US5402094A - MRI mammography magnet - Google Patents

MRI mammography magnet Download PDF

Info

Publication number
US5402094A
US5402094A US08/290,687 US29068794A US5402094A US 5402094 A US5402094 A US 5402094A US 29068794 A US29068794 A US 29068794A US 5402094 A US5402094 A US 5402094A
Authority
US
United States
Prior art keywords
electromagnet
accordance
well
current
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/290,687
Inventor
Harald A. Enge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US08/290,687 priority Critical patent/US5402094A/en
Application granted granted Critical
Publication of US5402094A publication Critical patent/US5402094A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3875Compensation of inhomogeneities using correction coil assemblies, e.g. active shimming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/202Electromagnets for high magnetic field strength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3873Compensation of inhomogeneities using ferromagnetic bodies ; Passive shimming

Definitions

  • the present invention relates to magnetic-resonance imaging apparatus to be used for producing a three-dimensional scan of a human breast (MRI Mammography.)
  • Magnetic-resonance imaging is used in medicine to display internal organs of the human body. In this respect it is similar to X-ray "Computed Axial Tomography" (CAT-scan).
  • CAT-scan X-ray "Computed Axial Tomography"
  • the most fundamental difference is that in the case of CAT scanning the body is penetrated by X-rays, and in the case of MRI scanning the body is penetrated by a magnetic field and a radio-frequency electromagnetic field.
  • the potential for serious harm caused by the X-rays in the case of a CAT scan is very small, but not zero. In the case of an MRI scan, the potential for harm is supposedly zero.
  • the two methods differ substantially also in that they highlight different features of the anatomy.
  • Medical MRI apparatus typically, have a solenoid magnet or a set of coaxial coils, large enough for a human to fit inside, several "gradient” coils producing a superimposed “sweep” field and high-frequency coils designed to detect the precession of the hydrogen nucleus (proton) in the magnetic field. With the sweep field turned off, the uniformity of the main field, in the region of interest, is generally of the order of 30 parts per million for MRI apparatus designed to measure and map hydrogen density only.
  • the present invention utilizes an electromagnet shaped substantially as a circular disk with a cup indenture (well) at the center for the object to be investigated, a human breast.
  • the main coil for producing the magnetic field is a solenoid inside the cylindrical wall of the well.
  • the disk is made of ferromagnetic materials and has, in addition to the well indenture, several concentric slots to accommodate copper or superconducting coils.
  • the current directions generally alternate from coil to coil and the magnitudes of the ampereturns for each coil have to be carefully adjusted to produce a field which is substantially uniform, not only in the well, but also in the region immediately in front of the well.
  • the field lines emanating from the cup eventually diverge, in the manner of a fountain and return to the rim of the disc, outside the coil with the largest diameter.
  • FIG. 1 is a central cross section of one embodiment of the MRI magnet of the invention
  • FIG. 2 is a top view of the magnet of FIG. 1,
  • FIG. 3 is a central cross section of a portion of the embodiment of FIG. 1 on an enlarged scale and showing additional features of the invention.
  • FIG. 4 is a view, similar to that of FIG. 1, showing a modification of the embodiment of FIG. 1.
  • the main ferromagnetic body of the disk magnet has an upper surface or plane 11 and may conveniently be constructed in three parts, comprising an outer annulus 1 made of low-carbon steel, an inner annulus 2 and a flat ring 3, said inner annulus 2 and said flat ring 3 both being preferably made of a high-permeability nickel-iron alloy such as Carpenter High Permeability "49" Alloy (a trade mark used by Carpenter Technology Corporation to identify a high-permeability alloy which is a 48% nickel-iron alloy typically comprising 0.02% carbon, 0.50% manganese, 0.35% silicon, 48.00% nickel, and the balance iron).
  • the outer annulus 1 may have an outwardly projecting flange 12.
  • the inner annulus 2 forms a central cylindrical well 8 which is lined with a solenoidal current-carrying coil 4.
  • An inner slot 5 (FIG. 1) is formed in the upper surface of the inner annulus 2 and contains a current-carrying coil 15 (FIG. 2).
  • the flat ring 3 is positioned at the top of the solenoidal coil 4 and extends from the inner edge of the solenoidal coil 4 outward to the inner edge of the inner slot 5.
  • An intermediate slot 6 (FIG. 1) may conveniently be formed between the inner annulus 2 and the outer annulus 1 and contains a current-carrying coil 16 (FIG. 2).
  • An outer slot 7 (FIG.
  • the central cylindrical region 8 is the measurement region, and it also contains gradient coils and radio-frequency coils, which may be placed in the space shown at 14 in FIG. 3. It is also possible to include in this region 14 any number of low-current coils for fine adjustment of the field homogeneity.
  • the upper surface 11 (i.e. the front) of the disk may be made slightly conical to provide better access to the well 8, as shown in FIG. 4.
  • FIGS. 1 and 4 show the well 8 in the surface which is uppermost in these views.
  • the MRI magnet of FIGS. 1 and 4 may be positioned otherwise, such as a position rotated 90° with respect to that of FIGS. 1 and 4. Therefore, as used herein, the term "upper” means that surface below which the well 8 extends. It should also be noted that the upper surface 11 is intentionally shown in FIG. 1 by a dashed line in order to make it clear that the well 8 is open at the top.
  • the magnetic field of typically 0.15 Tesla inside the well 8 up to plane 11 is driven by the current in coil 4.
  • Plane 11 must be a magnostatic equipotential.
  • the materials in items 1, 2, and 3 may by assumption have infinite permeabilities.
  • the reluctances of these parts are included.
  • Ampere's Law applies to the field integral inside the well 8 with the current in coil 4 being the driving magnetomotive force.
  • the field integral for instance taken along the field line 9 obeys Ampere's Law with the magnetomotive force being provided by the positive contributions from the currents in coils 5 and 7 and a negative contribution from coil 6.
  • the reverse current in coil 6 is necessary for straightening the field line 9 above plane 11 as shown by creation of a reverse field 10.
  • Some fine tuning of the field can also be made by other parameters, for instance, the inner radius of ring 3 and the inner and outer radii of coils 5, 6, and 7. There is, however, not much flexibility in the choice of coil radii. For instance, calculations on a magnet correctly scaled from FIG. 1 show that the field in the iron between coils 6 and 7 reaches a value approaching 12 times the field in the well 8. With a field in the region of interest, the well 8, of 0.15 Tesla the field in the iron is about 1.8 Tesla, and it is probably not advisable to drive it closer to saturation because of possible nonuniformities in the iron. The field in the central ferromagnetic part (2) is, however, very much lower, making it possible to utilize a material here with superior magnetic properties, as described above.
  • the field in the well can be further fine tuned by use of weak currents in thin wire loops inside the well to correct angular inaccuracies as well as radial-axial variations.
  • One obvious place for a current loop to provide an additional adjustable parameter is at the top of the well 8, inside ring 3, within the space 14 (FIG. 3).
  • Another obvious place is at the bottom of the well 8, within the space 14 (FIG. 3).
  • In the ferromagnetic material 2, below the well there is an inward-pointing component of the return field, producing a drop in magnetomotive force from the outside towards the center. This can be compensated for by a flat coil with a relatively weak current in the bottom of the well 8, within the space 14 (FIG. 3).
  • the inner radius of ring 3 can also be treated as an adjustable parameter for fine tuning of the field near it.
  • the ferromagnetic ring 3 should be made quite thin because it is important that coil 4 builds up the magnetostatic potential linearly to as close to the top of the well as possible.
  • the magnetic field entering the ring from above is substantially uniform while the field from below decreases linearly to zero from the inner radius R 1 to the outer radius R 2 of coil 4.
  • the mismatch in the flux from above and the flux from below must be conducted radially out through the ring and through a cross section 2 ⁇ R 2 T at the outer radius R 2 of the well.
  • T is the thickness of the ring.
  • the field should be kept below approximately 1 Tesla.
  • the thickness of the magnetic disk can be reduced outside coil 7, as shown in FIG. 1.
  • Flange 12 is thick enough to support the magnetic field at this location without saturation of the iron.

