CN109881280A - 一种聚丙烯腈纤维、制备方法及其碳纤维的制备方法 - Google Patents

一种聚丙烯腈纤维、制备方法及其碳纤维的制备方法 Download PDF

Info

Publication number
CN109881280A
CN109881280A CN201910120658.9A CN201910120658A CN109881280A CN 109881280 A CN109881280 A CN 109881280A CN 201910120658 A CN201910120658 A CN 201910120658A CN 109881280 A CN109881280 A CN 109881280A
Authority
CN
China
Prior art keywords
fiber
temperature
oxidation
preparation
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910120658.9A
Other languages
English (en)
Other versions
CN109881280B (zh
Inventor
王宇
徐樑华
康宸
李常清
高爱君
童元建
曹维宇
赵振文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201910120658.9A priority Critical patent/CN109881280B/zh
Publication of CN109881280A publication Critical patent/CN109881280A/zh
Application granted granted Critical
Publication of CN109881280B publication Critical patent/CN109881280B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种聚丙烯腈(PAN)纤维、制备方法及其碳纤维的制备方法。本发明通过提升PAN纤维制备过程中热定型温度在170℃~240℃,热定型牵伸倍率在0%~20%,同时抑制纤维物理热收缩,并使其发生弱环化氧化反应,从而制备出具有弱氧化环化高取向的聚丙烯腈原丝。本发明制备的纤维具有相对环化率在5%~30%、纤维分子链全取向在0.60~0.88之间的特征。后续采用这种原丝进行预氧化碳化制备碳纤维,缩短了预氧化时间,降低了能耗,缩短了工艺流程,提高了生产效率,同时也提高了碳纤维中碳微晶取向及碳纤维力学性能。

