CN109564791A - 固态电解质及全固态电池 - Google Patents

固态电解质及全固态电池 Download PDF

Info

Publication number
CN109564791A
CN109564791A CN201780049907.9A CN201780049907A CN109564791A CN 109564791 A CN109564791 A CN 109564791A CN 201780049907 A CN201780049907 A CN 201780049907A CN 109564791 A CN109564791 A CN 109564791A
Authority
CN
China
Prior art keywords
solid
solid electrolyte
state
electrolyte
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780049907.9A
Other languages
English (en)
Other versions
CN109564791B (zh
Inventor
伊藤彰佑
吉冈充
石仓武郎
高野良平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN109564791A publication Critical patent/CN109564791A/zh
Application granted granted Critical
Publication of CN109564791B publication Critical patent/CN109564791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • C01B33/325After-treatment, e.g. purification or stabilisation of solutions, granulation; Dissolution; Obtaining solid silicate, e.g. from a solution by spray-drying, flashing off water or adding a coagulant
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及固态电解质及全固态电池,提高固态电解质的离子传导率,提升全固态电池的电池特性。固态电解质(13)是以Na为传导物质的NaSICON型固态电解质(13)。本发明涉及的固态电解质(13)包含Na、Zr、M、Si、P以及O,M是从Mg、V以及Nb构成的组中选择的至少一种元素。具有M和Zr的摩尔比为M/Zr<0.2的组成。