Abstract

A magnet is specially designed for the creation of an extremely uniform magnetic field in a small volume for use in MRI mammography. A disk of ferromagnetic material has a surface having a well adapted to receive the object to be examined and lined with a solenoidal coil which provides the basic magnetic field. Uniformity is increased by three additional coils surrounding the solenoidal coil and placed in annular slots surrounding the well. Of these three additional coils, the middle one generates a magnetic field in the well which opposes the basic magnetic field, and the others supplement the basic magnetic field. The ampereturns of the three additional coils are selected to maximize uniformity of the magnetic field in the well.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to magnetic-resonance imaging apparatus to be used for producing a three-dimensional scan of a human breast (MRI Mammography.)
2. Description of the Related Art
Magnetic-resonance imaging (MRI) is used in medicine to display internal organs of the human body. In this respect it is similar to X-ray "Computed Axial Tomography" (CAT-scan). The most fundamental difference is that in the case of CAT scanning the body is penetrated by X-rays, and in the case of MRI scanning the body is penetrated by a magnetic field and a radio-frequency electromagnetic field. The potential for serious harm caused by the X-rays in the case of a CAT scan is very small, but not zero. In the case of an MRI scan, the potential for harm is supposedly zero. The two methods differ substantially also in that they highlight different features of the anatomy.
One potentially very important area of application of the MRI technique is scanning of the human breast (mammography). If the recommended yearly mammogram (for women over a certain age) can be done as well or better by an MRI technique rather than an X-ray technique, the radiation "load" on the female population will be substantially reduced.
Medical MRI apparatus presently in use, typically, have a solenoid magnet or a set of coaxial coils, large enough for a human to fit inside, several "gradient" coils producing a superimposed "sweep" field and high-frequency coils designed to detect the precession of the hydrogen nucleus (proton) in the magnetic field. With the sweep field turned off, the uniformity of the main field, in the region of interest, is generally of the order of 30 parts per million for MRI apparatus designed to measure and map hydrogen density only.
SUMMARY OF THE INVENTION
The present invention utilizes an electromagnet shaped substantially as a circular disk with a cup indenture (well) at the center for the object to be investigated, a human breast. The main coil for producing the magnetic field is a solenoid inside the cylindrical wall of the well. The disk is made of ferromagnetic materials and has, in addition to the well indenture, several concentric slots to accommodate copper or superconducting coils. The current directions generally alternate from coil to coil and the magnitudes of the ampereturns for each coil have to be carefully adjusted to produce a field which is substantially uniform, not only in the well, but also in the region immediately in front of the well.
The field lines emanating from the cup eventually diverge, in the manner of a fountain and return to the rim of the disc, outside the coil with the largest diameter.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention may best be understood from the following detailed description thereof, having reference to the accompanying drawings, in which:
FIG. 1 is a central cross section of one embodiment of the MRI magnet of the invention,
FIG. 2 is a top view of the magnet of FIG. 1,
FIG. 3 is a central cross section of a portion of the embodiment of FIG. 1 on an enlarged scale and showing additional features of the invention, and
FIG. 4 is a view, similar to that of FIG. 1, showing a modification of the embodiment of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to FIGS. 1 and 2, in the embodiment therein shown, the main ferromagnetic body of the disk magnet has an upper surface or plane 11 and may conveniently be constructed in three parts, comprising an outer annulus 1 made of low-carbon steel, an inner annulus 2 and a flat ring 3, said inner annulus 2 and said flat ring 3 both being preferably made of a high-permeability nickel-iron alloy such as Carpenter High Permeability "49" Alloy (a trade mark used by Carpenter Technology Corporation to identify a high-permeability alloy which is a 48% nickel-iron alloy typically comprising 0.02% carbon, 0.50% manganese, 0.35% silicon, 48.00% nickel, and the balance iron). The outer annulus 1 may have an outwardly projecting flange 12. The inner annulus 2 forms a central cylindrical well 8 which is lined with a solenoidal current-carrying coil 4. An inner slot 5 (FIG. 1) is formed in the upper surface of the inner annulus 2 and contains a current-carrying coil 15 (FIG. 2). The flat ring 3 is positioned at the top of the solenoidal coil 4 and extends from the inner edge of the solenoidal coil 4 outward to the inner edge of the inner slot 5. Thus the solenoidal coil 4 is surrounded on three sides by high-permeability ferromagnetic material. An intermediate slot 6 (FIG. 1) may conveniently be formed between the inner annulus 2 and the outer annulus 1 and contains a current-carrying coil 16 (FIG. 2). An outer slot 7 (FIG. 1) is formed in the upper surface of the outer annulus 1 and contains a current-carrying coil 17 (FIG. 2). The central cylindrical region 8 is the measurement region, and it also contains gradient coils and radio-frequency coils, which may be placed in the space shown at 14 in FIG. 3. It is also possible to include in this region 14 any number of low-current coils for fine adjustment of the field homogeneity.
Current is produced in each of the various coils by means of conventional current sources, well known in the art. Although separate current sources may be used, it is to be understood that a single power source may be used to supply current to a plurality of coils connected in series. It is then necessary to include in each slot a trim coil with its own small adjustable power supply. In general, the coils 15, 16 and 17 will fill their respective slots 5, 6 and 7 to a substantial degree.
The upper surface 11 (i.e. the front) of the disk may be made slightly conical to provide better access to the well 8, as shown in FIG. 4. FIGS. 1 and 4 show the well 8 in the surface which is uppermost in these views. However, in actual use the MRI magnet of FIGS. 1 and 4 may be positioned otherwise, such as a position rotated 90° with respect to that of FIGS. 1 and 4. Therefore, as used herein, the term "upper" means that surface below which the well 8 extends. It should also be noted that the upper surface 11 is intentionally shown in FIG. 1 by a dashed line in order to make it clear that the well 8 is open at the top.
The magnetic field of typically 0.15 Tesla inside the well 8 up to plane 11 is driven by the current in coil 4. Plane 11 must be a magnostatic equipotential. For the purpose of this discussion one might therefore imagine that a very thin sheet with infinite permeability is positioned in this plane. Also for this discussion the materials in items 1, 2, and 3 may by assumption have infinite permeabilities. In the design calculations, of course, the reluctances of these parts are included. In this simplified model Ampere's Law applies to the field integral inside the well 8 with the current in coil 4 being the driving magnetomotive force. Outside the equipotential 11, the field integral, for instance taken along the field line 9, obeys Ampere's Law with the magnetomotive force being provided by the positive contributions from the currents in coils 5 and 7 and a negative contribution from coil 6. The reverse current in coil 6 is necessary for straightening the field line 9 above plane 11 as shown by creation of a reverse field 10.
Another way of looking at the function of coils 5, 6, and 7 is the following:
Assume again that the well 8 is covered with an infinitesimally thin sheet of infinite permeability. A current in any one of the coils 5, 6, or 7 will produce, in the region above 11 and perpendicular to the plane 11 a field with a given radial distribution. The three radial distributions will be different because the coils have different radii. With three variables it is therefore possible to force the field to have the correct numerical value (i.e. matching the field above the plane 11 with the one below the plane 11) at three different radii. If the three radii are strategically chosen, the field will be substantially uniform out to a sufficiently large radius. Calculations to determine the appropriate magnitudes of the currents can be performed with the aid of well-known computer programs such as POISSON. (With respect to such programs reference may be made to the Manual User's Guide for the POISSON/SUPERFISH Group of Codes, Los Alamos National Laboratory Publication LA-UR-87-115.) When the "outside" field is joined with the "inside" field created by the current in coil 4, a uniformity of better than 30 parts per million ensues. This uniformity applies, typically, to a volume defined by 1.1 times the depth of the well 8 and 0.9 times the inner radius of the coil 4.
Some fine tuning of the field can also be made by other parameters, for instance, the inner radius of ring 3 and the inner and outer radii of coils 5, 6, and 7. There is, however, not much flexibility in the choice of coil radii. For instance, calculations on a magnet correctly scaled from FIG. 1 show that the field in the iron between coils 6 and 7 reaches a value approaching 12 times the field in the well 8. With a field in the region of interest, the well 8, of 0.15 Tesla the field in the iron is about 1.8 Tesla, and it is probably not advisable to drive it closer to saturation because of possible nonuniformities in the iron. The field in the central ferromagnetic part (2) is, however, very much lower, making it possible to utilize a material here with superior magnetic properties, as described above.
It is obvious that the field in the well can be further fine tuned by use of weak currents in thin wire loops inside the well to correct angular inaccuracies as well as radial-axial variations. One obvious place for a current loop to provide an additional adjustable parameter is at the top of the well 8, inside ring 3, within the space 14 (FIG. 3). Another obvious place is at the bottom of the well 8, within the space 14 (FIG. 3). In the ferromagnetic material 2, below the well, there is an inward-pointing component of the return field, producing a drop in magnetomotive force from the outside towards the center. This can be compensated for by a flat coil with a relatively weak current in the bottom of the well 8, within the space 14 (FIG. 3).
The inner radius of ring 3 can also be treated as an adjustable parameter for fine tuning of the field near it.
The ferromagnetic ring 3 should be made quite thin because it is important that coil 4 builds up the magnetostatic potential linearly to as close to the top of the well as possible. The magnetic field entering the ring from above is substantially uniform while the field from below decreases linearly to zero from the inner radius R1 to the outer radius R2 of coil 4. The mismatch in the flux from above and the flux from below must be conducted radially out through the ring and through a cross section 2πR2 T at the outer radius R2 of the well. Here T is the thickness of the ring. In iron-nickel alloys, such as the aforementioned Carpenter High Permeability "49" Alloy, the field should be kept below approximately 1 Tesla.
A straightforward calculation yields the following formula for this field, with the above assumptions and W=R2 -R1 :
B=(B.sub.0 W/2T)(1-2W/3R.sub.2)≈B.sub.0 W/2T
For example: With B0 =0.15 Tesla, W=2.5 cm, and T=0.2 cm the field, according to the approximate formula becomes B =0.94 Tesla.
In order to keep the weight of the magnet to a minimum, the thickness of the magnetic disk can be reduced outside coil 7, as shown in FIG. 1. Flange 12 is thick enough to support the magnetic field at this location without saturation of the iron.
Detailed design calculations have been performed on a magnet having relative dimensions approximately as depicted in FIG. 1 with the inner radius of coil 4 being 12 cm and the depth of the well 8 being 10 cm. The outer diameter of the magnet is 120 cm. The ampereturns needed to produce 0.15 Tesla in the well are for coils 4, 5, 6, and 7 respectively: 11700, 4700, -25200, and 86600 ampereturns. The total power consumption is approximately 50 kW and the total weight of the magnet is about 900 kilograms. For producing a magnetic field in the well 8 differing from 0.15 Tesla one can of course assume a near linear field/current relationship as long as no part of the magnetic circuit is near saturation.
Having thus described the principles of the invention, together with illustrative embodiments thereof, it is to be understood that although specific terms are employed, they are used in a generic and descriptive sense, and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims (13)

I claim:
1. Electromagnet designed for magnetic resonance imaging comprising in combination
a circular disk made of ferromagnetic material and having a surface with a central cylindrical well extending below said surface and, at various larger radii, three or more concentric circular slots extending below said surface,
a solenoidal current-carrying coil mounted in said well so as to form a lining therein,
a current-carrying coil mounted in each of said slots,
means for producing current in said coils, respectively, whereby a magnetic field is produced in said central well inside said solenoidal coil,
the currents in said coils being adjusted to produce a substantially uniform magnetic field in said central well inside said solenoidal coil.
2. Electromagnet in accordance with claim 1, wherein said circular disk comprises an outer annulus and an inner annulus, and wherein said three slots comprise an outer slot formed in the surface of said outer annulus, an intermediate slot formed between said outer annulus and said inner annulus, and an inner slot formed in the surface of said inner annulus.
3. Electromagnet in accordance with claim 2 in which the magnetic material of the inner annulus is of a high-permeability alloy and the magnetic material in the outer annulus is low-carbon steel or another ferromagnetic material with a higher saturation field.
4. Electromagnet in accordance with claim 1 in which the end of the solenoidal coil at the open end of the well is covered, more or less, with a flat ring made of ferromagnetic material.
5. Electromagnet in accordance with claim 4, in which said flat ring is made of a high-permeability alloy.
6. Electromagnet in accordance with claim 4 in which the inner radius of said ring is adjusted to maximize the homogeneity of the field in the central well.
7. Electromagnet in accordance with claim 4 in which there is a fifth current-carrying coil at or close to the inner radius of the aforementioned flat ring.
8. Electromagnet in accordance with claim 5 in which there is a fifth current-carrying coil at or close to the inner radius of the aforementioned flat ring.
9. Electromagnet in accordance with claim 6 in which there is a fifth current-carrying coil at or close to the inner radius of the aforementioned flat ring.
10. Electromagnet in accordance with claim 1 in which, when adjusted to produce a field of 0.15 Tesla in the cylindrical well, the ampereturns of the four coils listed in order of increasing radii, are approximately: 11700, 4700, -25200, and 86600.
11. Electromagnet in accordance with claim 1 in which one or more current-carrying loops in the central well are used to further improve the homogeneity of the magnetic field.
12. Electromagnet in accordance with claim 1 in which the central well also contains coils for producing varying gradients of the field and radio-frequency coils for detection of nuclear magnetic resonance.
13. Electromagnet in accordance with claim 1 designed for use in Magnetic-Resonance-Imaging apparatus for study of the human breast.
US08/290,687 1994-08-15 1994-08-15 MRI mammography magnet Expired - Fee Related US5402094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/290,687 US5402094A (en) 1994-08-15 1994-08-15 MRI mammography magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/290,687 US5402094A (en) 1994-08-15 1994-08-15 MRI mammography magnet

Publications (1)

Publication Number Publication Date
US5402094A true US5402094A (en) 1995-03-28

Family

ID=23117125

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/290,687 Expired - Fee Related US5402094A (en) 1994-08-15 1994-08-15 MRI mammography magnet

Country Status (1)

Country Link
US (1) US5402094A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0837339A1 (en) * 1996-10-21 1998-04-22 General Electric Company Planar superconducting MRI magnet
US5744960A (en) * 1996-08-08 1998-04-28 Brigham And Women's Hospital Planar open magnet MRI system
WO1998055884A1 (en) * 1997-06-04 1998-12-10 Brigham And Women's Hospital Planar open solenoidal magnet mri system
US5935065A (en) * 1997-06-27 1999-08-10 Panacea Medical Laboratories MRI system with peripheral access and inhomogeneous field
US5936498A (en) * 1996-01-10 1999-08-10 Hitachi Medical Corporation Superconducting magnet apparatus and magnetic resonance imaging system using the same
US5977771A (en) * 1997-11-03 1999-11-02 Picker International, Inc. Single gradient coil configuration for MRI systems with orthogonal directed magnetic fields
US6002255A (en) * 1997-11-20 1999-12-14 Brigham & Women's Hospital Planar open magnet MRI system having active target field shimming
WO2001031361A1 (en) * 1999-10-26 2001-05-03 Oxford Magnet Technology Limited Improved magnetic coil former
WO2002077658A1 (en) * 2001-03-26 2002-10-03 General Electric Company Open magnet with recessed field shaping coils
US6831463B1 (en) 2003-06-20 2004-12-14 Brigham And Women's Hospital Ferrorefraction MRI system having two orthogonal remote field polarization axes
US20070152789A1 (en) * 2006-01-05 2007-07-05 Hiroyuki Watanabe Superconducting magnet and magnetic resonance imaging apparatus using the same
US20090201016A1 (en) * 2005-04-29 2009-08-13 University College London Apparatus and method for determining magnetic properties of materials
WO2010101559A1 (en) * 2009-03-01 2010-09-10 Israel Henry M Mri breast image magnet structure
US20110133730A1 (en) * 2009-12-04 2011-06-09 Simon Richard Hattersley Magnetic Probe Apparatus
US20110137154A1 (en) * 2009-12-04 2011-06-09 Simon Richard Hattersley Magnetic probe apparatus
US20130176090A1 (en) * 2010-05-26 2013-07-11 Simon James CALVERT Solenoidal magnets composed of multiple axially aligned coils
US9234877B2 (en) 2013-03-13 2016-01-12 Endomagnetics Ltd. Magnetic detector
US9239314B2 (en) 2013-03-13 2016-01-19 Endomagnetics Ltd. Magnetic detector
US9808539B2 (en) 2013-03-11 2017-11-07 Endomagnetics Ltd. Hypoosmotic solutions for lymph node detection
US10595957B2 (en) 2015-06-04 2020-03-24 Endomagnetics Ltd Marker materials and forms for magnetic marker localization (MML)
US10607774B2 (en) * 2017-03-30 2020-03-31 Siemens Healthcare Limited Connection of coils to support structures in superconducting magnets
CN112424625A (en) * 2018-05-16 2021-02-26 优瑞技术公司 Resistive electromagnetic system
US11892523B2 (en) 2016-06-22 2024-02-06 Viewray Technologies, Inc. Magnetic resonance imaging

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701736A (en) * 1984-04-30 1987-10-20 Oxford Magnet Technology Limited Magnet assembly having a plurality of nested coaxial coils
US4721914A (en) * 1984-05-01 1988-01-26 The United States Of America As Represented By The United States Department Of Energy Apparatus for unilateral generation of a homogeneous magnetic field
US4855703A (en) * 1987-03-19 1989-08-08 Kanazawa University Multilayered-eddy-current type strong magnetic field generator
US4857874A (en) * 1987-07-30 1989-08-15 Kanazawa University Multilayered-eddy-current-type strong magnetic field generator
US4987398A (en) * 1989-01-31 1991-01-22 Kanazawa University Multilayered eddy current type power-saved intense AC magnetic field generator
US5117188A (en) * 1990-10-29 1992-05-26 General Atomics Quasi-open magnet configuration for use in magnetic resonance imaging
US5337001A (en) * 1990-04-27 1994-08-09 Oxford Medical Limited Magnetic field generating assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701736A (en) * 1984-04-30 1987-10-20 Oxford Magnet Technology Limited Magnet assembly having a plurality of nested coaxial coils
US4721914A (en) * 1984-05-01 1988-01-26 The United States Of America As Represented By The United States Department Of Energy Apparatus for unilateral generation of a homogeneous magnetic field
US4855703A (en) * 1987-03-19 1989-08-08 Kanazawa University Multilayered-eddy-current type strong magnetic field generator
US4857874A (en) * 1987-07-30 1989-08-15 Kanazawa University Multilayered-eddy-current-type strong magnetic field generator
US4987398A (en) * 1989-01-31 1991-01-22 Kanazawa University Multilayered eddy current type power-saved intense AC magnetic field generator
US5337001A (en) * 1990-04-27 1994-08-09 Oxford Medical Limited Magnetic field generating assembly
US5117188A (en) * 1990-10-29 1992-05-26 General Atomics Quasi-open magnet configuration for use in magnetic resonance imaging

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936498A (en) * 1996-01-10 1999-08-10 Hitachi Medical Corporation Superconducting magnet apparatus and magnetic resonance imaging system using the same
US5744960A (en) * 1996-08-08 1998-04-28 Brigham And Women's Hospital Planar open magnet MRI system
EP0837339A1 (en) * 1996-10-21 1998-04-22 General Electric Company Planar superconducting MRI magnet
WO1998055884A1 (en) * 1997-06-04 1998-12-10 Brigham And Women's Hospital Planar open solenoidal magnet mri system
US5914600A (en) * 1997-06-04 1999-06-22 Brigham And Women's Hospital Planar open solenoidal magnet MRI system
US5935065A (en) * 1997-06-27 1999-08-10 Panacea Medical Laboratories MRI system with peripheral access and inhomogeneous field
US5977771A (en) * 1997-11-03 1999-11-02 Picker International, Inc. Single gradient coil configuration for MRI systems with orthogonal directed magnetic fields
US6002255A (en) * 1997-11-20 1999-12-14 Brigham & Women's Hospital Planar open magnet MRI system having active target field shimming
WO2001031361A1 (en) * 1999-10-26 2001-05-03 Oxford Magnet Technology Limited Improved magnetic coil former
GB2355798B (en) * 1999-10-26 2004-05-19 Oxford Magnet Tech Improved magnetic coil former
US6937126B1 (en) 1999-10-26 2005-08-30 Oxford Magnet Technology Limited Magnetic coil former
WO2002077658A1 (en) * 2001-03-26 2002-10-03 General Electric Company Open magnet with recessed field shaping coils
US6504461B2 (en) 2001-03-26 2003-01-07 General Electric Company Open magnet with recessed field shaping coils
US6831463B1 (en) 2003-06-20 2004-12-14 Brigham And Women's Hospital Ferrorefraction MRI system having two orthogonal remote field polarization axes
US20040257080A1 (en) * 2003-06-20 2004-12-23 Brigham And Women's Hospital Ferrorefraction mri system having two orthogonal remote field polarization axes
US8174259B2 (en) 2005-04-29 2012-05-08 University Of Houston Apparatus and method for determining magnetic properties of materials
US20090201016A1 (en) * 2005-04-29 2009-08-13 University College London Apparatus and method for determining magnetic properties of materials
US7880574B2 (en) * 2006-01-05 2011-02-01 Hitachi, Ltd. Superconducting magnet and magnetic resonance imaging apparatus using the same
US20070152789A1 (en) * 2006-01-05 2007-07-05 Hiroyuki Watanabe Superconducting magnet and magnetic resonance imaging apparatus using the same
WO2010101559A1 (en) * 2009-03-01 2010-09-10 Israel Henry M Mri breast image magnet structure
US20110133730A1 (en) * 2009-12-04 2011-06-09 Simon Richard Hattersley Magnetic Probe Apparatus
US20110137154A1 (en) * 2009-12-04 2011-06-09 Simon Richard Hattersley Magnetic probe apparatus
US11592501B2 (en) 2009-12-04 2023-02-28 Endomagnetics Ltd. Magnetic probe apparatus
US10634741B2 (en) 2009-12-04 2020-04-28 Endomagnetics Ltd. Magnetic probe apparatus
US9427186B2 (en) 2009-12-04 2016-08-30 Endomagnetics Ltd. Magnetic probe apparatus
US20130176090A1 (en) * 2010-05-26 2013-07-11 Simon James CALVERT Solenoidal magnets composed of multiple axially aligned coils
US9536659B2 (en) * 2010-05-26 2017-01-03 Siemens Plc Solenoidal magnets composed of multiple axially aligned coils
US9808539B2 (en) 2013-03-11 2017-11-07 Endomagnetics Ltd. Hypoosmotic solutions for lymph node detection
US9523748B2 (en) 2013-03-13 2016-12-20 Endomagnetics Ltd Magnetic detector
US9239314B2 (en) 2013-03-13 2016-01-19 Endomagnetics Ltd. Magnetic detector
US9234877B2 (en) 2013-03-13 2016-01-12 Endomagnetics Ltd. Magnetic detector
US10595957B2 (en) 2015-06-04 2020-03-24 Endomagnetics Ltd Marker materials and forms for magnetic marker localization (MML)
US11504207B2 (en) 2015-06-04 2022-11-22 Endomagnetics Ltd Marker materials and forms for magnetic marker localization (MML)
US11892523B2 (en) 2016-06-22 2024-02-06 Viewray Technologies, Inc. Magnetic resonance imaging
US10607774B2 (en) * 2017-03-30 2020-03-31 Siemens Healthcare Limited Connection of coils to support structures in superconducting magnets
CN112424625A (en) * 2018-05-16 2021-02-26 优瑞技术公司 Resistive electromagnetic system
US20220113360A1 (en) * 2018-05-16 2022-04-14 Viewray Technologies, Inc. Resistive electromagnet systems and methods

Similar Documents

Publication Publication Date Title
US5402094A (en) MRI mammography magnet
CN112098912B (en) Ferromagnetic enhancement system for magnetic resonance imaging and method of providing the same
EP0760484B1 (en) Opposed magnet-type magnetic circuit assembly with permanent magnets
US5596303A (en) Superconductive magnet system with low and high temperature superconductors
US7417432B2 (en) Asymmetric ultra-short gradient coil for magnetic resonance imaging system
US4766378A (en) Nuclear magnetic resonance scanners
US5600245A (en) Inspection apparatus using magnetic resonance
US8536870B2 (en) Shim insert for high-field MRI magnets
EP0231879A2 (en) Self-shielded gradient coils for nuclear magnetic resonance imaging
US6850065B1 (en) MRI coil system for breast imaging
US5414399A (en) Open access superconducting MRI magnet having an apparatus for reducing magnetic hysteresis in superconducting MRI systems
CN102955140B (en) Local coil device with integrated shim conductors
US5117188A (en) Quasi-open magnet configuration for use in magnetic resonance imaging
US6218838B1 (en) MRI magnet with high homogeneity, patient access, and low forces on the driver coils
Hricak MRI of the pelvis: a text atlas
Abduljalil et al. Torque free asymmetric gradient coils for echo planar imaging
JP2005515051A (en) Coil system for MR apparatus and MR apparatus provided with the coil system
EP0154996B1 (en) Magnetic resonance imaging apparatus using shim coil correction
US4748414A (en) Nuclear spin tomograph
US10641851B2 (en) Radio frequency coil-array for magnetic resonance examination system
US20020135450A1 (en) Open magnet with recessed field shaping coils
JPH09238917A (en) Coil assembly for magnetic resonance diagnosis
GB2385669A (en) Switchable gradient system for magnetic resonance tomography machine
Jeong et al. A solenoid-like coil producing transverse RF fields for MR imaging
CN218391084U (en) Support, patient table arrangement and magnetic resonance tomography arrangement

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19990328

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362