Description

一种聚丙烯腈纤维、制备方法及其碳纤维的制备方法
技术领域
本发明涉及一种采用控制聚丙烯腈纤维制备过程中热定型工艺的温度和张力的方法来制备一种聚丙烯腈纤维,属于有机高分子纤维制备领域。
背景技术
聚丙烯腈(PAN)纤维是制备碳纤维的重要前躯体,其取向结构会影响PAN基碳纤维的取向。PAN纤维的取向结构是在纺丝成型过程中受到牵伸作用所形成的。但纺丝过程中PAN纤维会受迫形成高弹形变,其纤维中取向分子在纺丝和预氧化阶段的高温条件下,在熵弹回复力的作用下会出现物理收缩——热松弛行为,进而发生取向损失和一系列结构变化。因此,通过控制PAN取向分子的热松弛行为,可以对PAN纤维的聚集态结构进行调控,有助于获得优良结构的PAN原丝和碳纤维。
目前国内外对PAN纤维取向结构的研究主要集中在凝固条件和牵伸条件对其取向的影响,缺乏对取向结构保持的研究。而且在PAN纤维制备碳纤维过程中,控制其热收缩行为的研究主要集中在预氧化阶段施加牵伸来补偿取向的损失,忽视了PAN纤维高温化学反应的特性,更忽视了在原丝制备过程中综合运用物理和化学手段来控制热松弛而保持取向的研究。
根据有机纤维结构和性能相关性研究,在牵伸提高纤维取向度从而提高其拉伸强度的同时,断裂伸长率降低了很多。这是由于取向过度,分子排列过于规整,分子间相互作用力太大,纤维弹性太小,呈现脆性。因此,传统化学纤维制造工艺,一般要求纤维具有10%~20%的弹性伸长,即要求高强度和适当的弹性相结合。受传统化学纤维成熟制造工艺的影响,在PAN基碳纤维的制备过程中,往往在最后一个过程在很短时间内用热空气和水蒸气很快地吹一下,使链段解取向,这个过程称为“热处理”或“热定型”,这样纤维损失了取向。
同时,PAN基碳纤维整个制备工艺过程中,原丝制备和预氧化碳化工艺通常是被割裂的两大工艺。但碳纤维用PAN纤维和其他有机纤维不同,它是个前躯体,整个制备工艺过程都是为碳纤维服务。本发明通过改变热定型温度和张力,而让原丝在热定型过程中发生物理和化学的反应,控制热松弛解取向并提升纤维的取向度,相当于将初步预氧化反应前置于原丝制备过程中,国内外还没有相关报道和专利提及,是一种新的尝试。
同时,聚丙烯腈基碳纤维的制备工艺流程很长,其中耗时最长的就是预氧化过程,若将初步预氧化过程前置于原丝制备,不仅可以降低热定型过程中纤维因收缩而产生的解取向,还可以缩短工艺流程,降低能耗,提高了生产效率。
发明内容
本发明的目的在于提供的一种新的聚丙烯腈纤维、制备方法及其用该纤维制备碳纤维的方法。本发明提供的聚丙烯腈纤维相对环化率在5%~30%,分子链全取向在0.60~0.88之间。本发明通过提升PAN纤维制备过程中热定型温度在170℃~240℃,热定型牵伸倍率在
0%~20%,同时抑制纤维物理热收缩,并使其发生弱环化氧化反应,从而制备出具有弱氧化环化特征高取向的聚丙烯腈原丝。在后续的预氧化碳化制备碳纤维的工艺过程中,取消梯度预氧化的最低温预氧化炉,降低了能耗,简化了工艺流程,提高了生产效率,同时也提高了碳纤维中碳微晶取向。
本发明的技术方案如下:
一种聚丙烯腈纤维,相对环化率在5%~30%、纤维分子链全取向在0.60~0.88之间。
一种聚丙烯腈纤维的制备方法,将聚丙烯腈纺丝液采用纺丝工艺纺制,经凝固成型、一级牵伸、水洗、上油、干燥致密化、二级牵伸和热定型,其特征在于:提升热定型温度和牵伸倍率使得纤维发生弱环化和氧化反应。
所述热定型温度在170℃~240℃,牵伸倍率在0%~20%。
所述的纺丝工艺为湿法纺丝或干湿法纺丝。
所述湿法纺丝凝固成型的牵伸倍率为-45%~0%,干湿法纺丝凝固成型的牵伸倍率为正牵1~8倍。
所述一级牵伸的牵伸介质为100℃~110℃的水蒸气,牵伸倍数4~8倍,二级牵伸的牵伸介质为120℃~150℃的过热水蒸气,牵伸倍数为1.5~3倍。
所述聚丙烯腈纺丝液是通过以下方法制备得到的:以偶氮二异丁腈为引发剂、二甲基亚砜为溶剂,将摩尔比为92~96:0.5~3:2~5的丙烯腈、衣康酸和甲基丙烯酸甲酯或者摩尔比为96~99:1~4的丙烯腈和衣康酸,在温度55~65℃,搅拌速率20~60rpm的条件下搅拌聚合,聚合反应20~30小时制得分子量为8.5~20.5万的聚丙烯腈纺丝原液,纺丝原液经脱单脱泡后得到纺丝液,其中,二甲基亚砜占丙烯腈和二甲基亚砜质量百分比浓度的77%~82%,偶氮二异丁腈占丙烯腈摩尔分数的0.1%~0.4%,所制得的纺丝原液中聚丙烯腈共聚物质量百分含量在18%~23%,25℃旋转粘度计测得纺丝原液粘度为1800~3800泊。