Description

固态电解质及全固态电池
技术领域
本发明涉及一种固态电解质及全固态电池。
背景技术
一直以来,全固态电池作为可靠性及安全性优良的二次电池广为人知。例如,专利文献1中记载了一种以Na为传导物质的钠超离子导电(NaSICON)型固态电解质。
专利文献1:特表2012-531709号公报
发明内容
例如,对于专利文献1中所记载的包括固态电解质的全固态电池,迫切希望提高固态电解质的离子传导率,提升全固态电池的电池特性。
本发明的主要目的在于提高固态电解质的离子传导率,提升全固态电池的电池特性。
本发明涉及的固态电解质是以Na为传导物质的NaSICON型固态电解质。本发明涉及的固态电解质包含Na、Zr、M、Si、P以及O(M是从Mg、V以及Nb构成的组中选择的至少一种元素)。具有M和Zr的摩尔比为M/Zr<0.2的组成。由此,通过使用本发明涉及的固态电解质,能够实现具有高离子传导率的固态电解质层。因此,通过使用本发明涉及的固态电解质,能够实现具有优良电池特性的全固态电池。
优选,在本发明涉及的固态电解质中还包含Y。
优选,在本发明涉及的固态电解质中,用通式Na3+x(Zr1-yYy)2-zMzSi2PO12(M是从Mg、V以及Nb构成的组中选择的至少一种元素,x:-0.2<x<0.8、y:0<y≤0.12、z:0<z≤0.3)表示。
优选,在本发明涉及的固态电解质中,0.05≤z≤0.3。
优选,在本发明涉及的固态电解质中,0.1≤z≤0.3。
优选,在本发明涉及的固态电解质中,0.1≤z≤0.15。
本发明涉及的全固态电池具备固态电解质、正极、以及负极。固态电解质层包括本发明涉及的固态电解质。正极通过烧结与固态电解质层的一个面接合。负极烧结在固态电解质层的另一面。
根据本发明,能够提高固态电解质的离子传导率,能够提升全固态电池的电池特性。
附图说明
图1是本发明的一实施方式涉及的全固态电池的示意性剖视图。
图2是在比较例二以及四、实施例五、六以及九中制作的固态电解质的奈奎斯特绘图。
具体实施方式
以下对实施本发明的优选方式的一例进行说明。但是,下述实施方式仅是例示。本发明并不受限于下述实施方式。
图1是本实施方式涉及的全固态电池1的示意性剖视图。如图1所示,具备正极11、负极12、以及固态电解质层13。
正极11包括正极活性物质粒子。作为优选使用的正极活性物质粒子例如可以举出具有钠超离子导电(NaSICON)型构造的含钠磷酸化合物粒子、含钠层状氧化物粒子等。作为优选使用的具有钠超离子导电(NaSICON)型构造的含钠磷酸化合物的具体例子可以举出Na3V2(PO4)3等。作为优选使用的含钠层状氧化物粒子的具体例子可以举出NaFeO2、NaNi1/ 3Co1/3Fe1/3O2等。既可以只使用这些正极活性物质粒子中的一种,也可以混合多种使用。
正极11还可以包括固态电解质。虽然包含在正极11中的固态电解质的种类无特别限定,但是优选包含与包含在固态电解质层13中的固态电解质相同种类的固态电解质。在这种情况下,能够提高固态电解质层13和正极11的密合强度。
负极12包括负极活性物质粒子。作为优选使用的负极活性物质粒子的具体例子例如可以举出用MOX(M是从Ti、Sn以及Fe构成的组中选择的至少一种。0.9≤X≤2.5)表示的化合物粒子、难石墨化碳-钠化合物粒子、钠合金粒子、具有钠超离子导电(NaSICON)型构造的含钠磷酸化合物粒子、具有尖晶石型构造的含锂氧化物粒子等。作为优选使用的钠合金的具体例子可以举出Na-Sn合金等。作为优选使用的具有钠超离子导电(NaSICON)型构造的含钠磷酸化合物的具体例子可以举出Na3V2(PO4)3等。作为优选使用的具有尖晶石型构造的含锂氧化物的具体例子可以举出Li4Ti5O12等。既可以只使用这些负极活性物质粒子中的一种,也可以混合多种使用。
负极12还可以包括固态电解质。虽然包括在负极12中的固态电解质的种类无特别限定,但是优选包括与包括在固态电解质层13中的固态电解质相同种类的固态电解质。在这种情况下,能够提高固态电解质层13和负极12的密合强度。
在正极11和负极12之间配置有固态电解质层13。即,固态电解质层13的一侧配置有正极11,另一侧配置有负极12。正极11和负极12分别通过烧结与固态电解质层13接合。即,正极11、固态电解质层13、以及负极12是一体烧结体。固态电解质层13包括以Na为传导物质的钠超离子导电(NaSICON)型固态电解质。详细而言,固态电解质层13包含Na、Zr、M、Si、P以及O(M是从Mg、V以及Nb构成的组中选择的至少一种元素),并包括具有M和Zr的摩尔比为M/Zr<0.2的组成的固态电解质。由此,本实施方式涉及的固态电解质层13具有高离子传导率。因此,具有固态电解质层13的全固态电池1的输出密度等的电池特性优良。从实现更高的离子传导率的观点看,优选使用满足M/Zr<0.1的固态电解质。但是,如果M和Zr的摩尔比过小,就存在不能获得M的添加效果的情况。因此,优选M和Zr的摩尔比为M/Zr>0.02,更优选为M/Zr>0.05。
优选,固态电解质13还包含Y。在固态电解质13包含Y的情况下,能够进一步提高固态电解质13的离子传导率。
优选,固态电解质13例如用通式Na3+x(Zr1-yYy)2-zMzSi2PO12(M是从Mg、V以及Nb构成的组中选择的至少一种元素,x:-0.2<x<0.8、y:0<y≤0.12、z:0<z≤0.3)表示。在这种情况下,如下述实施例所示,能够进一步提高固态电解质13的离子传导率。
在通式Na3+x(Zr1-yYy)2-zMzSi2PO12(M是从Mg、V以及Nb构成的组中选择的至少一种元素,x:-0.2<x<0.8、y:0<y≤0.12、z:0<z≤0.3)中,优选0.05≤z≤0.3,更优选0.1≤z≤0.3,进一步更优选0.1≤z≤0.15。如下述实施例所示,通过使z在此范围内,能够进一步提高离子传导率。
另外,虽然由通式Na3+x(Zr1-yYy)2-zMzSi2PO12(M是从Mg、V以及Nb构成的组中选择的至少一种元素,x:-0.2<x<0.8、y:0<y≤0.12、z:0<z≤0.3)表示的化合物含有12个氧,但是从保持正电荷和负电荷的中性的观点看,包含在由此通式表示的化合物中的氧的数量的O的化学计量比可以不严格是12个。在本发明中,使由上述通式表示的化合物中包含含有7摩尔以上15摩尔以下的氧。
以下基于具体的实施例对本发明做进一步详细说明,本发明并不受限于以下实施例,能够在不改变其主旨的范围内进行适当变更来实施。
(比较例一)
称量适量磷酸钠十二水合物(Na3PO4·12H2O)、碳酸钠(Na2CO3)、氧化锆(ZrO2)、二氧化硅(SiO2)等原料以形成能够得到满足表1所示的条件的通式的组成。接下来,将称量的原料粉末、乙醇、以及φ2mm的鹅卵石密封到聚乙烯制聚乙烯罐中并在罐架上旋转,混合原料。接下来,通过在加热至90℃的加热板上加热原料来除去乙醇。这之后,通过在空气气氛下以1100℃的温度煅烧原料8小时来除去挥发成分,得到预煅烧物。接下来,将得到的预煅烧物、乙醇、以及φ2mm的鹅卵石密封到氧化锆制罐中,用行星式球磨装置旋转罐以粉碎预煅烧物。这之后,通过在90℃的加热板上配置预煅烧物并加热来除去乙醇,并得到预烧粉碎粉。接下来,在550kN/cm2的压力下,将得到的预烧粉碎粉成型为φ10mm×厚度500μm~1000μm的片。接下来,在空气气氛下以1100℃~250℃的温度煅烧10小时,得到具有下述表1中所记载的比较例一的组成的固态电解质料片。
(实施例一)
除了称量适量的磷酸钠十二水合物(Na3PO4·12H2O)、碳酸钠(Na2CO3)、氧化锆(ZrO2)、二氧化硅(SiO2)、氧化镁(MgO)等原料以形成能够得到满足表1所示的条件的通式的组成之外,进行其他与比较例一的处理相同的处理以得到具有下述表1中所记载的实施例一的组成的固态电解质料片。
(实施例二)
除了称量适量的碳酸钠(Na2CO3)、氧化锆(ZrO2)、磷酸二氢铵(NH4H2PO4)、二氧化硅(SiO2)、氧化钒(V2O5)等原料以形成能够得到满足表1所示的条件的通式的组成之外,进行其他与比较例一的处理相同的处理以得到具有下述表1中所记载的实施例二的组成的固态电解质料片。
(实施例三)
除了称量适量的碳酸钠(Na2CO3)、氧化锆(ZrO2)、磷酸二氢铵(NH4H2PO4)、二氧化硅(SiO2)、五氧化铌(Nb2O5)等原料以形成能够得到满足表1所示的条件的通式的组成之外,进行其他与比较例一的处理相同的处理以得到具有下述表1中所记载的实施例三的组成的固态电解质料片。
(比较例二)
除了称量适量磷酸钠十二水合物(Na3PO4·12H2O)、碳酸钠(Na2CO3)、氧化锆(ZrO2)、二氧化硅(SiO2)、氧化钇(Y2O3)、钇稳定氧化锆(YSZ)等原料以形成能够得到满足表2所示条件的通式的组成之外,进行其他与比较例一的处理相同的处理以得到具有下述表2中所记载的比较例二的组成的固态电解质料片。将得到的固态电解质料片的奈奎斯特绘图在图1中示出。
(实施例四)
除了称量适量的磷酸钠十二水合物(Na3PO4·12H2O)、碳酸钠(Na2CO3)、氧化锆(ZrO2)、二氧化硅(SiO2)、氧化钇(Y2O3)、钇稳定氧化锆(YSZ)、氧化镁(MgO)等原料以形成能够得到满足表2所示的条件的通式的组成之外,进行其他与比较例一的处理相同的处理以得到具有下述表2中所记载的实施例四的组成的固态电解质料片。
(实施例五)
除了称量适量的磷酸钠十二水合物(Na3PO4·12H2O)、碳酸钠(Na2CO3)、氧化锆(ZrO2)、二氧化硅(SiO2)、氧化钇(Y2O3)、钇稳定氧化锆(YSZ)、五氧化钒(V2O5)等原料以形成能够得到满足表2所示的条件的通式的组成之外,进行其他与比较例一的处理相同的处理以得到具有下述表2中所记载的实施例五的组成的固态电解质料片。将得到的固态电解质料片的奈奎斯特绘图在图1中示出。
(实施例六)
除了称量适量的磷酸钠十二水合物(Na3PO4·12H2O)、碳酸钠(Na2CO3)、氧化锆(ZrO2)、二氧化硅(SiO2)、氧化钇(Y2O3)、钇稳定氧化锆(YSZ)、五氧化铌(Nb2O5)等原料以形成能够得到满足表2所示的条件的通式的组成之外,进行其他与比较例一的处理相同的处理以得到具有下述表2中所记载的实施例六的组成的固态电解质料片。将得到的固态电解质料片的奈奎斯特绘图在图1中示出。
(实施例七)
除了称量适量磷酸钠十二水合物(Na3PO4·12H2O)、碳酸钠(Na2CO3)、氧化锆(ZrO2)、二氧化硅(SiO2)、氧化钇(Y2O3)、钇稳定氧化锆(YSZ)、氧化镁(MgO)等原料以形成能够得到满足表3所示的条件的通式的组成之外,进行其他与比较例一的处理相同的处理以得到具有下述表3中所记载的实施例七的组成的固态电解质料片。
(实施例八)
除了称量适量磷酸钠十二水合物(Na3PO4·12H2O)、碳酸钠(Na2CO3)、氧化锆(ZrO2)、二氧化硅(SiO2)、氧化钇(Y2O3)、钇稳定氧化锆(YSZ)、氧化镁(MgO)等原料以形成能够得到满足表3所示的条件的通式的组成之外,进行其他与比较例一的处理相同的处理以得到具有下述表3中所记载的实施例八的组成的固态电解质料片。
(实施例九)
除了称量适量磷酸钠十二水合物(Na3PO4·12H2O)、碳酸钠(Na2CO3)、氧化锆(ZrO2)、二氧化硅(SiO2)、氧化钇(Y2O3)、钇稳定氧化锆(YSZ)、氧化镁(MgO)等原料以形成能够得到满足表3所示的条件的通式的组成之外,进行其他与比较例一的处理相同的处理以得到具有下述表3中所记载的实施例九的组成的固态电解质料片。将得到的固态电解质料片的奈奎斯特绘图在图1中示出。
(实施例十)
除了称量适量磷酸钠十二水合物(Na3PO4·12H2O)、碳酸钠(Na2CO3)、氧化锆(ZrO2)、二氧化硅(SiO2)、氧化钇(Y2O3)、钇稳定氧化锆(YSZ)、氧化镁(MgO)等原料以形成能够得到满足表3所示的条件的通式的组成之外,进行其他与比较例一的处理相同的处理以得到具有下述表3中所记载的实施例十的组成的固态电解质料片。
(比较例三)
除了称量适量磷酸钠十二水合物(Na3PO4·12H2O)、碳酸钠(Na2CO3)、氧化锆(ZrO2)、二氧化硅(SiO2)、氧化钇(Y2O3)、钇稳定氧化锆(YSZ)、氧化镁(MgO)等原料以形成能够得到满足表3所示的条件的通式的组成之外,进行其他与比较例一的处理相同的处理以得到具有下述表3中所记载的比较例三的组成的固态电解质料片。将得到的固态电解质料片的奈奎斯特绘图在图1中示出。
(固态电解质的离子传导率的评价)
用以下方式测量在实施例一~实施例十、比较例一~比较例三中分别制作的固态电解质料片的离子传导率。
具体而言,在通过溅射在固态电解质料片的两个面形成为集电体层的铂(Pt)层后,在100℃的温度下干燥固态电解质料片,除去水分,用2032型的纽扣电池外壳密封。通过对密封后的电池进行交流阻抗测量计算离子传导率。交流阻抗测量使用Solartron公司制造的频率响应分析仪(FRA),在频率范围是0.1MHz~1MHz、振幅是±10mV、温度是25℃的条件下实施。
如表1所示,分别在实施例一~实施例三中制作的固态电解质的离子传导率是2.6×10-4S/cm~4.8×10-4S/cm,任一个均是比在比较例一中制作的固态电解质的离子传导率高的值。
如表2所示,分别在实施例四~实施例六中制作的固态电解质的离子传导率为1.4×10-3S/cm~2.6×10-3S/cm,任一个均是比在比较例二中制作的固态电解质的离子传导率高的值。
如表3所示,分别在实施例七~实施例十中制作的固态电解质的离子传导率是1.2×10-3S/cm~1.6×10-3S/cm,任一个均是比在比较例三中制作的固态电解质的离子传导率高的值。
附图标记说明
1:全固态电池;11:正极;12:负极;13:固态电解质层。

Claims (7)

1.一种固态电解质,是以Na为传导物质的NaSICON型的固态电解质,
包含Na、Zr、M、Si、P以及O,M是从Mg、V以及Nb构成的组中选择的至少一种元素,
具有M和Zr的摩尔比为M/Zr<0.2的组成。
2.根据权利要求1所述的固态电解质,其中,
所述固态电解质还包含Y。
3.根据权利要求1或2所述的固态电解质,其中,
用通式Na3+x(Zr1-yYy)2-zMzSi2PO12表示,M是从Mg、V以及Nb构成的组中选择的至少一种元素,x:-0.2<x<0.8,y:0<y≤0.12,z:0<z≤0.3。
4.根据权利要求1至3中任一项所述的固态电解质,其中,
0.05≤z≤0.3。
5.根据权利要求4所述的固态电解质,其中,
0.1≤z≤0.3。
6.根据权利要求5所述的固态电解质,其中,
0.1≤z≤0.15。
7.一种全固态电池,具备:
固态电解质层,包括权利要求1至6中任一项所述的固态电解质;
正极,通过烧结与所述固态电解质层的一个面接合;以及
负极,通过烧结与所述固态电解质层的多个面接合。
CN201780049907.9A 2016-09-20 2017-08-31 固态电解质及全固态电池 Active CN109564791B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-183551 2016-09-20
JP2016183551 2016-09-20
PCT/JP2017/031437 WO2018056020A1 (ja) 2016-09-20 2017-08-31 固体電解質及び全固体電池

Publications (2)

Publication Number Publication Date
CN109564791A true CN109564791A (zh) 2019-04-02
CN109564791B CN109564791B (zh) 2020-10-23

Family

ID=61689468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780049907.9A Active CN109564791B (zh) 2016-09-20 2017-08-31 固态电解质及全固态电池

Country Status (4)

Country Link
US (1) US11267716B2 (zh)
JP (1) JP6649641B2 (zh)
CN (1) CN109564791B (zh)
WO (1) WO2018056020A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952189A (zh) * 2021-04-25 2021-06-11 西南石油大学 一种钠超离子导体nasicon型结构钠离子固体电解质材料及其制备方法与应用
CN113277843A (zh) * 2021-05-24 2021-08-20 哈尔滨工业大学 一种提高钠基固态电解质离子电导率的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6782434B2 (ja) 2016-12-07 2020-11-11 パナソニックIpマネジメント株式会社 固体電解質及びそれを用いた二次電池
CN108172895B (zh) * 2016-12-07 2022-08-09 松下知识产权经营株式会社 二次电池
JP7553352B2 (ja) * 2018-03-28 2024-09-18 Tdk株式会社 全固体電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238545A (ja) * 2011-05-13 2012-12-06 Toyota Motor Corp 全固体電池の製造方法
JP2012531709A (ja) * 2009-06-26 2012-12-10 セラマテック インコーポレイテッド アルカリ金属超イオン伝導セラミック
CN103904360A (zh) * 2012-12-27 2014-07-02 华为技术有限公司 一种固态电解质及其制作方法与全固态锂电池
CN105374980A (zh) * 2014-08-15 2016-03-02 中国科学院物理研究所 界面浸润的准固态碱金属电池、电池电极及电池制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357060A (ja) 1989-07-25 1991-03-12 Nec Corp 端末ローカル画面部分変更制御方式
CA2770733C (en) 2009-11-05 2018-10-16 Ceramatec, Inc. Solid-state sodium-based secondary cell having a sodium ion conductive ceramic separator
US20150364787A1 (en) * 2011-12-06 2015-12-17 Hui Zhang Composite Electrolytes for Low Temperature Sodium Batteries
JP6165546B2 (ja) * 2013-08-09 2017-07-19 株式会社日立製作所 固体電解質および全固体リチウムイオン二次電池
EP3353388A1 (en) * 2015-09-22 2018-08-01 Field Upgrading Limited Multi-stage sodium heat engine for electricity and heat production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531709A (ja) * 2009-06-26 2012-12-10 セラマテック インコーポレイテッド アルカリ金属超イオン伝導セラミック
JP2012238545A (ja) * 2011-05-13 2012-12-06 Toyota Motor Corp 全固体電池の製造方法
CN103904360A (zh) * 2012-12-27 2014-07-02 华为技术有限公司 一种固态电解质及其制作方法与全固态锂电池
CN105374980A (zh) * 2014-08-15 2016-03-02 中国科学院物理研究所 界面浸润的准固态碱金属电池、电池电极及电池制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KROK: ""Influence of sintering conductors on chemical composition of NASICON", 《SOLID STATE IONICS》 *
WENJI WANG: "Solid phase synthesis and characterization of Na3Zr2-yNb0.8ySi2PO12 system", 《SOLID STATE IONICS》 *
王文继: "钠快离子导体 Na3-xZr2-xVxSi2PO12 系统的固相合成与表征", 《福州大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952189A (zh) * 2021-04-25 2021-06-11 西南石油大学 一种钠超离子导体nasicon型结构钠离子固体电解质材料及其制备方法与应用
CN113277843A (zh) * 2021-05-24 2021-08-20 哈尔滨工业大学 一种提高钠基固态电解质离子电导率的方法

Also Published As

Publication number Publication date
US20190135644A1 (en) 2019-05-09
JPWO2018056020A1 (ja) 2019-03-07
US11267716B2 (en) 2022-03-08
JP6649641B2 (ja) 2020-02-19
WO2018056020A1 (ja) 2018-03-29
CN109564791B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
JP6992818B2 (ja) 全固体電池
CN109564791A (zh) 固态电解质及全固态电池
CN111033858B (zh) 共烧成型全固体电池
JP6672848B2 (ja) ガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料
CN109074893A (zh) 固体电解质、全固体电池、固体电解质的制造方法及全固体电池的制造方法
CN104221214B (zh) 锂空气二次电池
JP5537607B2 (ja) リチウムイオン伝導性固体電解質の製造方法
JP5484928B2 (ja) 全固体電池
CN111033859B (zh) 固体电解质及全固体电池
CN107848894A (zh) 石榴石型氧化物烧结体和其制造方法
JP6242620B2 (ja) 全固体電池
CN108463916A (zh) 固体电解质及全固态电池
JP2007134305A (ja) リチウムイオン伝導性固体電解質およびその製造方法
JP6109673B2 (ja) セラミック正極−固体電解質複合体
CN110383559A (zh) 全固体钠离子二次电池
JP2014096350A (ja) セラミック正極−固体電解質複合体
JP6832073B2 (ja) 全固体電池用正極活物質材料の製造方法
WO2019102762A1 (ja) 負極材料、負極及び電池
CN114946049B (zh) 固体电池
Elim et al. Flexible Thin Battery with Fast and Sensitive Voltage Control by a Simple Mechanical Bending: No Energy without Working
JP6168690B2 (ja) セラミック正極−固体電解質複合体
JP7375914B2 (ja) 固体電池
CN109075389A (zh) 固体电解质及全固体电池
WO2013133394A1 (ja) 全固体電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant