CN109642933A - 低场强磁共振成像 - Google Patents

低场强磁共振成像 Download PDF

Info

Publication number
CN109642933A
CN109642933A CN201780051306.1A CN201780051306A CN109642933A CN 109642933 A CN109642933 A CN 109642933A CN 201780051306 A CN201780051306 A CN 201780051306A CN 109642933 A CN109642933 A CN 109642933A
Authority
CN
China
Prior art keywords
magnetic resonance
resonance imaging
imaging system
computer program
program product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780051306.1A
Other languages
English (en)
Other versions
CN109642933B (zh
Inventor
詹姆士·F·登普西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yourui System Co
Original Assignee
Yourui Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yourui Technology Ltd filed Critical Yourui Technology Ltd
Priority to CN202211135141.5A priority Critical patent/CN115407252A/zh
Publication of CN109642933A publication Critical patent/CN109642933A/zh
Application granted granted Critical
Publication of CN109642933B publication Critical patent/CN109642933B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/285Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR
    • G01R33/287Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR involving active visualization of interventional instruments, e.g. using active tracking RF coils or coils for intentionally creating magnetic field inhomogeneities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56308Characterization of motion or flow; Dynamic imaging
    • G01R33/56325Cine imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56527Correction of image distortions, e.g. due to magnetic field inhomogeneities due to chemical shift effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56536Correction of image distortions, e.g. due to magnetic field inhomogeneities due to magnetic susceptibility variations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1055Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using magnetic resonance imaging [MRI]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4808Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/4833NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices
    • G01R33/4835NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices of multiple slices

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electromagnetism (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

描述了改进的磁共振成像系统、方法以及软件,所述系统包括:低场强主磁体;梯度线圈组件;RF线圈系统;以及控制系统,该控制系统被配置为在使用稀疏采样成像技术的同时从患者获取磁共振成像数据并进行处理。

Description

低场强磁共振成像
相关申请的交叉引用
本申请要求2016年6月22日提交的标题为“MAGNETIC RESONANCE IMAGING”的美国临时申请No.62/353538的优先权权益,此处以引用的方式将该申请的公开全文并入。
技术领域
本文所描述的主题涉及用于磁共振成像以及与其关联的各种诊断和介入应用的系统、方法和计算机软件。
背景技术
磁共振成像(MRI)或核磁共振成像是非侵入性成像技术,该技术使用射频脉冲、强磁场(用弱梯度场修改,该弱梯度场跨强磁场施加,以局部化并编码或解码相位和频率)以及身体组织之间的相互作用来获得来自患者身体内的平面或体积的投影、光谱信号以及图像。磁共振成像在软组织的成像方面特别有帮助,并且可以用于疾病的诊断。实时或电影MRI可以用于需要患者内的移动结构的成像的医疗状况的诊断。实时MRI还可以结合介入程序(例如放射治疗或图像引导手术)来使用,而且还可以用于这样的程序的规划。
发明内容
公开了磁共振成像系统、方法以及软件。一些实施方案可以结合以下部件来使用:主磁体,该主磁体具有低场强;梯度线圈组件;RF线圈系统;以及控制系统,该控制系统被配置为从人类患者获取磁共振成像数据并进行处理,同时使用没有并行成像的稀疏采样成像技术。
在一些变体中,主磁体的场强小于1.0特斯拉,并且在其他变体中,场强近似为0.35T。
在一些实施方案中,MRI的控制系统可以被配置为使用低梯度场强(例如,低于20mT/m),使用大翻转角(例如,大于40度),使用将化学位移和磁敏感性伪影保持小于一毫米的RF带宽(例如,小于1800Hz的RF带宽),使用高于75mT/m/ms的梯度切换率,和/或采用不需要移相或突变脉冲的脉冲序列。在一些实施方案中,RF线圈系统可以不包括表面线圈。
磁共振成像系统的控制系统还可以被配置为产生(例如,每秒至少4帧的)电影MRI。
在另一个实施方案中,磁共振成像系统可以与放射治疗装置集成,放射治疗装置用于人类患者的放射治疗,并且控制系统还可以被配置为使用电影MRI来跟踪人类患者中的组织的位置。放射治疗装置可以是直线加速器,该直线加速器具有在例如4-6MV范围内的能量。放射治疗装置还可以是质子治疗系统、重离子治疗系统或放射性同位素治疗系统。
磁共振成像系统还可以包括分离/开孔磁体,并且被配置为允许例如借助集成到系统中的机器人手术装置在分离磁体的间隙中进行手术介入。类似地,梯度线圈组件可以是分离梯度线圈组件。主磁体可以是超导磁体、非超导磁体或阻抗型磁体。主磁体可以由电池系统供电。
当前主题的实施方案可以包括但不限于与这里提供的描述一致的方法以及物品和计算机程序产品,这些计算机程序产品包括有形地实现的机器可读介质,该介质可操作为使得一个或多个机器(例如,计算机等)引起实现所述特征中的一个或多个的操作。类似地,还预期计算机系统,这些计算机系统可以包括一个或多个处理器以及耦合到一个或多个处理器的一个或多个存储器。可以包括计算机可读存储介质的存储器可以包括、编码、存储一个或多个程序或对一个或多个程序进行其他动作,该一个或多个程序使得一个或多个处理器执行这里描述的操作中的一个或多个。与当前主题的一个或多个实施方案一致的计算机实施的方法可以由存在于单个计算系统或跨多个计算系统存在的一个或多个数据处理器来实施。这样的多个计算系统可以连接,并且可以经由一个或多个连接(包括但不限于通过网络(例如,互联网、无线广域网、局域网、广域网、有线网络等)进行的连接、经由多个计算系统中的一个或多个之间的直接连接)交换数据和/或命令或其他指令。
附图和以下描述中阐述了这里描述的主题的一个或多个变体的细节。这里描述的主题的其他特征和优点将从描述和附图且从权利要求明显。虽然为了例示性目的关于特定实施方案描述了当前公开主题的特定特征,但应容易地理解,这种特征不旨在限制。本公开之后的权利要求旨在限定所保护主题的范围。
附图说明
被包含在本说明书中且构成本说明书一部分的附图示出了这里公开的主题的某些方面,并且连同描述一起帮助说明与所公开实施方案关联的一些原理。在附图中:
图1是例示了根据本公开的某些方面的示例性磁共振成像系统的简化透视图的图。
图2是例示了根据本公开的某些方面的、包含示例性介入装置的示例性磁共振成像系统的简化透视图的图。
图3是根据本公开的某些方面的实时MRI引导的放射治疗的示例性方法的简化图。
具体实施方式
本公开描述了系统、方法以及计算机软件,这些系统、方法以及计算机软件尤其允许:高质量磁共振成像,该高质量磁共振成像具有有限的磁敏感性失真和化学位移伪影,其产生亚毫米空间准确度;高帧率电影能力,该高帧率电影能力具有适当的比吸收率(SAR);以及支持实时2D和体积MRI引导的诊断和介入应用的能力。
图1例示了符合本公开的某些方面的磁共振成像系统(MRI)100的一个实施方案。在图1中,MRI 100包括主磁体102、梯度线圈组件104以及RF线圈系统106。在MRI 100内的是人类患者100可以位于上面的患者床108。MRI 100还包括下面详细讨论的控制系统112。
MRI 100的主磁体102可以为如图1所示的、具有间隙116的、由支撑物114分开的圆柱形分离或开孔磁体、闭孔圆柱形配置、C形配置、双极磁体等。主磁体102可以由多种磁体类型组成,包括电磁体、永磁体、超导磁体或其组合。例如,一个组合或“混合”磁体可以包括永磁体和电磁体。主磁体102可以被配置用于任意常用场强,但优选地被配置用于低场强。在这里使用术语低场强时,它指小于1.0特斯拉的场强。在本公开的特定实施方案中,主磁体102的场强可以被配置为在0.1至0.5特斯拉的范围内,或者被配置为近似0.35特斯拉。系统可以被设计为例如在主磁体的场强小于近似0.2特斯拉时使用阻抗型或永磁体或其组合。在一个实施方案中,使用(一个或多个)阻抗型磁体的系统可以由直流电池系统(例如,锂离子系统,例如或类似于特斯拉电力墙)供电。
梯度线圈组件104包含在主磁体102的场的顶部上添加小变化磁场以允许成像数据的空间编码所需的线圈。梯度线圈组件104可以为连续的圆柱形组件、如图1所示的分离梯度线圈组件或对于所使用的特定MRI配置所需的其他设计。
RF线圈系统106负责激励患者110内的氢质子的自旋并接收从患者110发出的随后信号。由此,RF线圈系统106包括RF发射器部和RF接收部。图1中的实施方案包括执行RF发射和RF功能这两者的单体线圈。另选地,RF线圈系统106可以在主体线圈与表面线圈之间划分发射和接收功能,或者可以在表面线圈内提供发射和接收功能这两者。图1的实施方案中描绘的RF线圈系统106具有连续圆柱形形式,但也可以以分离方式来设计,使得间隙116将从患者向主磁体102的外边缘开放。
控制系统112被配置为从患者110获取并处理磁共振成像数据,包括图像重构。控制系统112可以包含多个子系统,例如,控制梯度线圈组件104、RF线圈系统106、这些系统本身的一些部分的子系统,以及处理从RF线圈系统106接收的数据并执行图像重构的子系统。
在一个有利实施方案中,控制系统112被配置为使用没有并行成像的稀疏采样成像技术。在这里使用术语稀疏采样成像技术时,它指这样的图像获取和重构技术,在这样技术中,仅测量频率空间的一部分(为了本公开的目的,利用标准反向投影方法使用频率信息的50%或更少来重构图像),并且通过优化重构图像以与被成像对象的先验知识一致同时还通常满足所重构图像的频率信息与所测量的频率信息之间的一致性来执行图像重构。由此,稀疏采样成像技术包括例如压缩感测和在美国专利申请No.62/353530中公开的体积成像技术之类的技术,该美国专利申请同此同时提交且被受让给ViewRay技术股份有限公司。
并行成像技术常用于磁共振成像中,特别是对于电影MRI,以缩短数据获取所需的时间。并行成像方法使用由多个RF检测器(例如具有这些“元件”的阵列的表面线圈)接收的信号的空间分布的知识来代替MRI过程中的一些耗时的相位编码步骤。这样,“并行地”从多个线圈元件接收信号,并且由来自所有线圈元件的数据的二重性(duplicity)补偿沿着读出轨迹的k空间中的较少部分的采样(即,较少的相位编码)。
然而,本公开的某些实施方案预期不使用并行成像技术的数据获取和处理。在本公开提及“没有并行成像”的磁共振数据获取和处理的这样的情况下,它预期系统、方法以及计算机软件被设计为包含少量并行成像(可能为了避免侵权),但不足以产生信噪比的在感知上的显著增大,所有其他东西不变。
在一些有利的实施方案中,MRI和控制系统112可以被配置为使用低梯度场强(例如,低于20mT/m,或在其他情况下,低于12mT/m)。另外,一些有利实施方案可以使用相对高的梯度切换率(slew rate)或上升时间,例如高于75mT/m/ms的切换率。控制系统112还可以被有利地配置为使用大翻转角(flip angle),例如,大于40度。另外,控制系统112可以被有利地配置为采用不需要移相脉冲(dephasing pulse)的脉冲序列(预期这样的脉冲序列不具有移相脉冲,或者仅具有少量的移相或突变脉冲(spoiling pulse),使得从患者处理量的角度来看没有数据获取时间的显著增加)。
在一些实施方案中,控制系统112可以被配置为使用RF带宽以将化学位移和磁敏感性伪影保持低于一毫米甚至低于半毫米。作为示例,控制系统112可以被配置为小于1800Hz的RF带宽。可以评估由于磁敏感性和化学位移引起的潜在最坏情况的伪影。例如,对于在人类敏感性评定中观察到的例如8ppm扰动的最坏情况,下面的公式【1】可以用于估计磁敏感性伪影。
这里,δms[mm]是由于磁敏感性伪影引起的单位为毫米的空间失真,其由于磁敏感性引起的磁场变化而产生,mag.suscept.[ppm]为主磁场强度(Bo[T],单位为特斯拉)的百万分率,并且其中,Ge[T/mm]是单位为特斯拉每毫米的梯度编码强度。
并且,下面的公式【2】可以用于估计由于化学位移引起的位移。
这里,δcs[mm]是由于化学位移伪影引起的单位为毫米的空间失真,其中,3.5[ppm]是对于单位为毫米的像素或体素尺寸PixelSize的、结合到氧的氢(H-O)对结合到碳的氢(C-H)的拉莫尔(Larmour)频率的相对百万分率差,并且fBo是水中氢的拉莫尔频率,并且BW[Hz/pixel]是单位为赫兹每像素或体素的、像素或体素的频率带宽。
最坏情况的失真可以被当作这两个失真加由于未校正梯度场非线性产生的任意残余失真的和。
在本公开的磁共振成像系统100的一个特定实施方案中,主磁体102场强近似为0.35特斯拉,并且控制系统112被配置为使用低于12mT/m的梯度场强、高于75mT/m/ms的梯度切换率、大于40度的翻转角、小于1800Hz的RF带宽以及不包含移相脉冲的脉冲序列。控制系统112还可以被配置为使用没有并行成像的稀疏采样成像技术。
在磁共振成像系统100的另一个特定实施方案中,主磁体102场强近似为0.15特斯拉,并且控制系统112被配置为使用低于10mT/m的梯度场强、高于75mT/m/ms的梯度切换率、大于60度的翻转角、小于1000Hz的RF带宽以及不包含移相脉冲的脉冲序列。在该实施方案中,控制系统112还可以被配置为使用没有并行成像的稀疏采样成像技术。
如这里进一步讨论的,本公开的系统、方法以及计算机软件的某些实施方案可以对于电影平面、电影多平面、或实时体积或“4D”(3D空间加时间维度)磁共振成像有利。由此,控制系统112可以被配置为获取并处理重构图像来产生电影MRI所需的数据,例如,在保持患者110中的可接受比吸收率的同时实现至少每秒4帧的电影MRI。
传统观点是由于较高信噪比而始终优选高主磁体场强,期望的场强主要受尺寸和成本考虑限制。通过较高的信噪比、对比度以及分辨率,较高的场强通常促进提高使医生基于产生图像进行诊断的能力。然而,使用低主磁体场强(例如,低于1.0特斯拉)的本公开的实施方案产生高质量图像并提供多个附加的益处。
例如,本公开的实施方案可以包括小于1800Hz的RF带宽,这引起减小的化学位移伪影(即,其中,在使诸如水和脂肪的不同化学环境中的氢原子由于在O-H和C-H化学键中涉及的电子的共享的差异而部分相对于主磁场被屏蔽并且因此具有不同的核磁共振化学位移的情况,在用频率编码定位信号时出现在不同的空间位置中)。高场系统将展示显著的化学位移伪影且需要较高的RF带宽(及其伴随的较低信噪比),而这里公开的低场系统可以使用较低的RF带宽并保持高空间完整性。
另外,高主磁场强系统将展示被成像对象的抗磁和顺磁(并且在罕见情况下为铁磁)性质扰乱磁场的显著磁敏感性伪影,这导致空间失真图像。较高场系统中的这样的问题通常可以借助梯度场强的增大来解决,但本公开的实施方案避免相同水平的伪影,由此,可以使用较低的梯度场强,这导致改善的信噪比和较低的比吸收率。
而且,这里讨论的系统、方法以及软件可以在没有并行成像的情况下实施,这将引起产生的图像的会随着成像速度而增大的信噪比的减小。相反,这里公开的稀疏采样技术例如借助在扫描前使用获取的先验数据、避免使用“网格化”k空间数据并应用迭代优化技术来允许具有不随图像获取速度显著减小的相对高的信噪比的高帧率获取。在没有并行成像时还可以避免相控阵列接收线圈的使用,从而用较不复杂技术实现高质量成像。可以连同较便宜的光谱仪一起使用较少的RF接收通道,实际上,可以仅使用单个RF接收通道。
本公开的某些实施方案还可以在没有与患者接触的表面线圈的情况下采用。相反,成像可以仅用集成到包含发射和接收线圈的MRI的孔中的体线圈来执行。
另外,可以有利地采用同时多切片成像技术,其中,可以同时激励并同时读出多个成像切片或子体积。同时多切片激励的一个实施方案可以对具有不同相位调制函数的多个RF波形求和,这产生多带脉冲,该多带脉冲可以在存在公共切片选择梯度时激励期望的切片。
此外,本公开的实施方案可以使用相对高的翻转角,这些翻转角在较高的主磁体场强下将引起过度的患者加热。在本公开的实施方案中的较高翻转角将引起图像对比度和信噪比改善。
另外,这里讨论的低主磁体场强实施方案将展示更快的RF信号衰减,这允许不需要移相脉冲的脉冲序列(具有较低比吸收率的伴随优点)。
本公开的某些实施方案的低主磁体场强还允许较低频率RF激励脉冲,由此允许由这些脉冲引起的患者组织的加热减少。
进一步地,由本公开的实施方案展示的良好受控的比吸收率提供以对于高帧率电影MRI足够的速度来获取并处理数据的能力。
凭借上述众多优点,本公开的实施方案非常适于具有可接受的患者比吸收率的高质量电影MRI。这些实施方案还控制磁敏感性和化学位移伪影,以便提供在某些诊断和介入应用中可能是关键的高空间完整性。
本公开的实施方案在用于诊断电影MRI的大量应用中可以是有利的,示例包括解剖定位器、用于定位和移动(例如,发声)研究的重复快速成像、对自由移动对象成像(例如,胎儿MRI)、心脏成像等。
本公开的实施方案在介入应用中也可以是有利的,这些介入应用也受益于高空间完整性和受控的比吸收率的优点。介入应用的示例包括血管成形术、支架输送、血栓溶解、动脉瘤修复、椎体成形、子宫肌瘤栓塞治疗以及当前使用荧光镜检查(并且电影MRI的使用将降低到患者的放射剂量)的许多其他应用。
本公开的实施方案还可以用于图像引导手术,并且可以提供多个正交平面中的实时程序内引导、关于仪器位置的成像反馈、引导和/或警告系统等。与图1所描绘的开孔MRI实施方案类似(但具有分离RF线圈系统106)的开孔MRI实施方案对于这种介入程序可能特别有利。由此,MRI 100可以被配置为允许在分离磁体的间隙中的手术介入,并且还可以包括与系统集成的机器人手术装置。
伴随本公开的某些实施方案的低场强的又一个优点是减小的磁力,该磁力将被施加在连同MRI 100而被使用的任何介入设备(诸如机器人手术设备、活组织检查仪器、低温消融单元、短距离放射治疗设备、放射治疗设备等)上。
在磁共振成像系统100的一个实施方案中,结合介入设备(诸如直线加速器的放射治疗设备),使用低场强非超导磁体,例如,阻抗型磁体、永磁体或混合磁体。
本公开的某些实施方案的另一个有益应用是在图像引导放射治疗领域中。放射治疗应用也将受益于本公开的提供具有高空间完整性的高帧率电影MRI的能力,高帧率电影MRI和高空间完整性这两者对准确跟踪被治疗目标并避免用大量离子化放射照射患者关键结构是关键的。
图2例示了还被配置为集成治疗患者110的放射治疗装置的MRI 100。在一个实施方案中,MRI 100可以包括被定位在开孔MRI的间隙116中的门架202。门架202可以结合有放射治疗装置204,该放射治疗装置被配置为朝向患者110引导放射治疗束206。在一个特定实施方案中,放射治疗装置204可以是具有在4-6MV范围内的能量的直线加速器,并且如所描绘的,直线加速器的部件可以被分成围绕门架202隔开的单独屏蔽容器208。这些直线加速器部件然后可以通过RF波导210连接。虽然图2描绘了特定放射治疗装置布置,但本公开预期任意类型的放射治疗系统(诸如质子治疗、重离子治疗、放射性同位素治疗等)的集成。
如上所述,磁共振成像系统100的控制系统112可以被配置用于电影MRI,并且还被配置为使用电影MRI来跟踪人类患者110中的组织的位置。
使用具有低场强的主磁体102的本公开的实施方案的另外益处是减小由于作用在次级电子(和正电子)的运输上的洛伦兹(Lorenz)磁力引起的患者110中的所递送离子化放射剂量分布的失真。由较高场主磁体施加的洛伦兹磁力将使电子(和正电子)的散射能力过度,并且使得它们甩出它们的自然路线,将它们诱捕在低密度界面处,这潜在地导致患者中的意外且有害的剂量浓度。
图3中例示了符合本公开的实施方案的实时图像引导放射治疗的示例性方法。在302处,可以借助磁共振成像系统100从人类患者110获取磁共振成像数据,该系统具有:超导主磁体,该主磁体具有低场强;梯度线圈组件104;以及RF线圈系统106,其中,获取使用没有并行成像的稀疏采样成像技术。在304处,处理磁共振成像数据。在306处,向人类患者110施予放射治疗。在308处,使用磁共振成像数据来跟踪患者110中的(一个或多个)组织的位置。并且在310处,可以基于患者110中的(一个或多个)组织的位置的跟踪改变放射治疗的施予。在改变的治疗中,预期诸如停止治疗、重新优化治疗、调整放射治疗束等的动作。图3所例示的示例性方法还可以包含上述特性(例如,低梯度场强、大翻转角、保持空间完整性的RF带宽、特定脉冲序列等)中的任意一个或全部。
在本公开指示磁共振成像系统被配置为以特定方式操作时,它意指这样的系统被设置并预期为以该方式操作,而不管它是否还可以被配置为使用(一个或多个)脉冲序列或不以这里描述或要求保护的方式操作的配置。
本公开预期在这里的实施方式中公开的计算可以应用这里示教的相同构思以多种方式来执行,并且这样的计算等效于所公开的实施方式。
这里描述的主题的一个或多个方面或特征可以在数字电子电路、集成电路、专门设计的专用集成电路(ASIC)、现场可编程门阵列(FPGA)计算机硬件、固件、软件和/或其组合中实现。这些各种方面或特征可以包括可在可编程系统上执行和/或解释的一个或多个计算机程序中的实施方案,可编程系统包括可以为专用或通用的至少一个可编程处理器,该至少一个可编程处理器被耦合为从存储系统、至少一个输入装置以及至少一个输出装置接收数据和指令和向其发送数据和指令。可编程系统或计算系统可以包括客户端和服务器。客户端和服务器通常远离彼此,并且通常借助通信网络交互。客户端和服务器的关系借助于计算机程序出现,并且这些计算机程序运行在各计算机上并且具有到彼此的客户端-服务器关系。
这些计算机程序(还可以被称为程序、软件、软件应用、应用、部件、或代码)包括用于可编程处理器的机器指令,并且可以用高级过程语言、面向对象的编程语言、函数编程语言、逻辑编程语言、和/或用汇编/机器语言来实现。如这里使用的,术语“机器可读介质”(或“计算机可读介质”)指用于向可编程处理器(包括接收机器指令作为机器可读信号的机器可读介质)提供机器指令和/或数据的任意计算机程序产品、设备和/或装置,诸如例如,磁盘、光盘、存储器、以及可编程逻辑装置(PLD)。术语“机器可读信号”(或“计算机可读信号”)指用于向可编程处理器提供机器指令和/或数据的任意信号。机器可读介质可以非暂态存储这种机器指令,诸如例如如将为非暂态固态存储器或磁硬盘驱动器或任意等效存储介质。另选地或另外地,机器可读介质可以以暂态方式存储这种机器指令,诸如例如如将为处理器缓存或与一个或多个物理处理器核心关联的其他随机存取存储器。
为了提供与用户的交互,这里描述的主题的一个或多个方面或特征可以在计算机上实施,该计算机具有:显示装置,该显示装置用于向用户显示信息,诸如例如阴极射线管(CRT)或液晶显示器(LCD)或发光二极管(LED)监测器;以及键盘和指向装置,诸如例如鼠标或跟踪球,用户可以由该键盘和指向装置向计算机提供输入。还可以使用其他种类的装置来提供与用户的交互。例如,向用户提供的反馈可以为任意形式的感觉反馈,诸如例如,视觉反馈、听觉反馈、或触觉反馈;并且来自用户的输入可以以任意形式接收,包括但不限于声、语音或触觉输入。其他可能的输入装置包括但不限于触摸屏或其他触敏装置,诸如单或多点电阻或电容跟踪垫、语音识别硬件和软件、光学扫描仪、光学指针、数字图像捕捉装置和关联的解释软件等。
在以上描述和权利要求中,诸如“……中的至少一个”或“……中的一个或多个”的短语可以出现,后面是元件或特征的连接列表。术语“和/或”也可以出现在两个或更多个元件或特征的列表中。除非另外由使用短语的语境含蓄或明确地否定,否则这种短语旨在意指所列元件或特征中独立的任意一个或与其他所列元件或特征中的任意一个组合的、所列元件或特征的任意一个。例如,短语“A和B中的至少一个”、“A和B中的一个或多个”以及“A和/或B”各旨在意指“A独自、B独自或A和B一起”。类似的解释也旨在用于包括三项或更多项的列表。例如,短语“A、B以及C中的至少一个”、“A、B以及C中的一个或多个”以及“A、B和/或C”各旨在意指“A独自、B独自、C独自、A和B一起、A和C一起、B和C一起、或A和B和C一起”。上面和权利要求中的术语“基于”的使用旨在意指“至少部分基于”,使得未列举的特征或元件也是可允许的。
这里描述的主题可以取决于期望配置而在系统、设备、方法、计算机程序和/或物品中具体实施。附图中描绘和/或这里描述的任意方法或逻辑流程不是必须需要所示的特定顺序或先后次序来实现期望的结果。前面描述中阐述的实施方案不表示符合这里描述的主题的所有实施方案。相反,它们仅是符合与所述主题有关的方面的一些示例。虽然上面已经详细描述了一些变体,但其他修改或添加是可以的。具体地,除了这里阐述的特征和/或变体之外,还可以提供另外的特征和/或变体。上述实施方案可以致力于所公开特征的各种组合和子组合和/或以上注释的另外特征的组合和子组合。此外,上述优点不旨在将任何所发布权利要求的应用限于伴随优点中的任何一个或全部的处理和结构。
另外,章节标题不应限制在可以从本公开发行的任何权利要求中阐述的本发明或描述其特征。具体地且用示例的方式,虽然标题提及“技术领域”,但这种权利要求不应受该标题下被选择为描述所谓技术领域的语言限制。进一步地,“背景技术”中的技术的描述不被解释为技术是本公开中的任意发明的现有技术的承认。“发明内容”也不被认为是所发行权利要求中阐述的本发明的特征描述。此外,对一般的本公开的任意参考或单数形式的词语“发明”的使用不旨在暗示对下面阐述的权利要求的范围的任何限制。可以根据从本公开发行的多个权利要求的限制阐述多个发明,因此,这种权利要求限定保护的发明及其等同物。

Claims (46)

1.一种磁共振成像系统(MRI),该MRI包括:
主磁体,该主磁体具有低场强;
梯度线圈组件;
RF线圈系统;以及
控制系统,该控制系统被配置为从人类患者获取磁共振成像数据并处理该磁共振成像数据,并且被配置为使用没有并行成像的稀疏采样成像技术。
2.根据权利要求1所述的磁共振成像系统,其中,所述主磁体的场强小于1.0特斯拉。
3.根据权利要求2所述的磁共振成像系统,其中,所述MRI控制系统还被配置为使用低梯度场强。
4.根据权利要求3所述的磁共振成像系统,其中,所述梯度场强低于20mT/m。
5.根据权利要求2所述的磁共振成像系统,其中,所述控制系统还被配置为使用大翻转角。
6.根据权利要求5所述的磁共振成像系统,其中,所述翻转角大于40度。
7.根据权利要求2所述的磁共振成像系统,其中,所述MRI控制系统还被配置为使用将由于化学位移和磁敏感性而产生的伪影保持低于半毫米的RF带宽。
8.根据权利要求7所述的磁共振成像系统,其中,所述RF带宽小于1800Hz。
9.根据权利要求2所述的磁共振成像系统,其中,所述MRI的场强近似为0.35特斯拉。
10.根据权利要求2所述的磁共振成像系统,其中,所述控制系统被配置为采用不需要移相脉冲的脉冲序列。
11.根据权利要求2所述的磁共振成像系统,其中,所述控制系统被配置为使用高于75mT/m/ms的梯度切换率。
12.根据权利要求2所述的磁共振成像系统,其中,所述控制系统被配置为采用同时多切片成像技术。
13.根据权利要求2所述的磁共振成像系统,其中,所述控制系统还被配置为产生电影MRI。
14.根据权利要求13所述的磁共振成像系统,其中,所述控制系统还被配置为以实现每秒至少4帧的电影MRI的速率获取磁共振成像数据。
15.根据权利要求2所述的磁共振成像系统,其中,所述主磁体是分离磁体。
16.根据权利要求15所述的磁共振成像系统,其中,所述梯度线圈组件是分离梯度线圈组件。
17.根据权利要求15所述的磁共振成像系统,还包括与所述系统集成的放射治疗装置,所述放射治疗装置被配置为用于人类患者的放射治疗。
18.根据权利要求17所述的磁共振成像系统,其中,所述控制系统还被配置为使用所述电影MRI来跟踪人类患者中的组织的位置。
19.根据权利要求17所述的磁共振成像系统,其中,所述放射治疗装置是直线加速器。
20.根据权利要求19所述的磁共振成像系统,其中,所述直线加速器具有在4-6MV范围内的能量。
21.根据权利要求17所述的磁共振成像系统,其中,所述放射治疗装置从由质子治疗系统、重离子治疗系统以及放射性同位素治疗系统构成的组选择。
22.根据权利要求16所述的磁共振成像系统,还被配置为允许在所述分离磁体的间隙中进行手术介入。
23.根据权利要求22所述的磁共振成像系统,还包括与所述系统集成的机器人手术装置。
24.根据权利要求2所述的磁共振成像系统,其中,所述主磁体是超导磁体。
25.根据权利要求2所述的磁共振成像系统,其中,所述主磁体是阻抗型磁体。
26.根据权利要求25所述的磁共振成像系统,其中,所述主磁体由电池系统供电。
27.根据权利要求17所述的磁共振成像系统,其中,所述主磁体是非超导磁体。
28.根据权利要求2所述的磁共振成像系统,其中,所述RF线圈系统不包括表面线圈。
29.一种计算机程序产品,该计算机程序产品包括存储指令的非暂态机器可读介质,所述指令在由至少一个可编程处理器执行时,使得所述至少一个可编程处理器执行操作,所述操作包括:
借助磁共振成像系统(MRI)从人类患者获取磁共振成像数据,该MRI具有:主磁体,该主磁体具有低场强;梯度线圈组件;以及RF线圈系统,所述获取使用没有并行成像的稀疏采样成像技术;和
处理所述磁共振成像数据,所述处理包括重构人类患者的图像。
30.根据权利要求29所述的计算机程序产品,其中,所述主磁体的场强小于1.0特斯拉。
31.根据权利要求30所述的计算机程序产品,其中,所述获取使用低梯度场强。
32.根据权利要求31所述的计算机程序产品,其中,所述梯度场强低于20mT/m。
33.根据权利要求30所述的计算机程序产品,其中,所述获取使用大翻转角。
34.根据权利要求33所述的计算机程序产品,其中,所述翻转角大于40度。
35.根据权利要求30所述的计算机程序产品,其中,所述获取使用将由于化学位移和磁敏感性而产生的伪影保持低于半毫米的RF带宽。
36.根据权利要求35所述的计算机程序产品,其中,所述RF带宽小于1800Hz。
37.根据权利要求30所述的计算机程序产品,其中,所述MRI的场强近似为0.35特斯拉。
38.根据权利要求30所述的计算机程序产品,其中,所述获取采用不需要移相脉冲的脉冲序列。
39.根据权利要求30所述的计算机程序产品,其中,所述控制系统被配置为使用高于75mT/m/ms的梯度切换率。
40.根据权利要求30所述的计算机程序产品,其中,所述控制系统被配置为采用同时多切片成像技术。
41.根据权利要求30所述的计算机程序产品,其中,所述处理和重构包括电影MRI的产生。
42.根据权利要求41所述的计算机程序产品,其中,所述电影MRI的产生包括每秒至少4帧。
43.根据权利要求30所述的计算机程序产品,还包括向人类患者施予放射治疗。
44.根据权利要求43所述的计算机程序产品,还包括使用所述磁共振成像数据来跟踪人类患者中的组织的位置。
45.根据权利要求43所述的计算机程序产品,还包括基于人类患者中的组织的位置的跟踪改变放射治疗的施予。
46.根据权利要求30所述的计算机程序产品,还包括使用所述磁共振成像数据来监测手术介入。
CN201780051306.1A 2016-06-22 2017-06-22 低场强磁共振成像 Active CN109642933B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211135141.5A CN115407252A (zh) 2016-06-22 2017-06-22 低场强磁共振成像

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662353538P 2016-06-22 2016-06-22
US62/353,538 2016-06-22
PCT/US2017/038867 WO2017223382A1 (en) 2016-06-22 2017-06-22 Magnetic resonance imaging at low field strength

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202211135141.5A Division CN115407252A (zh) 2016-06-22 2017-06-22 低场强磁共振成像

Publications (2)

Publication Number Publication Date
CN109642933A true CN109642933A (zh) 2019-04-16
CN109642933B CN109642933B (zh) 2022-09-06

Family

ID=59270172

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202211135141.5A Pending CN115407252A (zh) 2016-06-22 2017-06-22 低场强磁共振成像
CN201780051306.1A Active CN109642933B (zh) 2016-06-22 2017-06-22 低场强磁共振成像

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202211135141.5A Pending CN115407252A (zh) 2016-06-22 2017-06-22 低场强磁共振成像

Country Status (8)

Country Link
US (4) US11378629B2 (zh)
EP (1) EP3475718A1 (zh)
JP (2) JP7098539B2 (zh)
KR (1) KR20190043129A (zh)
CN (2) CN115407252A (zh)
AU (1) AU2017281519A1 (zh)
CA (1) CA3028716C (zh)
WO (1) WO2017223382A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946339A (zh) 2004-02-20 2007-04-11 佛罗里达大学研究基金会公司 用于提供适形放射治疗同时对软组织进行成像的系统
AU2010262843B2 (en) 2009-06-19 2015-07-16 Viewray Technologies, Inc. System and method for performing tomographic image acquisition and reconstruction
CA2760055C (en) 2009-07-15 2021-04-06 Viewray Incorporated Method and apparatus for shielding a linear accelerator and a magnetic resonance imaging device from each other
JP6382208B2 (ja) 2012-10-26 2018-08-29 ビューレイ・テクノロジーズ・インコーポレイテッドViewRay Technologies, Inc. システム及びコンピュータプログラム製品
US9446263B2 (en) 2013-03-15 2016-09-20 Viewray Technologies, Inc. Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging
US10512511B2 (en) 2013-07-24 2019-12-24 Centre For Surgical Invention And Innovation Multi-function mounting interface for an image-guided robotic system and quick release interventional toolset
CA3187156A1 (en) 2013-12-03 2015-06-11 Viewray Technologies, Inc. Single- and multi-modality alignment of medical images in the presence of non-rigid deformations using phase correlation
CN118750795A (zh) 2016-03-02 2024-10-11 优瑞技术公司 放射疗法系统和相关的非暂时性计算机程序产品
EP3475718A1 (en) * 2016-06-22 2019-05-01 ViewRay Technologies, Inc. Magnetic resonance imaging at low field strength
US11000706B2 (en) 2016-12-13 2021-05-11 Viewray Technologies, Inc. Radiation therapy systems and methods
DE102017201327A1 (de) * 2017-01-27 2018-08-02 Friedrich-Alexander-Universität Erlangen-Nürnberg Aufzeichnen von diagnostischen Messdaten eines Herzens mittels eines Magnetresonanzgeräts
EP3710112A1 (en) 2017-12-06 2020-09-23 ViewRay Technologies, Inc. Optimization of multimodal radiotherapy
EP3550319A1 (en) * 2018-04-05 2019-10-09 Koninklijke Philips N.V. Emulation mode for mri
US11209509B2 (en) 2018-05-16 2021-12-28 Viewray Technologies, Inc. Resistive electromagnet systems and methods
CA3130759A1 (en) * 2019-02-22 2020-08-27 Promaxo, Inc. Systems and methods for performing magnetic resonance imaging
US11040221B2 (en) 2019-08-13 2021-06-22 Elekta Ltd. Adaptive radiation therapy using composite imaging slices
CN114728166A (zh) 2019-10-29 2022-07-08 医科达有限公司 使用mr linac的心脏消融
DE102021127102A1 (de) 2021-10-19 2023-04-20 Otto-von-Guericke-Universität Magdeburg, Körperschaft des öffentlichen Rechts Medizinisches System

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526067A (ja) * 1997-12-12 2001-12-18 ウイスコンシン アラムナイ リサーチ フオンデーシヨン 放射状投影を使用した迅速取得磁気共鳴イメージング
CN1496237A (zh) * 2001-03-14 2004-05-12 ��ʽ��������ҽҩ 磁共振成像装置和在装置中使用的静磁场发生装置
CN101063708A (zh) * 2005-09-19 2007-10-31 西门子公司 用于产生磁场的装置
CN103210318A (zh) * 2010-11-09 2013-07-17 皇家飞利浦电子股份有限公司 具有至少两个发射和接收信道的磁共振成像以及放射治疗设备
WO2015138945A1 (en) * 2014-03-14 2015-09-17 The General Hospital Corporation System and method for free radical imaging
CN105596003A (zh) * 2015-12-24 2016-05-25 深圳先进技术研究院 一种下肢深静脉血栓磁共振成像方法和装置
CN105664378A (zh) * 2009-07-15 2016-06-15 微雷公司 用于使直线性加速器和磁共振成像设备彼此屏蔽的方法和装置

Family Cites Families (300)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612596A (en) 1985-03-18 1986-09-16 Kabushiki Kaisha Toshiba Circuit for stabilizing electromagnet coil current of a magnetic resonance imaging device
US4694837A (en) 1985-08-09 1987-09-22 Picker International, Inc. Cardiac and respiratory gated magnetic resonance imaging
US4766378A (en) 1986-11-28 1988-08-23 Fonar Corporation Nuclear magnetic resonance scanners
GB8808334D0 (en) 1988-04-08 1988-05-11 Magnex Scient Ltd Electromagnets
JPH02243132A (ja) * 1989-03-17 1990-09-27 Toshiba Corp 磁気共鳴イメージング装置
US5023554A (en) 1989-05-22 1991-06-11 The Reagents Of The University Of California Fringe field MRI
JPH0415039A (ja) * 1990-05-09 1992-01-20 Toshiba Corp Mri装置の撮影法
US5734384A (en) 1991-11-29 1998-03-31 Picker International, Inc. Cross-referenced sectioning and reprojection of diagnostic image volumes
US5412363A (en) 1991-12-20 1995-05-02 Applied Superconetics, Inc. Open access superconducting MRI magnet
US5317616A (en) 1992-03-19 1994-05-31 Wisconsin Alumni Research Foundation Method and apparatus for radiation therapy
US5394452A (en) 1992-03-19 1995-02-28 Wisconsin Alumni Research Foundation Verification system for radiation therapy
US5216255A (en) 1992-03-31 1993-06-01 Siemens Medical Laboratories Beam profile generator for photon radiation
US5332908A (en) 1992-03-31 1994-07-26 Siemens Medical Laboratories, Inc. Method for dynamic beam profile generation
US5382904A (en) 1992-04-15 1995-01-17 Houston Advanced Research Center Structured coil electromagnets for magnetic resonance imaging and method for fabricating the same
US5596619A (en) 1992-08-21 1997-01-21 Nomos Corporation Method and apparatus for conformal radiation therapy
US6005916A (en) 1992-10-14 1999-12-21 Techniscan, Inc. Apparatus and method for imaging with wavefields using inverse scattering techniques
US6414490B1 (en) 1992-12-18 2002-07-02 Fonar Corporation MRI magnet with enhanced patient entry and positioning
EP0810006B1 (en) 1993-06-09 2000-08-30 Wisconsin Alumni Research Foundation Radiation therapy system
US5373844A (en) 1993-06-14 1994-12-20 The Regents Of The University Of California Inverse treatment planning method and apparatus for stereotactic radiosurgery
FI98411C (fi) 1993-08-20 1997-06-10 Picker Nordstar Oy Parannettu virtalähde
US5458125A (en) 1994-01-28 1995-10-17 Board Of Directors Of The Leland Standford Jr. University Treatment planning method and apparatus for radiosurgery and radiation therapy
US5538494A (en) 1994-03-17 1996-07-23 Hitachi, Ltd. Radioactive beam irradiation method and apparatus taking movement of the irradiation area into consideration
US5537452A (en) 1994-05-10 1996-07-16 Shepherd; Joseph S. Radiation therapy and radiation surgery treatment system and methods of use of same
US5402094A (en) 1994-08-15 1995-03-28 Enge; Harald A. MRI mammography magnet
US5602982A (en) 1994-09-23 1997-02-11 Kelly Properties, Inc. Universal automated training and testing software system
US5513238A (en) 1994-10-11 1996-04-30 Radionics, Inc. Automatic planning for radiation dosimetry
US5555283A (en) 1995-06-07 1996-09-10 Board Of Regents Of The University Of Texas System Computer-controlled miniature multileaf collimator
US6351659B1 (en) 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
GB9520564D0 (en) 1995-10-07 1995-12-13 Philips Electronics Nv Apparatus for treating a patient
US5708362A (en) 1995-11-16 1998-01-13 Siemens Aktiengesellschaft Magnet arrangement for a diagnostic magnetic resonance apparatus
JPH09154961A (ja) 1995-12-07 1997-06-17 Toshiba Medical Eng Co Ltd 放射線治療計画法
US6260005B1 (en) 1996-03-05 2001-07-10 The Regents Of The University Of California Falcon: automated optimization method for arbitrary assessment criteria
US5602892A (en) 1996-03-21 1997-02-11 Llacer; Jorge Method for optimization of radiation therapy planning
US5851182A (en) 1996-09-11 1998-12-22 Sahadevan; Velayudhan Megavoltage radiation therapy machine combined to diagnostic imaging devices for cost efficient conventional and 3D conformal radiation therapy with on-line Isodose port and diagnostic radiology
EP0952875B1 (en) 1996-10-24 2007-03-21 Nomos Corporation Planning method and apparatus for radiation dosimetry
US5757881A (en) 1997-01-06 1998-05-26 Siemens Business Communication Systems, Inc. Redundant field-defining arrays for a radiation system
JP4040742B2 (ja) 1997-03-28 2008-01-30 株式会社東芝 Mri装置
DE19715202B4 (de) 1997-04-11 2006-02-02 Brainlab Ag Referenzierungsvorrichtung mit einem Mundstück
SE512603C2 (sv) 1997-06-19 2000-04-10 Elekta Ab Metod och anordning för automatiserad dosplanering
US6011393A (en) 1997-06-26 2000-01-04 Toshiba America Mri, Inc. Self-supporting RF coil for MRI
US6052430A (en) 1997-09-25 2000-04-18 Siemens Medical Systems, Inc. Dynamic sub-space intensity modulation
US6526123B2 (en) 1997-09-29 2003-02-25 Moshe Ein-Gal Multiple layer multileaf collimator
US5936502A (en) 1997-12-05 1999-08-10 Picker Nordstar Inc. Magnet coils for MRI
US6198957B1 (en) 1997-12-19 2001-03-06 Varian, Inc. Radiotherapy machine including magnetic resonance imaging system
US6240162B1 (en) 1998-01-15 2001-05-29 Siemens Medical Systems, Inc. Precision dosimetry in an intensity modulated radiation treatment system
US6327490B1 (en) 1998-02-27 2001-12-04 Varian Medical Systems, Inc. Brachytherapy system for prostate cancer treatment with computer implemented systems and processes to facilitate pre-implantation planning and post-implantation evaluations with storage of multiple plan variations for a single patient
US6381486B1 (en) 1999-01-08 2002-04-30 Wisconsin Alumni Research Foundation Magnetic resonance angiography with vessel segmentation
US6487435B2 (en) 1998-04-10 2002-11-26 Wisconsin Alumni Research Foundation Magnetic resonance angiography using undersampled 3D projection imaging
US6175761B1 (en) 1998-04-21 2001-01-16 Bechtel Bwxt Idaho, Llc Methods and computer executable instructions for rapidly calculating simulated particle transport through geometrically modeled treatment volumes having uniform volume elements for use in radiotherapy
US6393096B1 (en) 1998-05-27 2002-05-21 Nomos Corporation Planning method and apparatus for radiation dosimetry
US7096055B1 (en) 1998-06-24 2006-08-22 Achim Schweikard Method to control delivery of radiation therapy
DE19829224B4 (de) 1998-06-30 2005-12-15 Brainlab Ag Verfahren zur Lokalisation von Behandlungszielen im Bereich weicher Körperteile
NZ509667A (en) 1998-08-06 2003-08-29 Wisconsin Alumni Res Found Delivery modification system for radiation therapy
JP3775993B2 (ja) 1998-08-06 2006-05-17 ウイスコンシン アラムナイ リサーチ フオンデーシヨン 放射線治療計画を作成するシステム
US6600810B1 (en) 1998-08-10 2003-07-29 Siemens Medical Solutions Usa, Inc. Multiple layer multileaf collimator design to improve resolution and reduce leakage
US6112112A (en) 1998-09-18 2000-08-29 Arch Development Corporation Method and system for the assessment of tumor extent in magnetic resonance images
DE19848765C2 (de) 1998-10-22 2000-12-21 Brainlab Med Computersyst Gmbh Positionsverifizierung in Kamerabildern
US6621889B1 (en) 1998-10-23 2003-09-16 Varian Medical Systems, Inc. Method and system for predictive physiological gating of radiation therapy
US6980679B2 (en) 1998-10-23 2005-12-27 Varian Medical System Technologies, Inc. Method and system for monitoring breathing activity of a subject
US6937696B1 (en) 1998-10-23 2005-08-30 Varian Medical Systems Technologies, Inc. Method and system for predictive physiological gating
US6501981B1 (en) 1999-03-16 2002-12-31 Accuray, Inc. Apparatus and method for compensating for respiratory and patient motions during treatment
US6778850B1 (en) 1999-03-16 2004-08-17 Accuray, Inc. Frameless radiosurgery treatment system and method
US6144875A (en) 1999-03-16 2000-11-07 Accuray Incorporated Apparatus and method for compensating for respiratory and patient motion during treatment
EP1165182B1 (en) 1999-04-02 2005-03-02 Wisconsin Alumni Research Foundation Megavoltage computed tomography during radiotherapy
DE19917867B4 (de) 1999-04-20 2005-04-21 Brainlab Ag Verfahren und Vorrichtung zur Bildunterstützung bei der Behandlung von Behandlungszielen mit Integration von Röntgenerfassung und Navigationssystem
WO2000066223A1 (en) 1999-05-03 2000-11-09 Franz Krispel Rotating stereotactic treatment system
DE19944516B4 (de) 1999-09-16 2006-08-17 Brainlab Ag Dreidimensionale Formerfassung mit Kamerabildern
DE19953177A1 (de) 1999-11-04 2001-06-21 Brainlab Ag Exakte Patientenpositionierung durch Vergleich von rekonstruierten und Linac-Röntgenbildern
US6546073B1 (en) 1999-11-05 2003-04-08 Georgia Tech Research Corporation Systems and methods for global optimization of treatment planning for external beam radiation therapy
US7046762B2 (en) 1999-11-05 2006-05-16 Georgia Tech Research Corporation Systems and methods for global optimization of treatment planning for external beam radiation therapy
US6542767B1 (en) 1999-11-09 2003-04-01 Biotex, Inc. Method and system for controlling heat delivery to a target
US6349129B1 (en) 1999-12-08 2002-02-19 Siemens Medical Solutions Usa, Inc. System and method for defining radiation treatment intensity maps
US6314159B1 (en) 1999-12-08 2001-11-06 Siemens Medical Systems, Inc. System and method for optimizing radiation treatment with an intensity modulating multi-leaf collimator
US6611700B1 (en) 1999-12-30 2003-08-26 Brainlab Ag Method and apparatus for positioning a body for radiation using a position sensor
DE10000937B4 (de) 2000-01-12 2006-02-23 Brainlab Ag Intraoperative Navigationsaktualisierung
WO2001051124A2 (en) 2000-01-14 2001-07-19 Neutron Therapy And Imaging Inc. Linac neutron therapy and imaging
US6725078B2 (en) 2000-01-31 2004-04-20 St. Louis University System combining proton beam irradiation and magnetic resonance imaging
AU2001247704A1 (en) 2000-03-21 2001-10-15 Bechtel Bwxt Idaho, Llc Methods and computer readable medium for improved radiotherapy dosimetry planning
EP1142536B1 (de) 2000-04-05 2002-07-31 BrainLAB AG Referenzierung eines Patienten in einem medizinischen Navigationssystem mittels aufgestrahlter Lichtpunkte
US6636645B1 (en) 2000-06-29 2003-10-21 Eastman Kodak Company Image processing method for reducing noise and blocking artifact in a digital image
DE10033063A1 (de) 2000-07-07 2002-01-24 Brainlab Ag Verfahren zur atmungskompensierten Strahlenbehandlung
US6594516B1 (en) 2000-07-18 2003-07-15 Koninklijke Philips Electronics, N.V. External patient contouring
US6466813B1 (en) 2000-07-22 2002-10-15 Koninklijke Philips Electronics N.V. Method and apparatus for MR-based volumetric frameless 3-D interactive localization, virtual simulation, and dosimetric radiation therapy planning
US6757355B1 (en) 2000-08-17 2004-06-29 Siemens Medical Solutions Usa, Inc. High definition radiation treatment with an intensity modulating multi-leaf collimator
US8565860B2 (en) 2000-08-21 2013-10-22 Biosensors International Group, Ltd. Radioactive emission detector equipped with a position tracking system
US6330300B1 (en) 2000-08-23 2001-12-11 Siemens Medical Solutions Usa, Inc. High definition intensity modulating radiation therapy system and method
DE50000345D1 (de) 2000-09-01 2002-09-05 Brainlab Ag Stufenfreie Darstellung von zwei- oder dreidimensionalen Datensätzen durch krümmungsminimierende Verschiebung von Pixelwerten
US6885886B2 (en) 2000-09-11 2005-04-26 Brainlab Ag Method and system for visualizing a body volume and computer program product
US6504899B2 (en) 2000-09-25 2003-01-07 The Board Of Trustees Of The Leland Stanford Junior University Method for selecting beam orientations in intensity modulated radiation therapy
US6775405B1 (en) 2000-09-29 2004-08-10 Koninklijke Philips Electronics, N.V. Image registration system and method using cross-entropy optimization
US6719683B2 (en) 2000-09-30 2004-04-13 Brainlab Ag Radiotherapy treatment planning with multiple inverse planning results
DE10051370A1 (de) 2000-10-17 2002-05-02 Brainlab Ag Verfahren und Vorrichtung zur exakten Patientenpositionierung in der Strahlentherapie und Radiochirurgie
WO2002035983A2 (en) 2000-11-03 2002-05-10 Biocellulase, Inc. System and method for tissue treatment
US6411675B1 (en) 2000-11-13 2002-06-25 Jorge Llacer Stochastic method for optimization of radiation therapy planning
US6570475B1 (en) 2000-11-20 2003-05-27 Intermagnetics General Corp. Split type magnetic resonance imaging magnet
US6414487B1 (en) 2000-11-22 2002-07-02 Philips Medical Systems (Cleveland), Inc. Time and memory optimized method of acquiring and reconstructing multi-shot 3D MRI data
ATE233517T1 (de) 2000-11-22 2003-03-15 Brainlab Ag Verfahren zur bestimmung der lungenfüllung
ES2197052T3 (es) 2000-11-24 2004-01-01 Brainlab Ag Dispositivo y procedimiento de navegacion.
US20030028090A1 (en) 2000-12-20 2003-02-06 Image-Guided Neurologics, Inc. Method for dynamic characterization of density fields in a compound structure
US7308298B2 (en) * 2000-12-22 2007-12-11 Kabushiki Kaisha Toshiba Magnetic resonance imaging using MT pulse of which duration is shorter
JP2002186676A (ja) 2000-12-22 2002-07-02 Hitachi Medical Corp 絞り装置および該絞り装置を用いた放射線治療装置
US6564084B2 (en) 2001-03-02 2003-05-13 Draeger Medical, Inc. Magnetic field shielding and detecting device and method thereof
EP1238684B1 (de) 2001-03-05 2004-03-17 BrainLAB AG Verfahren zur Erstellung bzw. Aktualisierung eines Bestrahlungsplans
ES2215813T3 (es) 2001-03-05 2004-10-16 Brainlab Ag Metodo para crear o actualizar un plan de tratamiento de radiaciones.
US6661870B2 (en) 2001-03-09 2003-12-09 Tomotherapy Incorporated Fluence adjustment for improving delivery to voxels without reoptimization
US7046831B2 (en) 2001-03-09 2006-05-16 Tomotherapy Incorporated System and method for fusion-aligned reprojection of incomplete data
US6708054B2 (en) 2001-04-12 2004-03-16 Koninklijke Philips Electronics, N.V. MR-based real-time radiation therapy oncology simulator
ES2194809T3 (es) 2001-05-22 2003-12-01 Brainlab Ag Aparato para registrar imagenes radiograficas con un sistema de navegacion medica.
WO2002103580A2 (en) 2001-06-15 2002-12-27 Massachusetts Institute Of Technology Adaptive mean estimation and normalization of data
JP2003024296A (ja) 2001-07-04 2003-01-28 Ge Medical Systems Global Technology Co Llc 静磁界調整方法およびmri装置
GB2382512A (en) 2001-07-20 2003-05-28 Elekta Oncology Syst Ltd MRI in guided radiotherapy and position verification
US7092573B2 (en) 2001-12-10 2006-08-15 Eastman Kodak Company Method and system for selectively applying enhancement to an image
ATE247431T1 (de) 2001-12-18 2003-09-15 Brainlab Ag Projektion von patientenbilddaten aus durchleuchtungs bzw. schichtbilderfassungsverfahren auf oberflächenvideobilder
US7221733B1 (en) 2002-01-02 2007-05-22 Varian Medical Systems Technologies, Inc. Method and apparatus for irradiating a target
US6657391B2 (en) 2002-02-07 2003-12-02 Siemens Medical Solutions Usa, Inc. Apparatus and method for establishing a Q-factor of a cavity for an accelerator
CA2478296A1 (en) 2002-03-06 2003-09-18 Tomotherapy Incorporated Method for modification of radiotherapy treatment delivery
DE10211244A1 (de) 2002-03-13 2003-10-23 Lactec Ges Fuer Moderne Lackte Lackieranlage zum Aufbringen von flüssigem Beschichtungsmaterial
US20030181804A1 (en) 2002-03-20 2003-09-25 Koninklijke Philips Electronics N.V. Distributed diagnostic imaging systems
FR2839894A1 (fr) 2002-05-21 2003-11-28 Chabunda Christophe Mwanza Procedes, appareils de cyclotherapie image-guidee et mode d'obtention d'images scanographiques diagnostiques instantanees pour la planification et la dosimetrie en ligne
US6735277B2 (en) 2002-05-23 2004-05-11 Koninklijke Philips Electronics N.V. Inverse planning for intensity-modulated radiotherapy
US7099428B2 (en) 2002-06-25 2006-08-29 The Regents Of The University Of Michigan High spatial resolution X-ray computed tomography (CT) system
US6728336B2 (en) 2002-07-12 2004-04-27 General Hospital Corporation Arrangements and methods for treating a subject
US7162005B2 (en) 2002-07-19 2007-01-09 Varian Medical Systems Technologies, Inc. Radiation sources and compact radiation scanning systems
GB2393373A (en) 2002-09-13 2004-03-24 Elekta Ab MRI in guided radiotherapy and position verification
US6853704B2 (en) 2002-09-23 2005-02-08 Siemens Medical Solutions Usa, Inc. System providing multiple focused radiation beams
US7227925B1 (en) 2002-10-02 2007-06-05 Varian Medical Systems Technologies, Inc. Gantry mounted stereoscopic imaging system
US7289599B2 (en) 2002-10-04 2007-10-30 Varian Medical Systems Technologies, Inc. Radiation process and apparatus
US7657304B2 (en) 2002-10-05 2010-02-02 Varian Medical Systems, Inc. Imaging device for radiation treatment applications
US7208717B2 (en) 2002-10-16 2007-04-24 Varian Medical Systems Technologies, Inc. Method and apparatus for correcting excess signals in an imaging system
US7260426B2 (en) 2002-11-12 2007-08-21 Accuray Incorporated Method and apparatus for tracking an internal target region without an implanted fiducial
WO2004046745A1 (en) * 2002-11-20 2004-06-03 Koninklijke Philips Electronics N.V. Self-shielded gradient field coil for magnetic resonance imaging
US7317782B2 (en) 2003-01-31 2008-01-08 Varian Medical Systems Technologies, Inc. Radiation scanning of cargo conveyances at seaports and the like
US20050143965A1 (en) 2003-03-14 2005-06-30 Failla Gregory A. Deterministic computation of radiation doses delivered to tissues and organs of a living organism
US20040254448A1 (en) 2003-03-24 2004-12-16 Amies Christopher Jude Active therapy redefinition
US7570987B2 (en) 2003-04-04 2009-08-04 Brainlab Ag Perspective registration and visualization of internal areas of the body
US7542622B1 (en) 2003-06-02 2009-06-02 The Trustees Of Columbia University In The City Of New York Spatio-temporal treatment of noisy images using brushlets
US7171257B2 (en) 2003-06-11 2007-01-30 Accuray Incorporated Apparatus and method for radiosurgery
US7778691B2 (en) 2003-06-13 2010-08-17 Wisconsin Alumni Research Foundation Apparatus and method using synchronized breathing to treat tissue subject to respiratory motion
US7412029B2 (en) 2003-06-25 2008-08-12 Varian Medical Systems Technologies, Inc. Treatment planning, simulation, and verification system
WO2005003805A1 (en) 2003-06-27 2005-01-13 Case Western University Efficient method for mr image reconstruction using coil sensitivity encoding
GB2403884B (en) 2003-07-08 2006-03-01 Elekta Ab Multi-leaf collimator
US7266175B1 (en) 2003-07-11 2007-09-04 Nomos Corporation Planning method for radiation therapy
US7463823B2 (en) 2003-07-24 2008-12-09 Brainlab Ag Stereoscopic visualization device for patient image data and video images
US7204640B2 (en) 2003-08-29 2007-04-17 Accuray, Inc. Apparatus and method for registering 2D radiographic images with images reconstructed from 3D scan data
US20050053267A1 (en) 2003-09-05 2005-03-10 Varian Medical Systems Technologies, Inc. Systems and methods for tracking moving targets and monitoring object positions
US8571639B2 (en) 2003-09-05 2013-10-29 Varian Medical Systems, Inc. Systems and methods for gating medical procedures
US6999555B2 (en) 2003-09-15 2006-02-14 Varian Medical Systems Imaging Laboratory Gmbh Systems and methods for processing data
US7315636B2 (en) 2003-09-18 2008-01-01 Accuray, Inc. Generation of reconstructed images
US10342558B2 (en) 2003-09-30 2019-07-09 Koninklijke Philips N.V. Target tracking method and apparatus for radiation treatment planning and delivery
US7053617B2 (en) 2003-10-01 2006-05-30 General Electric Co. Integrated electronic RF shielding apparatus for an MRI magnet
US7589326B2 (en) 2003-10-15 2009-09-15 Varian Medical Systems Technologies, Inc. Systems and methods for image acquisition
US7002408B2 (en) 2003-10-15 2006-02-21 Varian Medical Systems Technologies, Inc. Data signal amplifier and processor with multiple signal gains for increased dynamic signal range
US7154991B2 (en) 2003-10-17 2006-12-26 Accuray, Inc. Patient positioning assembly for therapeutic radiation system
US20070197908A1 (en) 2003-10-29 2007-08-23 Ruchala Kenneth J System and method for calibrating and positioning a radiation therapy treatment table
US7202663B2 (en) 2003-11-12 2007-04-10 Iovivo Corporation Method for generating fast magnetic resonance images
US20050207531A1 (en) 2004-01-20 2005-09-22 University Of Florida Research Foundation, Inc. Radiation therapy system using interior-point methods and convex models for intensity modulated fluence map optimization
US7230429B1 (en) 2004-01-23 2007-06-12 Invivo Corporation Method for applying an in-painting technique to correct images in parallel imaging
EP1563799B2 (de) 2004-02-11 2012-11-28 BrainLAB AG Verstellbare Markeranordnung
CN1946339A (zh) 2004-02-20 2007-04-11 佛罗里达大学研究基金会公司 用于提供适形放射治疗同时对软组织进行成像的系统
US7477776B2 (en) 2004-03-01 2009-01-13 Brainlab Ag Method and apparatus for determining a plane of symmetry of a three-dimensional object
WO2005084351A2 (en) 2004-03-01 2005-09-15 Varian Medical Systems Technologies, Inc. Object examination by dual energy radiation scanning and delayed neutron detection
JP4392280B2 (ja) 2004-03-26 2009-12-24 株式会社日立製作所 放射性同位元素製造装置および放射性薬剤製造装置
US7046765B2 (en) 2004-03-31 2006-05-16 Accuray, Inc. Radiosurgery x-ray system with collision avoidance subsystem
US7166852B2 (en) 2004-04-06 2007-01-23 Accuray, Inc. Treatment target positioning system
WO2005096788A2 (en) 2004-04-08 2005-10-20 University Of Florida Research Foundation, Inc. Field splitting for intensity modulated fields of large size
US7460117B2 (en) 2004-05-25 2008-12-02 Siemens Medical Solutions Usa, Inc. Sliding texture volume rendering
US7130372B2 (en) 2004-06-08 2006-10-31 Siemens Medical Solutions Usa, Inc. Linear accelerator with X-ray imaging elements mounted on curved support
US20060017411A1 (en) 2004-06-17 2006-01-26 Accsys Technology, Inc. Mobile/transportable PET radioisotope system with omnidirectional self-shielding
DE602005012265D1 (de) 2004-06-17 2009-02-26 Koninkl Philips Electronics Nv Magnetresonanzabbildungssystem mit eisenunterstütztem magnetfeldgradientensystem
US7805177B2 (en) 2004-06-23 2010-09-28 M2S, Inc. Method for determining the risk of rupture of a blood vessel
US7327865B2 (en) 2004-06-30 2008-02-05 Accuray, Inc. Fiducial-less tracking with non-rigid image registration
US7522779B2 (en) 2004-06-30 2009-04-21 Accuray, Inc. Image enhancement method and system for fiducial-less tracking of treatment targets
US7426318B2 (en) 2004-06-30 2008-09-16 Accuray, Inc. Motion field generation for non-rigid image registration
US7366278B2 (en) 2004-06-30 2008-04-29 Accuray, Inc. DRR generation using a non-linear attenuation model
US7231076B2 (en) 2004-06-30 2007-06-12 Accuray, Inc. ROI selection in image registration
EP1623738B1 (de) 2004-08-06 2007-09-12 BrainLAB AG Volumetrische Bildgebung an einem Strahlentherapiegerät
US7634122B2 (en) 2004-08-25 2009-12-15 Brainlab Ag Registering intraoperative scans
US20060058636A1 (en) 2004-09-13 2006-03-16 Wemple Charles A Method for tracking the movement of a particle through a geometric model for use in radiotherapy
US7302038B2 (en) 2004-09-24 2007-11-27 Wisconsin Alumni Research Foundation Correction of patient rotation errors in radiotherapy using couch translation
US7012385B1 (en) 2004-09-24 2006-03-14 Viara Research, Llc Multi-channel induction accelerator with external channels
US7298819B2 (en) 2004-09-30 2007-11-20 Accuray Incorporated Flexible treatment planning
US8989349B2 (en) 2004-09-30 2015-03-24 Accuray, Inc. Dynamic tracking of moving targets
US7471813B2 (en) 2004-10-01 2008-12-30 Varian Medical Systems International Ag Systems and methods for correction of scatter in images
US7415095B2 (en) 2004-10-01 2008-08-19 Siemens Aktiengesellschaft System and method utilizing adaptive radiation therapy framework
US7505037B2 (en) 2004-10-02 2009-03-17 Accuray, Inc. Direct volume rendering of 4D deformable volume images
EP1645241B1 (de) 2004-10-05 2011-12-28 BrainLAB AG Positionsmarkersystem mit Punktlichtquellen
US7457655B2 (en) 2004-10-08 2008-11-25 Mayo Foundation For Medical Education And Research Motion correction of magnetic resonance images using moments of spatial projections
US8014625B2 (en) 2004-11-10 2011-09-06 Agfa Healthcare Method of performing measurements on digital images
CN101080196B (zh) 2004-12-15 2010-05-12 皇家飞利浦电子股份有限公司 确定磁性粒子空间分布的方法
JP3668816B1 (ja) 2004-12-16 2005-07-06 学校法人慶應義塾 磁気共鳴イメージング装置
DE102004061509B4 (de) 2004-12-21 2007-02-08 Siemens Ag Verfahren und Gerät zur beschleunigten Spiral-kodierten Bildgebung in der Magnetresonanztomographie
US7957507B2 (en) 2005-02-28 2011-06-07 Cadman Patrick F Method and apparatus for modulating a radiation beam
GB2424281A (en) 2005-03-17 2006-09-20 Elekta Ab Radiotherapeutic Apparatus with MRI
US8295577B2 (en) 2005-03-31 2012-10-23 Michael Zarkh Method and apparatus for guiding a device in a totally occluded or partly occluded tubular organ
US20070003010A1 (en) 2005-04-29 2007-01-04 Varian Medical Systems Technologies, Inc. Radiation systems with imaging capability
US20070016014A1 (en) 2005-06-15 2007-01-18 Kenji Hara Radio therapy apparatus and operating method of the same
EP1907055A2 (en) 2005-07-14 2008-04-09 Koninklijke Philips Electronics N.V. Method of accounting for tumor motion in radiotherapy treatment
CA2616316A1 (en) 2005-07-22 2007-02-01 Tomotherapy Incorporated Method and system for adapting a radiation therapy treatment plan based on a biological model
US20070110159A1 (en) 2005-08-15 2007-05-17 Nokia Corporation Method and apparatus for sub-pixel interpolation for updating operation in video coding
US20070083114A1 (en) 2005-08-26 2007-04-12 The University Of Connecticut Systems and methods for image resolution enhancement
WO2007027703A2 (en) 2005-08-29 2007-03-08 University Of Toledo System for extended high frame rate imaging with limited-diffraction beams
US7266176B2 (en) 2005-09-28 2007-09-04 Accuray Incorporated Workspace optimization for radiation treatment delivery system
PL1948309T3 (pl) 2005-10-17 2012-08-31 Alberta Health Services Zintegrowany system radioterapii wiązką zewnętrzną i MRI
US7977942B2 (en) 2005-11-16 2011-07-12 Board Of Regents, The University Of Texas System Apparatus and method for tracking movement of a target
ES2730108T3 (es) 2005-11-18 2019-11-08 Mevion Medical Systems Inc Radioterapia de partículas cargadas
US8041103B2 (en) 2005-11-18 2011-10-18 Kla-Tencor Technologies Corp. Methods and systems for determining a position of inspection data in design data space
US7902530B1 (en) 2006-04-06 2011-03-08 Velayudhan Sahadevan Multiple medical accelerators and a kV-CT incorporated radiation therapy device and semi-automated custom reshapeable blocks for all field synchronous image guided 3-D-conformal-intensity modulated radiation therapy
US7532705B2 (en) 2006-04-10 2009-05-12 Duke University Systems and methods for localizing a target for radiotherapy based on digital tomosynthesis
US7840045B2 (en) 2006-04-21 2010-11-23 The University Of Utah Research Foundation Method and system for parallel reconstruction in the K-space domain for application in imaging systems
JP4425879B2 (ja) 2006-05-01 2010-03-03 株式会社日立製作所 ベッド位置決め装置及びその位置決め方法並びに粒子線治療装置
WO2008013598A2 (en) 2006-05-25 2008-01-31 William Beaumont Hospital Real-time, on-line and offline treatment dose tracking and feedback process for volumetric image guided adaptive radiotherapy
DE102006036358A1 (de) 2006-08-02 2008-02-07 GM Global Technology Operations, Inc., Detroit Scheinwerfer in einem Kraftfahrzeug
US7505559B2 (en) 2006-08-25 2009-03-17 Accuray Incorporated Determining a target-to-surface distance and using it for real time absorbed dose calculation and compensation
CA2675890A1 (en) 2007-01-19 2008-07-24 University Health Network Electrostatically driven imaging probe
US8460195B2 (en) 2007-01-19 2013-06-11 Sunnybrook Health Sciences Centre Scanning mechanisms for imaging probe
US7602183B2 (en) 2007-02-13 2009-10-13 The Board Of Trustees Of The Leland Stanford Junior University K-T sparse: high frame-rate dynamic magnetic resonance imaging exploiting spatio-temporal sparsity
DE102008007245B4 (de) 2007-02-28 2010-10-14 Siemens Aktiengesellschaft Kombiniertes Strahlentherapie- und Magnetresonanzgerät
US8155417B2 (en) 2007-03-27 2012-04-10 Hologic, Inc. Post-acquisition adaptive reconstruction of MRI data
WO2008122899A1 (en) 2007-04-04 2008-10-16 Koninklijke Philips Electronics N.V. Split gradient coil and pet/mri hybrid system using the same
US7898192B2 (en) 2007-06-06 2011-03-01 Siemens Medical Solutions Usa, Inc. Modular linac and systems to support same
US7742562B2 (en) 2007-06-27 2010-06-22 Accuray Incorporated Lower-torso assembly of a treatment couch useable in an X-ray environment
US7791338B2 (en) 2007-09-07 2010-09-07 The Board Of Trustees Of The Leland Stanford Junior University MRI method of determining time-optimal gradient waveforms with gradient amplitude as a function of arc-length in k-space
JP5854575B2 (ja) 2007-12-10 2016-02-09 株式会社東芝 磁気共鳴イメージング装置
CN101903792A (zh) 2007-12-21 2010-12-01 皇家飞利浦电子股份有限公司 具有层合铁磁核和用于抑制涡流磁场的超导膜的电磁体
JP5197026B2 (ja) 2008-01-09 2013-05-15 株式会社東芝 放射線治療システム、放射線治療支援装置及び放射線治療支援プログラム
US8238516B2 (en) 2008-01-09 2012-08-07 Kabushiki Kaisha Toshiba Radiotherapy support apparatus
JP5352092B2 (ja) 2008-02-05 2013-11-27 株式会社日立メディコ 傾斜磁場コイル装置および磁気共鳴イメージング装置
WO2009113069A1 (en) 2008-03-12 2009-09-17 Navotek Medical Ltd. Combination mri and radiotherapy systems and methods of use
US7741624B1 (en) 2008-05-03 2010-06-22 Velayudhan Sahadevan Single session interactive ultra-short duration super-high biological dose rate radiation therapy and radiosurgery
EP2288411A2 (en) 2008-05-08 2011-03-02 The Johns Hopkins University Real-time dose computation for radiation therapy using graphics processing unit acceleration of the convolution/superposition dose computation method
CN102215912B (zh) 2008-06-24 2015-01-28 艾伯塔健康服务中心 放射治疗系统
US9606206B2 (en) 2008-06-25 2017-03-28 Koninklijke Philips Electronics N.V. Radiation therapy system with real time magnetic resonance monitoring
US7659718B1 (en) 2008-07-31 2010-02-09 The Board Of Trustees Of The Leland Stanford Junior University Blip design for random sampling compressed sensing of flyback 3D-MRSI
US8310233B2 (en) 2009-02-18 2012-11-13 Mayo Foundation For Medical Education And Research Method for image reconstruction from undersampled medical imaging data
US20120150017A1 (en) 2009-03-12 2012-06-14 National Institute Of Radiological Sciences Open pet/mri hybrid machine
US8331531B2 (en) 2009-03-13 2012-12-11 The Board Of Trustees Of The Leland Stanford Junior University Configurations for integrated MRI-linear accelerators
DE102009022834A1 (de) 2009-05-27 2010-12-09 Siemens Aktiengesellschaft Verfahren zur automatischen Analyse von Bilddaten einer Struktur
WO2010143400A1 (ja) 2009-06-10 2010-12-16 三菱電機株式会社 画像照合装置及びこれを用いた患者位置決め装置
AU2010262843B2 (en) * 2009-06-19 2015-07-16 Viewray Technologies, Inc. System and method for performing tomographic image acquisition and reconstruction
US8139714B1 (en) 2009-06-25 2012-03-20 Velayudhan Sahadevan Few seconds beam on time, breathing synchronized image guided all fields simultaneous radiation therapy combined with hyperthermia
JP5584441B2 (ja) 2009-08-20 2014-09-03 アズビル株式会社 ボリュームデータ間の対応付け方法
AU2010321714B2 (en) 2009-11-20 2014-10-23 Viewray Technologies, Inc. Self shielded gradient coil
US8427148B2 (en) * 2009-12-31 2013-04-23 Analogic Corporation System for combining magnetic resonance imaging with particle-based radiation systems for image guided radiation therapy
US9694205B2 (en) 2010-02-12 2017-07-04 Elekta Ab (Publ) Radiotherapy and imaging apparatus
JP5827250B2 (ja) 2010-02-24 2015-12-02 ビューレイ・インコーポレイテッドViewRay Incorporated 分割磁気共鳴画像システム
WO2011106622A1 (en) 2010-02-25 2011-09-01 The Trustees Of The University Of Pennsylvania Automatic quantification of mitral valve dynamics with real-time 3d ultrasound
US9659364B2 (en) 2010-03-11 2017-05-23 Koninklijke Philips N.V. Probabilistic refinement of model-based segmentation
US8405395B2 (en) * 2010-04-15 2013-03-26 The General Hospital Corporation Method for simultaneous multi-slice magnetic resonance imaging
WO2011143367A2 (en) 2010-05-11 2011-11-17 Hampton University, Office Of General Counsel Apparatus, method and system for measuring prompt gamma and other beam-induced radiation during hadron therapy treatments for dose and range verificaton purposes using ionization radiation detection
WO2011149785A1 (en) 2010-05-23 2011-12-01 The Regents Of The University Of California Characterization and correction of macular distortion
JP5470185B2 (ja) 2010-07-29 2014-04-16 株式会社日立メディコ 医用画像処理装置及び治療支援システム
US8637841B2 (en) 2010-08-23 2014-01-28 Varian Medical Systems, Inc. Multi level multileaf collimators
CN103282942B (zh) 2010-10-25 2019-11-26 皇家飞利浦电子股份有限公司 基于距离的体积可视化
US9151815B2 (en) 2010-11-15 2015-10-06 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and magnetic resonance imaging method
BR112013014571A2 (pt) 2010-12-13 2017-06-06 Koninl Philips Electronics Nv equipamento terapêutico, equipamento de radioterapia, produto de programa de computador e método para o controle de um equipamento terapêutico
US20120155727A1 (en) 2010-12-15 2012-06-21 General Electric Company Method and apparatus for providing motion-compensated images
WO2012088321A1 (en) * 2010-12-22 2012-06-28 Viewray Incorporated System and method for image guidance during medical procedures
US9036883B2 (en) 2011-01-10 2015-05-19 The Regents Of The University Of Michigan System and methods for detecting liver disease
JP2012152469A (ja) 2011-01-27 2012-08-16 Nidek Co Ltd 眼科用手術顕微鏡
US9254112B2 (en) 2011-03-23 2016-02-09 Siemens Corporation Respiratory interval-based correlation and processing of dynamic imaging data
DE102011006582A1 (de) 2011-03-31 2012-10-04 Siemens Aktiengesellschaft Strahlentherapieanlage mit Hochfrequenzschirmung
US9664763B2 (en) 2011-05-31 2017-05-30 Koninklijke Philips N.V. Correcting the static magnetic field of an MRI radiotherapy apparatus
WO2013033249A2 (en) 2011-08-29 2013-03-07 Rosa Louis Neutron irradiation therapy device
US8981779B2 (en) 2011-12-13 2015-03-17 Viewray Incorporated Active resistive shimming fro MRI devices
JP6138162B2 (ja) 2012-02-06 2017-05-31 インサイテック・リミテッド 非侵襲的療法中の参照ベースの動き追跡
US9111174B2 (en) 2012-02-24 2015-08-18 Riverain Technologies, LLC Machine learnng techniques for pectoral muscle equalization and segmentation in digital mammograms
EP2639781A1 (en) 2012-03-14 2013-09-18 Honda Motor Co., Ltd. Vehicle with improved traffic-object position detection
JP6004464B2 (ja) 2012-03-19 2016-10-05 国立大学法人北海道大学 放射線治療制御装置および放射線治療制御プログラム
US9119550B2 (en) 2012-03-30 2015-09-01 Siemens Medical Solutions Usa, Inc. Magnetic resonance and ultrasound parametric image fusion
US9514539B2 (en) 2012-05-09 2016-12-06 Laboratoires Bodycad Inc. Segmentation of magnetic resonance imaging data
US20130345545A1 (en) 2012-06-21 2013-12-26 Siemens Medical Solutions Usa, Inc. Ultrasound Enhanced Magnetic Resonance Imaging
US8993898B2 (en) 2012-06-26 2015-03-31 ETS-Lindgren Inc. Movable EMF shield, method for facilitating rapid imaging and treatment of patient
US10649053B2 (en) * 2012-11-02 2020-05-12 The Regents Of The University Of California Cardiac late gadolinium enhancement MRI for patients with implanted cardiac devices
GB2507585B (en) 2012-11-06 2015-04-22 Siemens Plc MRI magnet for radiation and particle therapy
GB2507792B (en) 2012-11-12 2015-07-01 Siemens Plc Combined MRI and radiation therapy system
US9675271B2 (en) 2013-03-13 2017-06-13 Viewray Technologies, Inc. Systems and methods for radiotherapy with magnetic resonance imaging
US9289626B2 (en) 2013-03-13 2016-03-22 Viewray Incorporated Systems and methods for improved radioisotopic dose calculation and delivery
US9446263B2 (en) 2013-03-15 2016-09-20 Viewray Technologies, Inc. Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging
US9610112B2 (en) 2013-03-15 2017-04-04 Myoscience, Inc. Cryogenic enhancement of joint function, alleviation of joint stiffness and/or alleviation of pain associated with osteoarthritis
US10376716B2 (en) 2013-04-18 2019-08-13 Koninklijke Philips N.V. Radiation therapy system with real-time magnetic resonance monitoring
EP3055706B1 (en) * 2013-10-08 2020-06-24 Koninklijke Philips N.V. Corrected multiple-slice magnetic resonance imaging
JP6113919B2 (ja) 2013-10-17 2017-04-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 放射線治療装置と放射線検出システムを伴う医療機器
US9918639B2 (en) * 2013-11-07 2018-03-20 Siemens Healthcard GmbH Magnetic resonance imaging with asymmetric radial sampling and compressed-sensing reconstruction
CA3187156A1 (en) 2013-12-03 2015-06-11 Viewray Technologies, Inc. Single- and multi-modality alignment of medical images in the presence of non-rigid deformations using phase correlation
US9594134B2 (en) * 2014-01-22 2017-03-14 Wisconsin Alumni Research Foundation System and method for fully phase-encoded magnetic resonance imaging using multiband radio frequency excitation
WO2015138941A1 (en) * 2014-03-14 2015-09-17 The General Hospital Corporation System and method for magnetic resonance fingerprinting
US9913733B2 (en) 2014-08-20 2018-03-13 Synaptive Medical (Barbados) Inc. Intra-operative determination of dimensions for fabrication of artificial bone flap
JP6674645B2 (ja) 2014-09-05 2020-04-01 ハイパーファイン リサーチ,インコーポレイテッド 低磁場磁気共鳴撮像方法及び装置
US9874620B2 (en) 2015-02-05 2018-01-23 Ohio State Innovation Foundation Low field magnetic resonance imaging (MRI) scanner for cardiac imaging
US10925510B2 (en) 2015-05-08 2021-02-23 Cedars-Sinai Medical Center Characterization of respiratory motion in the abdomen using a 4D MRI technique with 3D radial sampling and respiratory self-gating
MX2017014426A (es) * 2015-05-12 2018-04-10 Hyperfine Res Inc Metodos y aparatos de bobina de radiofrecuencia.
US10441816B2 (en) 2015-12-31 2019-10-15 Shanghai United Imaging Healthcare Co., Ltd. Radiation therapy system
EP3475718A1 (en) * 2016-06-22 2019-05-01 ViewRay Technologies, Inc. Magnetic resonance imaging at low field strength
US10627464B2 (en) 2016-11-22 2020-04-21 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
EP3555649A1 (en) 2016-12-15 2019-10-23 Koninklijke Philips N.V. Magnetic resonance antenna compatible with charged particle accelerator systems
US10613171B2 (en) * 2017-03-14 2020-04-07 Siemens Healthcare Gmbh Multi-banded RF-pulse enhanced magnetization imaging
EP3710112A1 (en) 2017-12-06 2020-09-23 ViewRay Technologies, Inc. Optimization of multimodal radiotherapy
US11209509B2 (en) 2018-05-16 2021-12-28 Viewray Technologies, Inc. Resistive electromagnet systems and methods
CN114668987A (zh) 2018-11-14 2022-06-28 上海联影医疗科技股份有限公司 放射治疗系统
WO2020155137A1 (en) 2019-02-02 2020-08-06 Shanghai United Imaging Healthcare Co., Ltd. Radiation therapy system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526067A (ja) * 1997-12-12 2001-12-18 ウイスコンシン アラムナイ リサーチ フオンデーシヨン 放射状投影を使用した迅速取得磁気共鳴イメージング
CN1496237A (zh) * 2001-03-14 2004-05-12 ��ʽ��������ҽҩ 磁共振成像装置和在装置中使用的静磁场发生装置
CN101063708A (zh) * 2005-09-19 2007-10-31 西门子公司 用于产生磁场的装置
CN105664378A (zh) * 2009-07-15 2016-06-15 微雷公司 用于使直线性加速器和磁共振成像设备彼此屏蔽的方法和装置
CN103210318A (zh) * 2010-11-09 2013-07-17 皇家飞利浦电子股份有限公司 具有至少两个发射和接收信道的磁共振成像以及放射治疗设备
WO2015138945A1 (en) * 2014-03-14 2015-09-17 The General Hospital Corporation System and method for free radical imaging
CN105596003A (zh) * 2015-12-24 2016-05-25 深圳先进技术研究院 一种下肢深静脉血栓磁共振成像方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B W RAAYMAKERS ET AL.: "Integrating a 1.5T MRI scanner with a 6 MV accelerator:proof of concept", 《PHYSICS IN MEDICINE AND BIOLOGY》 *
JAN J W LAGENDIJK ET AL.: "MR guidance in radiotherapy", 《PHYSICS IN MEDICINE AND BIOLOGY,INSTITUTE OF PHYSICS PUBLISHING,BRISTOL GB》 *
ZAITSEV M ET AL.: "Shared k-space echo planar imaging with keyhole", 《MAGNETIC RESONANCE IN MEDICINE,JOHN WILEY & SONS, INC, US》 *

Also Published As

Publication number Publication date
WO2017223382A1 (en) 2017-12-28
KR20190043129A (ko) 2019-04-25
CA3028716C (en) 2024-02-13
US11768257B2 (en) 2023-09-26
US11892523B2 (en) 2024-02-06
US20170371001A1 (en) 2017-12-28
CA3028716A1 (en) 2017-12-28
CN115407252A (zh) 2022-11-29
JP7098539B2 (ja) 2022-07-11
CN109642933B (zh) 2022-09-06
US20220334198A1 (en) 2022-10-20
JP2022116041A (ja) 2022-08-09
US11378629B2 (en) 2022-07-05
EP3475718A1 (en) 2019-05-01
JP2019524193A (ja) 2019-09-05
AU2017281519A1 (en) 2019-01-24
US20220334199A1 (en) 2022-10-20
US20240310457A1 (en) 2024-09-19

Similar Documents

Publication Publication Date Title
CN109642933A (zh) 低场强磁共振成像
US10330758B2 (en) Magnetic resonance imaging using zero echo time puse sequences
US10518108B2 (en) Therapy system containing an MRI module and means for determining the position of an RF coil
US9504851B2 (en) Magnetic resonance imaging of bone tissue
CN106821500B (zh) 一种用于微创手术导航系统
JP2014525812A (ja) 磁気共鳴撮像中における既定の体積内の無線周波数伝送場の減少
US20150285875A1 (en) Device for generating a magnetic field profile which meets the requirements for MPI and for MRI
CN111247447B (zh) 磁共振成像系统及其操作方法
CN112204411A (zh) Cest磁共振成像中的运动检测
US11275140B2 (en) Emulation mode for MRI
RU2742501C2 (ru) Медицинский инструмент для радиотерапии, контролируемой магнитно-резонансной визуализацией
Zijlema et al. Improving the imaging performance of the 1.5 T MR-linac using a flexible, 32-channel, on-body receive array
EP3381362A1 (en) Magnetic resonance image quality determination
US20230113808A1 (en) Radiation therapy system and method
US11353532B2 (en) (3-n) dimensional determination of electric conductivity
US20220305294A1 (en) Systems and methods for radiation therapy
Paganelli et al. Magnetic resonance imaging in particle therapy
CN118647886A (zh) 模拟计算机断层摄影成像
WO2019174896A1 (en) Mimicking magnetic resonance imaging characteristics using post-processing
Lawrence et al. Imaging with x-ray, MRI and ultrasound
Burke Characterization of Radiation Induced Current in RF coils of Linac-MR Systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240712

Address after: Colorado, USA

Patentee after: Yourui System Co.

Country or region after: U.S.A.

Address before: Ohio, USA

Patentee before: VIEWRAY TECHNOLOGIES, Inc.

Country or region before: U.S.A.

TR01 Transfer of patent right