一种用上述聚丙烯腈纤维制备碳纤维的方法:包括如下步骤:
预氧化:取消梯度预氧化的最低预氧化炉,分2~5个温区对所制得的聚丙烯腈原丝进行预氧化处理40~120分钟,预氧化起始温度220~250℃,终温260~320℃;预氧化时纤维总的牵伸倍率在1%~10%;
低温碳化:采用高纯氮气作为保护气,氮气中氧含量低于5ppm,将得到的预氧化纤维在温度300℃~800℃下低温碳化1.5~6分钟,低温碳化时纤维牵伸倍率在2%~6%;
高温碳化:采用高纯氮气作为保护气,氮气中氧含量低于5ppm,碳化温度为1100~1300℃,高温碳化时纤维的牵伸倍率在-5%~-2%高温碳化1~4分钟后得到聚丙烯腈基碳纤维。
本发明的优点和有益效果:
本发明通过提高常规原丝制备的最后一道工艺——热定型的温度和牵伸倍率,而抑制纤维热物理收缩,并控制纤维发生适度环化和氧化反应,与常规工艺所得纤维相比,原丝全取向提高了15%~75%,原丝碳化后碳纤维中碳微晶的择优取向程度提高了2%~10%,在碳纤维断裂伸长率相当的情况下,其强度提高了4%~15%,达到了同时提升原丝纤维中分子链全取向和碳纤维中碳微晶取向的目的,同时实现聚丙烯腈碳纤维性能的提升。本发明相当于将预氧化工艺前置于原丝制备,不仅可以降低纤维热收缩的解取向,还将纤维后续热处理过程的预氧化时间缩短1/6~1/4,降低了能耗,缩短了工艺流程,提高了生产效率。
具体实施方式
下边结合实施例,对本发明做进一步详细说明。
对比例1:
选取常规聚合湿法纺丝工艺中的一个工艺,具体如下:
(1)聚丙烯腈纺丝液的制备
以偶氮二异丁腈为引发剂、二甲基亚砜为溶剂,将摩尔比为96:2:2的丙烯腈、衣康酸和甲基丙烯酸甲酯在温度62℃,搅拌速率40rpm的条件下搅拌聚合,聚合反应25小时制得分子量为15.5万的聚丙烯腈纺丝原液,纺丝原液经脱单脱泡后得到纺丝液,其中,二甲基亚砜占丙烯腈和二甲基亚砜质量百分比浓度重量的78.5%,偶氮二异丁腈占丙烯腈摩尔分数的0.25%,所制得的纺丝原液中聚丙烯腈共聚物质量百分含量在21%,25℃旋转粘度计测得纺丝原液粘度为2600泊。
(2)原丝的湿法纺制
采用湿法纺丝工艺,经凝固成型、一级牵伸、水洗、上油、干燥致密化、二级牵伸和热定型工艺后得到碳纤维原丝,其中,凝固牵伸为-25%;一级牵伸的牵伸介质为100℃的水蒸气,牵伸倍数4.5倍;二级牵伸的牵伸介质为120℃的过热水蒸气,牵伸倍数为2.4倍;热定型温度为150℃,牵伸为-3.5%。采用中国科学院化学所制造的纤维声速-取向度测定仪测试纤维分子链全取向(见表1)。下同。
(3)原丝预氧化、低温碳化、高温碳化制备碳纤维
预氧化:在空气气氛下采用梯度升温法,选用4个温区,分别为200℃/230℃/245℃/260℃对步骤(2)原丝进行预氧化处理75分钟,总牵伸倍率为4%;
低温碳化:将得到的预氧化纤维进入低温碳化炉进行低温碳化处理,采用高纯氮气作为保护气,氮气中氧含量为5ppm。低温碳化温度650℃,时间4分钟,低温碳化时纤维牵伸倍率在4%;
高温碳化:纤维出低温碳化炉后进入高温碳化炉进行高温碳化处理,采用高纯氮气作为保护气,氮气中氧含量为5ppm。高温碳化温度为1300℃,高温碳化时纤维的牵伸倍率在-4%,高温碳化3分钟后得到聚丙烯腈基碳纤维。依据GB3362~3368-82《碳纤维检验方法》,采用密度梯度法对碳纤维进行体密度测试,采用岛津(SHUMADZU),AG-1S(1kN)型万能材料试验机进行束丝拉伸性能测试(见表1)。下同。
实施例1
(1)聚丙烯腈纺丝液的制备
同对比例1。
(2)原丝的湿法纺制
泵供量为对比例1的1.05倍,保证了纤维线密度相当;热定型温度为180℃,热定型牵伸倍率为10%。
其他同对比例1。
将所制备的纤维采用Nicolet公司5700型傅里叶红外光谱仪进行测试并计算相对环化率(见表1)。下同。
(3)原丝预氧化、低温碳化和高温碳化制备碳纤维
原丝预氧化:采用梯度升温法在空气气氛下,选用3个温区,分别为240℃/255℃/270℃对步骤(2)原丝进行预氧化处理55分钟,总牵伸倍率为2%;
低温碳化、高温碳化同对比例1。
实施例2
(1)聚丙烯腈纺丝液的制备
同对比例1。
(2)原丝的湿法纺制
二级牵伸的牵伸倍率为2.02,为实施例1的0.84倍,以保证纤维线密度相当;热定型温度为230℃,热定型牵伸倍率为20%。
其他同实施例1。
(3)原丝预氧化、低温碳化和高温碳化制备碳纤维
原丝预氧化:采用梯度升温法在空气气氛下,选用3个温区,分别为240℃/255℃/270℃对步骤(2)原丝进行预氧化处理55分钟,总牵伸倍率为1%;
低温碳化、高温碳化同对比例1。
对比例2:
选取常规聚合干湿法纺丝工艺中的一个工艺,具体如下:
(1)聚丙烯腈纺丝液的制备
以偶氮二异丁腈为引发剂、二甲基亚砜为溶剂,将摩尔比为98:2的丙烯腈和衣康酸在温度59℃,搅拌速率35rpm的条件下搅拌聚合,聚合反应25小时制得分子量为20.4万的聚丙烯腈纺丝原液,纺丝原液经脱单脱泡后得到纺丝液,其中,二甲基亚砜占丙烯腈和二甲基亚砜质量百分比浓度重量的77.5%,偶氮二异丁腈占丙烯腈摩尔分数的0.30%,所制得的纺丝原液中聚丙烯腈共聚物质量百分含量在22%,25℃旋转粘度计测得纺丝原液粘度为7200泊。
(2)原丝的干湿法纺制
采用干湿法纺丝工艺,经凝固成型、一级牵伸、水洗、上油、干燥致密化、二级牵伸和热定型工艺后得到碳纤维原丝,其中,凝固牵伸为3.0倍,一级牵伸的牵伸介质为100℃的水蒸气,牵伸倍数4.5倍,二级牵伸的牵伸介质为120℃的过热水蒸气,牵伸倍数为2.0倍,所述的热定型温度为150℃,牵伸为-4.5%。
(3)预氧化碳化工艺
预氧化:采用梯度升温法在空气气氛下,选用6个温区,分别为190℃/220℃/235℃/245℃/255℃/265℃对步骤(2)原丝进行预氧化处理115分钟,总牵伸倍率为4%;。
低温碳化:将得到的预氧化纤维进入低温碳化炉进行低温碳化处理,采用高纯氮气作为保护气,氮气中氧含量为5ppm。低温碳化温度650℃,时间4分钟,低温碳化时纤维牵伸倍率在4%;
高温碳化:纤维出低温碳化炉后进入高碳炉进行高温碳化处理,采用高纯氮气作为保护气,氮气中氧含量为5ppm。高温碳化温度为1300℃,高温碳化时纤维的牵伸倍率在-4%,高温碳化3分钟后得到聚丙烯腈基碳纤维。
实施例3
(1)聚丙烯腈纺丝液的制备
同对比例2。
(2)原丝的干湿法纺制
泵供量为对比例2的1.06倍,保证纤维线密度相当;热定型温度为190℃,热定型牵伸倍率为7%。
其他同对比例2。
(3)原丝预氧化、低温碳化和高温碳化制备碳纤维
预氧化:采用梯度升温法在空气气氛下,选用5个温区,分别为225℃/238℃/245℃/258℃/268℃对步骤(2)原丝进行预氧化处理95分钟,总牵伸倍率为2%;
低温碳化、高温碳化同对比例2。
实施例4
(1)聚丙烯腈纺丝液的制备
同对比例2;
(2)原丝的湿法纺制
二级牵伸倍率为1.8倍,为实施例3的0.9倍,保证纤维线密度相当;热定型温度为220℃,热定型牵伸倍率为15%。
其他同对比例2。
(3)原丝预氧化、低温碳化和高温碳化制备碳纤维
预氧化:在空气气氛下采用梯度升温法,选用4个温区,分别为235℃/248℃/265℃/275℃对步骤(2)原丝进行预氧化处理75分钟,总牵伸倍率为1%;
低温碳化、高温碳化同对比例2。
将以上工艺所制备样品进行解析,具体参数详见表1,表中的碳微晶取向采用的荷兰帕纳科公司生产的X'PertPRO MPD型X射线衍射仪,采用Cu靶,波长为0.154nm,对样品进行方位角扫描测试并计算得出。
表1.原丝和碳纤维结构参数和性能表
与对比例1相比,实施例1原丝的全取向提高了45.83%,碳纤维碳微晶取向因子提高了5.19%,碳纤维断裂伸长率相当,碳纤维的拉伸强度提高了11.46%,预氧化时间缩短了20分钟。
与对比例1相比,实施例2原丝的全取向提高了72.92%,碳纤维碳微晶取向因子提高了9.1%,碳纤维断裂伸长率相当,碳纤维的拉伸强度提高了14.63%,预氧化时间缩短了20分钟。
与对比例2相比,实施例3原丝的全取向提高了16.90%,碳纤维碳微晶取向因子提高了3.80%,碳纤维断裂伸长率相当,碳纤维的拉伸强度提高了5.07%,预氧化时间缩短了20分钟。
与对比例2相比,实施例4原丝的全取向提高了22.54%,碳纤维碳微晶取向因子提高了7.59%,碳纤维断裂伸长率相当,但碳纤维的拉伸强度提高了5.92%,预氧化时间缩短了40分钟。
综上所示,与常规工艺所得纤维相比,全取向提高了15%~75%,同时,原丝碳化后碳纤维中碳微晶的择优取向程度提高了2%~10%,实现碳纤维性能的提升。这种方法可以降低热定型过程中纤维因收缩而产生的解取向,还能缩短了PAN纤维的预氧化时间,提高生产效率。

Claims (8)

1.一种聚丙烯腈纤维,其特征在于:相对环化率在5%~30%、纤维分子链全取向在0.60~0.88之间。
2.根据权利要求1所述的一种聚丙烯腈纤维的制备方法,将聚丙烯腈纺丝液采用纺丝工艺纺制,经凝固成型、一级牵伸、水洗、上油、干燥致密化、二级牵伸和热定型,其特征在于:提升热定型温度和牵伸倍率使得纤维发生弱环化和氧化反应。
3.根据权利要求2所述的聚丙烯腈纤维的制备方法,其特征在于:所述热定型温度在170℃~240℃,牵伸倍率在0%~20%。
4.根据权利要求2所述的聚丙烯腈纤维的制备方法,其特征在于:所述的纺丝工艺为湿法纺丝或干湿法纺丝。
5.根据权利要求2所述的聚丙烯腈纤维的制备方法,其特征在于:所述一级牵伸的牵伸介质为100℃~110℃的水蒸气,牵伸倍数4~8倍,二级牵伸的牵伸介质为120℃~150℃的过热水蒸气,牵伸倍数为1.5~3倍。
6.根据权利要求2所述的聚丙烯腈纤维的制备方法,其特征在于:所述聚丙烯腈纺丝液是通过以下方法制备的:以偶氮二异丁腈为引发剂、二甲基亚砜为溶剂,将摩尔比为92~96:0.5~3:2~5的丙烯腈、衣康酸和甲基丙烯酸甲酯或者摩尔比为96~99:1~4的丙烯腈和衣康酸,在温度55~65℃,搅拌速率20~60rpm的条件下搅拌聚合,聚合反应20~30小时制得分子量为8.5~20.5万的聚丙烯腈纺丝原液,纺丝原液经脱单脱泡后得到纺丝液,其中,二甲基亚砜占丙烯腈和二甲基亚砜质量百分比浓度的77%~82%,偶氮二异丁腈占丙烯腈摩尔分数的0.1%~0.4%。
7.用权利要求1所述的一种聚丙烯腈纤维制备碳纤维的方法,包括聚丙烯腈纤维的预氧化、低温碳化和高温碳化,其特征在于:所述的聚丙烯腈纤维预氧化为:取消梯度预氧化的最低预氧化炉,分2~5个温区对所制得的聚丙烯腈纤维进行预氧化处理40~120分钟,预氧化起始温度220~250℃,终温260~320℃;预氧化时纤维总的牵伸倍率在1%~10%。
8.根据权利要求7所述的制备碳纤维的方法,其特征在于:
所述的低温碳化为:采用高纯氮气作为保护气,氮气中氧含量低于5ppm,将得到的预氧化纤维在温度300℃~800℃下低温碳化1.5~6分钟,低温碳化时纤维牵伸倍率在2%~6%;
所述的高温碳化为:采用高纯氮气作为保护气,氮气中氧含量低于5ppm,碳化温度为1100~1300℃,高温碳化时纤维的牵伸倍率在-5%~-2%,高温碳化1~4分钟后得到聚丙烯腈基碳纤维。
CN201910120658.9A 2019-02-18 2019-02-18 一种聚丙烯腈纤维、制备方法及其碳纤维的制备方法 Active CN109881280B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910120658.9A CN109881280B (zh) 2019-02-18 2019-02-18 一种聚丙烯腈纤维、制备方法及其碳纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910120658.9A CN109881280B (zh) 2019-02-18 2019-02-18 一种聚丙烯腈纤维、制备方法及其碳纤维的制备方法

Publications (2)

Publication Number Publication Date
CN109881280A true CN109881280A (zh) 2019-06-14
CN109881280B CN109881280B (zh) 2020-09-04

Family

ID=66928231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910120658.9A Active CN109881280B (zh) 2019-02-18 2019-02-18 一种聚丙烯腈纤维、制备方法及其碳纤维的制备方法

Country Status (1)

Country Link
CN (1) CN109881280B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110607592A (zh) * 2019-08-16 2019-12-24 北京化工大学 一种制备聚丙烯腈基热氧稳定化纤维的方法
CN110846743A (zh) * 2019-11-21 2020-02-28 泰州莱宝利复合材料科技有限公司 一种制备三维石墨烯粉体的方法
CN112080816A (zh) * 2020-08-24 2020-12-15 北京化工大学 以纤维素纳米晶-聚丙烯腈复合纤维为前驱体的碳纤维及其制备方法
CN112323182A (zh) * 2020-09-10 2021-02-05 中复神鹰碳纤维有限责任公司 一种碳碳复合材料针刺网胎用碳纤维的制备方法
CN112779664A (zh) * 2020-06-01 2021-05-11 张家港伟诺复合材料有限公司 一种碳纤维复合材料加工工艺及其立式干燥装置
CN113861335A (zh) * 2021-10-14 2021-12-31 荣成碳纤维科技有限公司 一种碳纤维制备用聚合物的制备方法和装置
CN115074868A (zh) * 2021-03-12 2022-09-20 吉林碳谷碳纤维股份有限公司 一种预氧丝的制备方法及预氧丝

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130326A (en) * 1975-05-01 1976-11-12 Mitsubishi Rayon Co Ltd A process for manufacturing carbon fibers
CN101724922A (zh) * 2009-11-26 2010-06-09 中复神鹰碳纤维有限责任公司 一种碳纤维用高强聚丙烯腈基原丝的制备方法
CN104264264A (zh) * 2014-09-23 2015-01-07 中复神鹰碳纤维有限责任公司 一种高取向度的聚丙烯腈纤维的制备方法
CN104357957A (zh) * 2014-11-21 2015-02-18 威海拓展纤维有限公司 碳纤维原丝的生产方法
CN108823683A (zh) * 2018-07-06 2018-11-16 北京化工大学 聚丙烯腈碳纤维及其制备方法
CN109280997A (zh) * 2018-09-20 2019-01-29 北京化工大学 低石墨化程度的高强高模碳纤维及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130326A (en) * 1975-05-01 1976-11-12 Mitsubishi Rayon Co Ltd A process for manufacturing carbon fibers
CN101724922A (zh) * 2009-11-26 2010-06-09 中复神鹰碳纤维有限责任公司 一种碳纤维用高强聚丙烯腈基原丝的制备方法
CN104264264A (zh) * 2014-09-23 2015-01-07 中复神鹰碳纤维有限责任公司 一种高取向度的聚丙烯腈纤维的制备方法
CN104357957A (zh) * 2014-11-21 2015-02-18 威海拓展纤维有限公司 碳纤维原丝的生产方法
CN108823683A (zh) * 2018-07-06 2018-11-16 北京化工大学 聚丙烯腈碳纤维及其制备方法
CN109280997A (zh) * 2018-09-20 2019-01-29 北京化工大学 低石墨化程度的高强高模碳纤维及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
XU LIANGHUA等: "Anodic Oxidation on Structural Evolution and Tensile Properties of Polyacrylonitrile Based Carbon Fibers with Different Surface Morphology", 《ANODIC OXIDATION ON STRUCTURAL EVOLUTION AND TENSILE PROPERTIES OF POLYACRYLONITRILE BASED CARBON FIBERS WITH DIFFERENT SURFACE MORPHOLOGY》 *
XU LIANGHUA等: "Effect of In Situ Thermal Stretching during Oxidative Stabilization on the Orientation of Cyclized Ladder Structure and Its carbon Fiber", 《EFFECT OF IN SITU THERMAL STRETCHING DURING OXIDATIVE STABILIZATION ON THE ORIENTATION OF CYCLIZED LADDER STRUCTURE AND ITS CARBON FIBER》 *
XU LIANGHUA等: "Evolution of aggregation structure of polyacrylonitrile fibers in the cyclization reaction", 《EVOLUTION OF AGGREGATION STRUCTURE OF POLYACRYLONITRILE FIBERS IN THE CYCLIZATION REACTION》 *
武帅: "热力耦合作用下PAN碳纤维环结构形成与取向效率", 《热力耦合作用下PAN碳纤维环结构形成与取向效率 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110607592A (zh) * 2019-08-16 2019-12-24 北京化工大学 一种制备聚丙烯腈基热氧稳定化纤维的方法
CN110846743A (zh) * 2019-11-21 2020-02-28 泰州莱宝利复合材料科技有限公司 一种制备三维石墨烯粉体的方法
CN112779664A (zh) * 2020-06-01 2021-05-11 张家港伟诺复合材料有限公司 一种碳纤维复合材料加工工艺及其立式干燥装置
CN112779664B (zh) * 2020-06-01 2024-04-16 张家港伟诺复合材料有限公司 一种碳纤维复合材料加工工艺及其立式干燥装置
CN112080816A (zh) * 2020-08-24 2020-12-15 北京化工大学 以纤维素纳米晶-聚丙烯腈复合纤维为前驱体的碳纤维及其制备方法
CN112080816B (zh) * 2020-08-24 2021-10-01 北京化工大学 以纤维素纳米晶-聚丙烯腈复合纤维为前驱体的碳纤维及其制备方法
CN112323182A (zh) * 2020-09-10 2021-02-05 中复神鹰碳纤维有限责任公司 一种碳碳复合材料针刺网胎用碳纤维的制备方法
CN115074868A (zh) * 2021-03-12 2022-09-20 吉林碳谷碳纤维股份有限公司 一种预氧丝的制备方法及预氧丝
CN115074868B (zh) * 2021-03-12 2023-11-17 吉林碳谷碳纤维股份有限公司 一种预氧丝的制备方法及预氧丝
CN113861335A (zh) * 2021-10-14 2021-12-31 荣成碳纤维科技有限公司 一种碳纤维制备用聚合物的制备方法和装置

Also Published As

Publication number Publication date
CN109881280B (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN109881280A (zh) 一种聚丙烯腈纤维、制备方法及其碳纤维的制备方法
Fitzer et al. Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres
EP2554725B1 (en) Method for preparing carbon fiber and precursor fiber for carbon fiber
CN103184588B (zh) 一种12k四元聚丙烯腈基碳纤维的制造方法
CN110331470B (zh) 带形聚丙烯腈碳纤维及其制备方法
CN109402792A (zh) 一种低直径高强度的聚丙烯腈基碳纤维及其制备方法
WO2017204026A1 (ja) 炭素繊維束およびその製造方法
CN111793857A (zh) 一种碳纤维表面处理的方法
CN102953153B (zh) 一种聚丙烯腈基碳纤维的制备方法
CN111101241A (zh) 一种提高碳纤维强度的制造方法
JP2008163537A (ja) 炭素繊維の製造方法
CN111945251A (zh) 超高强度中等模量聚丙烯腈基碳纤维及其制备方法
CN107653520A (zh) 一种低成本化聚丙烯腈基碳纤维的制备方法
CN102953151A (zh) 一种制备聚丙烯腈基碳纤维的方法
CN115369521B (zh) 一种碳纤维原丝的预氧化工艺及聚丙烯腈碳纤维预氧丝
CN103668561B (zh) 一种通过控制预氧化纤维结构制备高性能碳纤维的方法
CN113336889B (zh) 一种制备碳纤维原丝用高分子量聚丙烯腈的制备工艺及其纺丝工艺
KR101909892B1 (ko) 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유의 제조방법 및 탄소섬유의 제조방법
JP2004060069A (ja) ポリアクリロニトリル系炭素繊維、及びその製造方法
CN102953158B (zh) 一种制造聚丙烯腈基碳纤维的方法
CN107557892B (zh) 一种pan纺丝液芳环化后制备环化pan纤维的方法
JP2009242971A (ja) 圧縮強度に優れる炭素繊維及びその製造方法
JP2004156161A (ja) ポリアクリロニトリル系炭素繊維及びその製造方法
CN108004620B (zh) 一种聚酯树脂基复合材料用碳纤维及其制备方法
Wangxi et al. Comparative study on preparing carbon fibers based on PAN precursors with different comonomers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant