CN109456300A - 高纯度瑞舒伐他汀钙中间体的制备方法 - Google Patents

高纯度瑞舒伐他汀钙中间体的制备方法 Download PDF

Info

Publication number
CN109456300A
CN109456300A CN201810954326.6A CN201810954326A CN109456300A CN 109456300 A CN109456300 A CN 109456300A CN 201810954326 A CN201810954326 A CN 201810954326A CN 109456300 A CN109456300 A CN 109456300A
Authority
CN
China
Prior art keywords
compound
preparation
purity
rosuvastain calcium
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810954326.6A
Other languages
English (en)
Other versions
CN109456300B (zh
Inventor
陈本顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING OCEAN PHARMACEUTICAL TECHNOLOGY Co Ltd
Original Assignee
NANJING OCEAN PHARMACEUTICAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING OCEAN PHARMACEUTICAL TECHNOLOGY Co Ltd filed Critical NANJING OCEAN PHARMACEUTICAL TECHNOLOGY Co Ltd
Priority to CN201810954326.6A priority Critical patent/CN109456300B/zh
Publication of CN109456300A publication Critical patent/CN109456300A/zh
Application granted granted Critical
Publication of CN109456300B publication Critical patent/CN109456300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于药物化学技术领域,特别是涉及药物合成技术领域,更为具体的说是瑞舒伐他汀钙中间体的制备方法,通过控制反应PH、温度及次氯酸钠的用量控制式I’所述瑞舒伐他汀钙中间体的杂质含量,从而提高最终产品的收率及纯度。通过本发明公开的制备方法获得的中间体产品中,杂质化合物I’含量在0.05%以下。这对瑞舒伐他汀钙的中间体工业化生产成品的质量提高具有重要意义,进而对瑞舒伐他汀钙药物的质量提高及注册申报均有一定的帮助和支持。

Description

高纯度瑞舒伐他汀钙中间体的制备方法
技术领域
本发明属于药物化学技术领域,特别是涉及药物合成技术领域,更为具体的说是瑞舒伐他汀钙中间体的制备方法。
背景技术
瑞舒伐他汀钙,化学名:双-[E-7-[4-(4-氟基苯基)-6-异丙基-2-[甲基(甲磺酰基)氨基]-嘧啶-5-基](3R,5S)-3,5-二羟基庚-6-烯酸]钙盐(2:1)。它是一种心血管药物,具有强有力的羟甲基戊二酰辅酶A(HMG-CoA)还原酶抑制活性。它可降低升高的低密度胆固醇、总胆固醇、甘油三酯和脱辅基蛋白B浓度,同时升高高密度胆固醇的浓度,耐受性与安全性好,被称为“超级他汀”。
化合物I所示化合物2-((4R,6S)-6-甲酰基-2,2-二甲基-1,3-二恶烷-4-基)乙酸叔丁酯是制备瑞舒伐他钙药物的重要中间体。
专利CN1035022234A,CN104520294A,CN102186869A均报道了化合物I由化合物II氧化制备的方法。但是,上述报道方法制备化合物I均存在收率及纯度低的问题。
发明人通过对其合成路线,以及合成方法中可能存在的影响收率及纯度的因素进行研究。发现该路线制备过程中会产生与化合物I结构相近、较难出去的氧化杂质,其结构如下式I’所示:
实验发现,该杂质含量可达10~25%,严重影响了化合物I纯品的质量。然而迄今为止,关于该氧化杂质的分离办法及应用鲜有报道,现有技术中未对瑞舒伐他汀钙中间体I制备过程中的杂质含量控制展开研究。鉴于瑞舒伐他汀钙药物在治疗心血管疾病中的重要性,有必要对该中间体氧化杂质I’的分离与应用进行研究,并开发一种低成本的、高纯度的中间体化合物I的制备方法。从而降低制备成本及提高中间体化合物I的成品质量,为瑞舒伐他汀钙药物的制备成本控制,质量提高以及注册申报提供帮助和支持。
发明内容
本发明所要解决的技术问题是,降低药物瑞舒伐他钙中间体2-((4R,6S)-6-甲酰基-2,2-二甲基-1,3-二恶烷-4-基)乙酸叔丁酯(化合物I)制备过程中2-((4R,6S)-6-羧基-2,2-二甲基-1,3-二恶烷-4-基)乙酸叔丁酯(化合物I')的含量。
为了解决上述技术问题,本发明公开了一种高纯度瑞舒伐他汀钙中间体的制备方法,该制备方法的工艺路线如下所示:
在式II化合物制备获得式I化合物的过程中,还伴随生成有式I'所示化合物,本发明通过工艺控制其中化合物I'的含量小于等于0.05%。
具体来说,工艺控制的方法是将化合物II溶于反应溶剂中后,调节pH至弱碱性,依次加入四甲基哌啶氮氧化物(TEMPO)、次氯酸钠,反应制备得化合物I。
其中弱碱性优选的是指pH7-9。
进一步优选的条件是,该反应的反应温度为-25~25℃。
其中所述次氯酸钠为次氯酸钠水溶液。
并且进一步优选地,在本发明中还公开了所述次氯酸钠水溶液的制备方法是,将次氯酸钠和水按照质量比1:1混合后,在0-5℃的条件下,调节pH至8.5-8.7,快速转入漏斗中待用。
其中pH调节分为两步,第一步以盐酸调节pH至9-11,第二步用固体碳酸氢钠继续调节pH至8.5-8.7。
并且,优选地,所述制备方法中化合物II与次氯酸钠溶液中次氯酸钠的摩尔比为1:0.02~0.2。
优选的,所述反应溶剂为二氯甲烷、氯仿、乙酸乙酯、或甲苯中的一种或者可以互溶的多种溶剂形成的混合溶剂;
另外,本发明还优选所述化合物II与有机溶剂的质量体积比为1:2~20。
作为一种资源化的工业化生产方法,在本发明中还进一步优选包括化合物I'的回用,其方法是,首先将化合物I'与化合物I分离,然后将化合物I'在还原剂作用下,还原得到化合物II,用于化合物I的制备,其反应如下所示:
并且,优选地,所述还原剂为硼烷/四氢呋喃、硼烷/二甲硫醚、硼氢化钠/碘和硼氢化钠/三氟甲酸中的一种;其中特别优选的还原剂为硼烷/四氢呋喃;
优选地,化合物I’与还原剂的摩尔比为1:0.2~2;
优选地,化合物I’与还原剂的反应时间为1~16h;
优选地,反应温度为-50~50℃;
优选的,反应pH为7~9。
另外,本发明还进一步优选其中化合物I'与化合物I的分离方法是将反应得到的混合体系静置,分离有机相和水相,化合物I'在水相中,化合物I在有机相中;优选的,还包括二次萃取,具体来说是向包含有化合物I'的水相中加入有机溶剂,分离有机相和水相,其中化合物I'在水相中,化合物I在有机相中,合并两次有机相;其中萃取所用的有机溶剂选自二氯甲烷、乙酸乙酯、氯仿或者四氢呋喃中的一种,特别优选的是二氯甲烷;
更为优选的是还包括化合物I'的精制过程,将含有化合物I'的水相pH调节至酸性,加入溶剂萃取后,萃取液真空浓缩得到化合物I',其中pH优选为4-6,优选的pH调节剂为盐酸。
本发明通过控制反应PH、温度及次氯酸钠的用量控制式I’所示的瑞舒伐他汀钙中间体的杂质含量,从而提高最终产品的收率及纯度。通过本发明公开的制备方法获得的中间 体产品中,杂质化合物I’含量在0.05%以下。这对瑞舒伐他汀钙的中间体工业化生产成品 的质量提高具有重要意义,进而对瑞舒伐他汀钙药物的质量提高及注册申报均有一定的帮助 和支持。
具体实施方式
为了更好的理解本发明,下面我们结合具体的实施例对本发明进行进一步的阐述。
实施例1:
向反应瓶中依次加入次氯酸钠(686mg,0.009mol)和水(686mg),液氮降温至0~5℃,加入盐酸调节PH至10左右,继续用固体碳酸氢钠调节PH至8.5到8.7,快速转入恒压滴液漏斗中待用。
向反应瓶中加入300ml二氯甲烷,搅拌条件下加入化合物II(30g,0.115mol)、溴化钾(2.72g)和TEMPO(0.06g),氮气保护下降温至0℃,调节反应体系PH为8,缓慢滴加上述次氯酸钠溶液,搅拌反应1h,TLC监测原料无剩余,保持体系温度为0℃,向体系中加入硫代硫酸钠溶液(2.36g/300ml水),搅拌15分钟,静置分液,水相用200ml二氯甲烷萃取,合并有机相,真空干燥,经正庚烷重结晶后得纯品化合物I(29.1g,0.113mol),收率98%,纯度99.76%,化合物I’含量0.03%。剩余水相加入盐酸调节PH至5,二氯甲烷萃取,得副产物化合物I’(2g,0.007mol),纯度99.68%。
化合物I的核磁数据如下:
1H NMR(400HZ, CDCl3):δ 9.72 (s, 1H), 4.66 (s, 1H), 4.43 (s, 1H), 2.49 (s,1H), 2.29 (s, 1H), 2.14 (s, 1H), 1.90 (s, 1H), 1.46 (s, 9H), 1.38 (s, 6H).
13C NMR(400HZ, CDCl3):δ 198.08, 172.66, 101.46, 81.62, 72.82, 69.66,41.04, 36.41, 28.41, 26.25.
化合物I’的核磁数据如下:
1H NMR(400HZ, CDCl3):δ4.67 (s, 1H), 4.43 (s, 1H), 2.70 (s, 1H), 2.30 (s,1H), 2.16 (s, 1H), 2.03 (s,1H), 1.51 (s, 9H), 1.38 (s, 6H).
13C NMR(400HZ, CDCl3):δ174.70, 172.66, 101.25, 81.62, 69.43, 68.95, 41.04,36.83, 28.41, 26.25.
实施例2:
向反应瓶中依次加入次氯酸钠(428mg,0.006mol)和水(428mg),液氮降温至0~5℃,加入盐酸调节PH至10左右,继续用固体碳酸氢钠调节PH至8.5到8.7,快速转入恒压滴液漏斗中待用。
向反应瓶中加入300ml甲苯,搅拌条件下加入化合物II(30g,0.115mol)、溴化钾(2.72g)和TEMPO(0.06g),氮气保护下降温至-25℃,碳酸氢钠调节PH为9,缓慢滴加上述次氯酸钠溶液,搅拌反应1h,TLC监测原料无剩余,保持体系温度至-25℃,向体系中加入硫代硫酸钠溶液(2.36g/300ml水),搅拌15分钟,静置分液,水相用200ml二氯甲烷萃取,合并有机相,真空干燥后经正庚烷重结晶得纯品化合物I(28.8g,0.111mol),收率97%,纯度99.84%,化合物I’含量0.02%。剩余水相加入盐酸调节PH至6,乙酸乙酯萃取,得副产物化合物I’(1.2g,0.004mol),纯度99.76%。
实施例3:
向反应瓶中依次加入次氯酸钠(856mg,0.0115mol)和水(856mg),液氮降温至0~5℃,加入盐酸调节PH至10左右,继续用固体碳酸氢钠调节PH至8.5到8.7,快速转入恒压滴液漏斗中待用。
向反应瓶中加入300ml乙酸乙酯,搅拌条件下加入化合物II(30g,0.115mol)、溴化钾(2.72g)和TEMPO(0.06g),氮气保护下把持反应温度为25℃,调节反应体系PH为7,缓慢滴加上述次氯酸钠溶液,搅拌反应1h,TLC监测原料无剩余,降低体系温度至15℃,向体系中加入硫代硫酸钠溶液(2.36g/300ml水),搅拌15分钟,静置分液,水相用200ml二氯甲烷萃取,合并有机相,真空干燥后经正庚烷重结晶得纯品化合物I(29.1g,0.113mol),收率98%,纯度99.71%,化合物I’含量0.03%。剩余水相加入盐酸调节PH至4,氯仿萃取,得副产物化合物I’(2.3g,0.008mol),纯度99.70%。。
对比例1:(根据专利CN102186869A实施)
在氮气气流下,于-10℃,向化合物II(15g, 57.6mmol),碳酸氢钠(13. 6g,161.3mmol),溴化钾(1.37g, 11.5mmol)以及Tempo(248mg,1.44mol)的乙酸乙酯(150ml)混悬液中滴加次氯酸钠水溶液(44.2g, l6.7wt%, 70.2mmol),在此过程中注意使内温不超过5℃。滴加结束后,于0℃搅拌反应液1小时,然后分离出水层。进一步,用乙酸乙酯(100m1)对有机层进行稀释,然后,利用5%的硫代硫酸钠水溶液(75m1)、以及水(40m1*2)依次对有机层进行清洗,然后利用无水硫酸镁干燥。在减压条件下,蒸馏除去溶剂,利用硅胶柱色谱法对得到的粗产物进行纯化,得到化合物I(8.2g,31.68mmol),收率55%,纯度87.23%。其中化合物I’含量11.39%。
实施例3
向反应瓶中加入20毫升THF,搅拌条件下加入化合物I’(10g,0.036mol),氮气保护,PH为7,0℃条件下缓慢滴加硼烷/二甲硫醚(0.5g,0.036mol)溶液10毫升;保持温度不变,搅拌30分钟。缓慢升至室温,继续反应9小时。反应完成后,降至0℃,加入15毫升水,静置分液,水相经碳酸钾处理后,用150ml 乙醚分三次萃取,合并乙醚萃取物,硫酸镁干燥,浓缩,得到化合物II(7.0g,0.027mol),收率75%,纯度99.46%。
化合物II的核磁数据为:
1H NMR(400HZ, CDCl3):δ 3.71 (s, 1H), 3.46 (s, 1H), 2.59 (s, 1H), 2.29 (s,1H), 1.87 (d, 2H), 1.79 (s, 1H), 1.50 (s, 9H), 1.44 (s, 6H).
13C NMR(400HZ, CDCl3):δ 172.66, 100.95, 81.62, 72.82, 69.90, 66.85, 41.04,34.85, 28.41, 26.25.
实施例4
向反应瓶中加入20毫升THF,搅拌条件下加入化合物I’(10g,0.036mol),氮气保护,碳酸氢钠调节PH为8,20℃条件下缓慢滴加硼烷(0.5g,0.036mol)的THF溶液10毫升;保持温度不变,搅拌30分钟。缓慢升至室温,继续反应1小时。反应完成后,降至0℃,加入15毫升水,静置分液,水相经碳酸钾处理后,用150ml 乙醚分三次萃取,合并乙醚萃取物,硫酸镁干燥,浓缩,得到化合物II(8.0g,0.03mol),收率94%,纯度99.63%。
化合物II的核磁数据与实施例3相同。
实施例5
向反应瓶中加入20毫升THF,搅拌条件下加入化合物I’(10g,0.036mol),冰浴下搅拌氮气保护,碳酸氢钠调节PH为9,-20℃条件下缓慢滴加硼氢化钠/三氟乙酸(2.7g,0.072mol)溶液10毫升;保持温度不变,搅拌30分钟。缓慢升至室温,继续反应15小时。反应完成后,降至0℃,加入15毫升水,静置分液,水相经碳酸钾处理后,用150ml 乙醚分三次萃取,合并乙醚萃取物,硫酸镁干燥,浓缩,得到化合物II(6.4g,0.02mol),收率69%,纯度99.42%。
化合物II的核磁数据与实施例3相同。
以上所述是本发明的具体实施方式。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

1.高纯度瑞舒伐他汀钙中间体的制备方法,所述瑞舒伐他汀钙中间体如式I所示,该式I化合物由式II化合物制备而成,其特征在于:在式II化合物制备获得式I化合物的过程中,还伴随生成有式I'所示化合物,其中化合物I'的含量小于等于0.05%,其反应如下所示:
2.根据权利要求1所述的高纯度瑞舒伐他汀钙中间的制备方法,其特征在于,具体的制备方法为:将化合物II溶于反应溶剂中后,调节pH至弱碱性,依次加入四甲基哌啶氮氧化物(TEMPO)、次氯酸钠,反应制备得化合物I。
3.根据权利要求2所述的高纯度瑞舒伐他汀钙中间体的制备方法,其特征在于:反应温度为-25~25℃。
4.根据权利要求2所述的高纯度瑞舒伐他汀钙中间体的制备方法,其特征在于:所述pH为7-9。
5.根据权利要求2所述的高纯度瑞舒伐他汀钙中间体的制备方法,其特征在于:所述次氯酸钠为次氯酸钠水溶液,其中次氯酸钠和水的质量比为1:1。
6.根据权利要求5所述的高纯度瑞舒伐他汀钙中间体的制备方法,其特征在于:次氯酸钠水溶液的制备方法是,将次氯酸钠和水按照质量比1:1混合后,在0-5℃的条件下,调节pH至8.5-8.7,快速转入漏斗中待用。
7.根据权利要求6所述的高纯度瑞舒伐他汀钙中间体的制备方法,其特征在于:pH调节分为两步,第一步以盐酸调节pH至9-11,第二步用固体碳酸氢钠继续调节pH至8.5-8.7。
8.根据权利要求1所述的高纯度瑞舒伐他汀钙中间体的制备方法,其特征在于:优选以下任意一个或者多个条件:
a. 所述制备方法中化合物II与次氯酸钠溶液中次氯酸钠的摩尔比为1:0.02~0.2;
b. 所述反应溶剂为二氯甲烷、氯仿、乙酸乙酯、或甲苯中的一种或者可以互溶的多种溶剂形成的混合溶剂;
c. 所述化合物II与有机溶剂的质量体积比为1:2~20。
9.根据权利要求1所述的高纯度瑞舒伐他汀钙中间体的制备方法,其特征在于:还包括化合物I'的回用,其方法是,首先将化合物I'与化合物I分离,然后将化合物I'在还原剂作用下,还原得到化合物II,用于化合物I的制备,其反应如下所示:
该反应优选以下任意一个或者多个反应条件,
a.所述还原剂为硼烷/四氢呋喃、硼烷/二甲硫醚、硼氢化钠/碘和硼氢化钠/三氟甲酸中的一种;其中特别优选的还原剂为硼烷/四氢呋喃;
b.化合物I’与还原剂的摩尔比为1:0.2~2;
c.化合物I’与还原剂的反应时间为1~16h;
d.反应温度为-50~50℃;
e.反应pH为7~9。
10.根据权利要求9所述的高纯度瑞舒伐他汀钙中间体的制备方法,其特征在于:
其中化合物I'与化合物I的分离方法是将反应得到的混合体系静置,分离有机相和水相,化合物I'在水相中,化合物I在有机相中;优选的,还包括二次萃取,具体来说是向包含有化合物I'的水相中加入有机溶剂,分离有机相和水相,其中化合物I'在水相中,化合物I在有机相中,合并两次有机相;其中萃取所用的有机溶剂选自二氯甲烷、乙酸乙酯、氯仿或者四氢呋喃中的一种,特别优选的是二氯甲烷;
更为优选的是还包括化合物I'的精制过程,将含有化合物I'的水相pH调节至酸性,加入溶剂萃取后,萃取液真空浓缩得到化合物I',其中pH优选为4-6,优选的pH调节剂为盐酸。
CN201810954326.6A 2018-08-21 2018-08-21 瑞舒伐他汀钙中间体的制备方法 Active CN109456300B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810954326.6A CN109456300B (zh) 2018-08-21 2018-08-21 瑞舒伐他汀钙中间体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810954326.6A CN109456300B (zh) 2018-08-21 2018-08-21 瑞舒伐他汀钙中间体的制备方法

Publications (2)

Publication Number Publication Date
CN109456300A true CN109456300A (zh) 2019-03-12
CN109456300B CN109456300B (zh) 2021-07-06

Family

ID=65606355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810954326.6A Active CN109456300B (zh) 2018-08-21 2018-08-21 瑞舒伐他汀钙中间体的制备方法

Country Status (1)

Country Link
CN (1) CN109456300B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471034A (zh) * 2020-03-18 2020-07-31 南京欧信医药技术有限公司 连续流微通道反应器中氧化制备瑞舒伐他汀侧链的方法
CN115611848A (zh) * 2022-09-27 2023-01-17 江苏阿尔法药业股份有限公司 一种瑞舒伐他汀钙中间体的合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060004200A1 (en) * 2004-06-21 2006-01-05 Srinivasulu Gudipati Processes to produce intermediates for rosuvastatin
WO2010023678A1 (en) * 2008-08-27 2010-03-04 Biocon Limited A process for preparation of rosuvastatin intermediate
CN103502234A (zh) * 2011-05-06 2014-01-08 维尔易和喜株式会社 2-((4r,6s)-6-甲酰基-2,2-二甲基-1,3-二氧六环-4-基)乙酸叔丁酯的制造方法
CN104520294A (zh) * 2012-06-08 2015-04-15 未来精密化工有限公司 结晶2-[(4r,6s)-6-甲酰基-2,2-二甲基-1,3-二噁烷-4-基]乙酸叔丁酯及其制备方法
CN105503816A (zh) * 2016-02-17 2016-04-20 中节能万润股份有限公司 一种固体(4R-cis)-6-甲酰基-2,2-二甲基-1,3-二氧己环-4-乙酸叔丁酯的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060004200A1 (en) * 2004-06-21 2006-01-05 Srinivasulu Gudipati Processes to produce intermediates for rosuvastatin
WO2010023678A1 (en) * 2008-08-27 2010-03-04 Biocon Limited A process for preparation of rosuvastatin intermediate
CN103502234A (zh) * 2011-05-06 2014-01-08 维尔易和喜株式会社 2-((4r,6s)-6-甲酰基-2,2-二甲基-1,3-二氧六环-4-基)乙酸叔丁酯的制造方法
CN104520294A (zh) * 2012-06-08 2015-04-15 未来精密化工有限公司 结晶2-[(4r,6s)-6-甲酰基-2,2-二甲基-1,3-二噁烷-4-基]乙酸叔丁酯及其制备方法
CN105503816A (zh) * 2016-02-17 2016-04-20 中节能万润股份有限公司 一种固体(4R-cis)-6-甲酰基-2,2-二甲基-1,3-二氧己环-4-乙酸叔丁酯的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SU-DONG CHO等: "《Facile Reduction of Carboxylic Acids, Esters, Acid Chlorides, Amides and Nitriles to Alcohols or Amines Using NaBH4/BF3•Et2O》", 《BULL. KOREAN CHEM. SOC》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471034A (zh) * 2020-03-18 2020-07-31 南京欧信医药技术有限公司 连续流微通道反应器中氧化制备瑞舒伐他汀侧链的方法
CN115611848A (zh) * 2022-09-27 2023-01-17 江苏阿尔法药业股份有限公司 一种瑞舒伐他汀钙中间体的合成方法

Also Published As

Publication number Publication date
CN109456300B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN105254589B (zh) 一种制备心力衰竭药物中间体的方法
CN109456300A (zh) 高纯度瑞舒伐他汀钙中间体的制备方法
CN107417505A (zh) α‑卤代四甲基环己酮及其与(2,3,4,4‑四甲基环戊基)甲基羧酸酯的制备方法
EP2391609B1 (en) Key intermediates for the synthesis of rosuvastatin or pharmaceutically acceptable salts thereof
CN101993447A (zh) 一种人工合成普拉格雷的方法
CN1948283B (zh) 维生素d衍生物的制备方法
CN103739604B (zh) 一种适合工业放大生产普拉曲沙的制备方法
JP5622842B2 (ja) アルキルアミン誘導体の製造方法
EP3088391B1 (en) Method for producing benzyl ester 2-aminonicotinate derivative
CN108623455A (zh) 一种抗心衰药物的中间体
CN105859589B (zh) 一种制备班布特罗杂质c的方法
CN103709132A (zh) 一种奈必洛尔中间体的制备方法
CN108864231A (zh) 一种卡培他滨的杂质及其制备方法
CN110372559A (zh) 一种(4S)-N-Boc-4--甲氧基甲基-L-脯氨酸的合成方法
CN106831863A (zh) 孟鲁司特钠中间体及其制备方法和应用
EP4063349A1 (en) Method for producing pyrrolidine compound
CN102250175A (zh) 一种2’,3’-二-o-乙酰基-5’-脱氧-5-氟胞苷的制备方法
CN105884687A (zh) 一种5-苄基苄达明的制备方法
CN103012261B (zh) 一种孟鲁司特钠及其中间体的制备方法
CN108033902A (zh) 一种高纯度贝利司他顺式异构体的制备方法
CN108250008A (zh) 3,3,3`,3`-四甲基-1,1`-螺二氢茚-6,6`-二醇衍生物手性拆分方法
CN102260208A (zh) 4-吡啶丁醇的制备新工艺
CN102838649A (zh) 一种醋酸阿比特龙的制备方法
CN109180564A (zh) 一种哌啶及其衍生物的制备方法
CN112094257B (zh) 一种△-9四氢大麻酚的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant