉中,将样品温度升高至550°C,以N2为载气,通入CS2气体,在CS2气氛下处理2h,得到Fe9S10/ZnS异质结材料。
该材料无炭层包覆,作为钠离子电池负极材料,在0.5A/g的电流密度下,容量为628 mAh/g,但循环性能不稳定,经过100次循环后,容量衰减至357mAh/g,容量保持率为56.8%。
效果实施例
将实施例1及对比例1、2制备的材料作为钠离子电池负极材料,考察其性能比较,结果见表1。
表1实施例1及对比例1、2制备的材料作为钠离子电池负极材料性能分析
材料 0.5A/g电流下的容量 100次循环后容量 100次循环后容量保持率
实施例1 625 mAh/g 600 mAh/g 96%
对比例1 295 mAh/g 221mAh/g 74.5%
对比例2 628 mAh/g 357mAh/g 56.8%

Claims (6)

1.一种炭包覆多元硫化物异质结材料的制备方法,其特征在于,所述炭包覆多元硫化物异质结材料由核体和包覆于核体外部的壳体构成,所述的核体为多元硫化物异质结,所述壳体为炭层;
所述的多元硫化物异质结为FenSm、ZnS、SnxSy、MoS2、CoS、NiS、MnS、CuS和WS2中的两种以上混合物,其中m、n、x、y为自然数;
所述的制备方法,包括以下步骤:
(1)多元金属氧化物的制备:以两种以上过渡金属盐类为前驱体,以氢氧化锂、氢氧化钠或氢氧化钾为沉淀剂,以双氧水为络合剂,形成沉淀混合物,将沉淀混合物与无水氯化物盐混合研磨,在空气中于350-650℃加热处理1-4 h,得到多元金属氧化物;
(2)炭包覆处理:将多元金属氧化物分散于炭前驱体溶液中,经过反应得到聚合物包覆的多元金属氧化物,在惰性气体保护下加热到400-800℃保温1-4h;
(3)硫化处理:将步骤(2)制备的样品置于加热器中,温度升高至300-550℃,在硫源气氛下处理1-5h,得到炭包覆的多元硫化物异质结材料。
2.根据权利要求1所述的制备方法,其特征在于,所述的步骤(1)的过渡金属为Fe、Zn、Sn、Mo、Co、Ni、Mn、Cu或W。
3.根据权利要求1所述的制备方法,其特征在于,所述的步骤(1)的无水氯化物盐包括LiCl+KCl、NaCl+KCl、LiCl+NaCl、LiCl+CaCl2、LiCl+MgCl2、KCl+MgCl2、MgCl2+CaCl2中的一种或多种。
4.根据权利要求1所述的制备方法,其特征在于,所述的步骤(2)的炭前驱体包括多巴胺、葡萄糖、酚醛树脂、沥青、苯胺中的一种或多种。
5.根据权利要求1所述的制备方法,其特征在于,所述的步骤(3)的硫源包括二硫化碳、硫磺、硫脲,硫化氢中的一种或多种。
6.一种采用权利要求1的方法制备的多元硫化物异质结材料在钠离子电池、钾离子电池、镁离子电池和锌离子电池电极材料中的应用。
CN201910211821.2A 2019-03-20 2019-03-20 一种炭包覆的多元硫化物异质结材料及制备方法和应用 Active CN109935815B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910211821.2A CN109935815B (zh) 2019-03-20 2019-03-20 一种炭包覆的多元硫化物异质结材料及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910211821.2A CN109935815B (zh) 2019-03-20 2019-03-20 一种炭包覆的多元硫化物异质结材料及制备方法和应用

Publications (2)

Publication Number Publication Date
CN109935815A CN109935815A (zh) 2019-06-25
CN109935815B true CN109935815B (zh) 2022-02-15

Family

ID=66987745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910211821.2A Active CN109935815B (zh) 2019-03-20 2019-03-20 一种炭包覆的多元硫化物异质结材料及制备方法和应用

Country Status (1)

Country Link
CN (1) CN109935815B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518228B (zh) * 2019-09-17 2023-06-20 安徽大学 一种包埋无机纳米粒子的三维石墨烯碳纳米复合材料及其应用
CN110828785B (zh) * 2019-09-25 2022-03-08 肇庆市华师大光电产业研究院 一种锌钴双金属硫化物的钠离子电池负极材料的制备方法
CN110776014B (zh) * 2019-10-10 2020-10-27 北京理工大学 钠离子电池负极复合材料及其制备方法
CN110931755B (zh) * 2019-12-12 2021-10-22 厦门理工学院 高比容量锂离子电池材料、制备方法及锂离子电池
CN111204808B (zh) * 2020-01-10 2022-04-12 安徽师范大学 一种二硫化钼微胶囊的制备方法、镁离子电池正极、镁离子电池
CN111403743A (zh) * 2020-03-25 2020-07-10 陕西科技大学 一种MoS2@CuS@EG纳米中空花状镁锂双盐电池正极材料及其制备方法及应用
CN111599996B (zh) * 2020-05-07 2021-08-24 武汉理工大学 NiS2@CoS2@C分级纳米空心球材料及其制备方法和应用
CN112563471B (zh) * 2020-12-10 2022-04-08 潍坊科技学院 一种二硫化钴/碳空心纳米花复合材料的制备方法及所制备的复合材料
CN113415827B (zh) * 2021-05-31 2022-05-27 中南大学 一种硫化锰/多孔炭储能材料的制备方法及其应用
CN113611833A (zh) * 2021-07-30 2021-11-05 广东工业大学 一种阳离子插层改性的CuS@CTAB电极材料在锌离子电池中的应用
CN114203984A (zh) * 2021-11-08 2022-03-18 南京航空航天大学 一种WS2@MoS2@C/rGO电极材料及制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011000828A1 (de) * 2009-06-30 2011-01-06 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Mit einem organisch modifizierten (hetero-)kieselsäurepolykondensat beschichtete, einen metallischen, zur wasserstoffspeicherung geeigneten kern enthaltende partikel, damit hergestellte batterien sowie verfahren zu deren herstellung unter verwendung der partikel
CN102468478A (zh) * 2010-11-17 2012-05-23 中国科学院大连化学物理研究所 纳米级复合金属氧化物八面体的制备方法
CN108598411A (zh) * 2018-04-20 2018-09-28 湖北工程学院 碳掺杂氮包覆氧化锡/氧化铁复合材料及其制备方法、锂电池材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011000828A1 (de) * 2009-06-30 2011-01-06 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Mit einem organisch modifizierten (hetero-)kieselsäurepolykondensat beschichtete, einen metallischen, zur wasserstoffspeicherung geeigneten kern enthaltende partikel, damit hergestellte batterien sowie verfahren zu deren herstellung unter verwendung der partikel
CN102468478A (zh) * 2010-11-17 2012-05-23 中国科学院大连化学物理研究所 纳米级复合金属氧化物八面体的制备方法
CN108598411A (zh) * 2018-04-20 2018-09-28 湖北工程学院 碳掺杂氮包覆氧化锡/氧化铁复合材料及其制备方法、锂电池材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Liang Cao et al.Synergistical Coupling Interconnected ZnS/SnS2 Nanoboxes with Polypyrrole-Derived N/S Dual-Doped Carbon for Boosting High-Performance Sodium Storage.《Small》.2019,第15卷(第9期), *
Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries;Zhiming Liu et al;《Energy & Environmental Science》;20170531;第10卷(第7期);第1576-1580页、Electronic Supplementary Information *
Synergistical Coupling Interconnected ZnS/SnS2 Nanoboxes with Polypyrrole-Derived N/S Dual-Doped Carbon for Boosting High-Performance Sodium Storage;Liang Cao et al;《Small》;20190123;第15卷(第9期);第1804861(1-11)页 *

Also Published As

Publication number Publication date
CN109935815A (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
CN109935815B (zh) 一种炭包覆的多元硫化物异质结材料及制备方法和应用
CN108232164B (zh) 一种锂硫电池正极材料及其制备方法
CN110943217B (zh) 由金属有机骨架转化的双金属硫化物/硫颗粒复合材料、制备方法及其应用
CN109167035B (zh) 碳包覆的硫化亚铁负极材料、制备方法及其制备的钠离子电池
CN109167010B (zh) 一种用于锂硫电池的功能性隔膜及其制备方法
CN102368553B (zh) 含石墨烯的硫基复合材料及其制备方法
CN110247047B (zh) 一种锂硫电池正极材料及其制备方法
CN110790322B (zh) 核壳状铁酸镍及制备方法、铁酸镍@c材料及制备方法与应用
CN107069001B (zh) 一种蜂窝状硫化锌/碳复合负极材料及其制备方法
CN108091871A (zh) 一种多孔球状锂离子电池三元正极材料及其制备方法
CN111525119B (zh) 一种锂硫电池正极材料及其制备方法
CN107732203B (zh) 一种纳米二氧化铈/石墨烯/硫复合材料的制备方法
CN104167540A (zh) 负极活性材料及其制备方法以及锂离子电池
CN113130851B (zh) 一种ASx/BSy复合异质电极材料及其制备方法和应用
CN109437328A (zh) 一种纳米级短棒状多孔四氧化三钴电极材料的制备方法
CN103346297A (zh) 一种碳包覆复合金属氧化物电极材料的制备方法
CN111600011A (zh) 一种掺杂型普鲁士蓝类材料及其制备方法和应用
CN108777293B (zh) 一种纳米复合材料及其制备方法和应用
CN105514421A (zh) 一种改性氧化镍负极材料及其制备方法
CN108767219B (zh) 一种纳米复合材料及其制备方法和应用
CN110921668B (zh) 一种过渡金属碳化物、碳材料、过渡金属硫属化合物的制备方法和应用
CN108461731A (zh) 一种高镍三元锂电池正极材料及制备方法
CN105304895B (zh) 含锂金属氧化物锂电纳米电极材料及其制备方法
CN113745476A (zh) 一种锰基锌离子电池正极材料及其制备方法和应用
CN109768233B (zh) 锂离子电池NiCo2S4/石墨烯复合负极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant