CN109437126A - 一种简单合成vn空心球的方法及应用 - Google Patents

一种简单合成vn空心球的方法及应用 Download PDF

Info

Publication number
CN109437126A
CN109437126A CN201811264965.6A CN201811264965A CN109437126A CN 109437126 A CN109437126 A CN 109437126A CN 201811264965 A CN201811264965 A CN 201811264965A CN 109437126 A CN109437126 A CN 109437126A
Authority
CN
China
Prior art keywords
hollow sphere
hollow
ion battery
lithium ion
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811264965.6A
Other languages
English (en)
Inventor
魏明灯
王建标
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201811264965.6A priority Critical patent/CN109437126A/zh
Publication of CN109437126A publication Critical patent/CN109437126A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0617Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种简单合成VN空心球的方法及作为锂离子电池负极材料的应用。采用去模板法制备出VN空心球。首先由一步水热法合成出空心的VN的前驱体,然后在600℃氨气氛围下煅烧1小时,便可获得空心球形的VN。所制备的VN空心球具有很好循环稳定性和倍率性能,电化学研究结果表明,在电流密度为1A/g下,循环1000圈后,其比容量维持在456mA h/g。在图3的倍率性能,中当电流重新回到0.2A/g,容量重新回到了之前的容量,表明了电化学性能稳定。

Description

一种简单合成VN空心球的方法及应用
技术领域
本发明属于锂离子电池领域,具体涉及一种简单合成VN空心球的方法及作为锂离子电池负极材料的应用。
背景技术
VN作为一种过渡金属氮化物,其具有很好的电子传导能力、化学稳定性和力学性能,广泛应用在催化和电化学领域。迄今为止,锂离子电池已经得到了广泛的应用,然而传统的商业化的负极材料石墨由于理论容量只有372 mA h g-1,已然不能满足现代电子设备的需要,因此发明可替代的容量高的负极材料已称为科研工作者的首要任务和现代社会的迫切需要。
目前还未有的去模板法合成VN空心球的相关专利报道。
发明内容
本发明的目的在于提供一种简单合成VN空心球的方法及作为锂离子电池负极材料的应用。采用去模板法制备出VN空心球。首先由一步水热法合成出空心的VN的前驱体,然后在600℃氨气氛围下煅烧1小时,便可获得空心球形的VN。所制备的VN空心球具有很好循环稳定性和倍率性能,电化学研究结果表明,在电流密度为 1 A/g下,循环1000圈后,其比容量维持在456 mA h/g。在图3 的倍率性能,中当电流重新回到0.2 A/g, 容量重新回到了之前的容量,表明了电化学性能稳定。
为实现上述目的,本发明采用如下技术方案:
VN空心球的制备方法:将0.35 g VO(acac)2放入35 ml异丙醇中并搅拌1小时;然后放进200℃烘箱中反应12小时后取出,待其冷却至室温;离心,并用乙醇和去离子水洗涤数遍,放进70℃烘箱烘干,获得VN前驱体,然后在600℃氨气氛围下煅烧1小时,得到VN空心球。
锂离子电池的组装:按质量比:VN空心球:乙炔黑:PVDF= 7:2:1混合均匀后涂布在铜箔上做负极,参比电极和对电极均为锂,电解质为 1 M LiPF6 的 EC+DMC+DEC溶液,锂离子电池组装所有操作均在手套箱中进行。
本发明的显著优点在于:本发明所制备的VN空心球具有很好循环稳定性和倍率性能,电化学研究结果表明,在电流密度为 1 A/g下,循环1000圈后,其比容量维持在456 mAh/g。在图3 的倍率性能,中当电流重新回到0.2 A/g, 容量重新回到了之前的容量,表明了电化学性能稳定。这归因于VN较大的比表面积 (125.8 m2 g-1) 和介孔(5 nm)的存在,不仅能为电解液提供充分的接触面积,而且其内部的空心结构也能够有效的抑制VN的体积膨胀问题,从而使VN具有较好的电化学稳定性能。
附图说明
图1为显示了VN空心球的XRD图(a)和透射电镜图(b);由图1可知,所合成的VN是纯相,以及内部的空心结构。
图2是VN空心球在1 A/g的电流密度下的循环性能图;由图2可知,在电流密度为 1A/g下,循环1000圈后,其比容量维持在456 mA h/g。
图3是VN空心球的倍率性能;由图3可知,当电流重新回到0.2 A/g, 容量重新回到了之前的容量,表明了VN空心球的电化学性能稳定。
具体实施方式
本发明用下列实施例来进一步说明本发明,但本发明的保护范围并不限于下列实施例。
实施例1
一种简单合成VN空心球的方法,包括以下步骤:
将0.35 g VO(acac)2放入35 ml异丙醇中并搅拌1小时;然后放进200℃烘箱中反应12小时后取出,待其冷却至室温;离心,并用乙醇和去离子水洗涤数遍,放进70℃烘箱烘干,获得VN前驱体,然后在600℃氨气氛围下煅烧1小时,得到VN空心球。
所述VN空心球作为负极材料在锂离子电池中的应用,该锂离子电池的组装:按质量比:VN空心球:乙炔黑:PVDF= 7:2:1混合均匀后涂布在铜箔上做负极,参比电极和对电极均为锂,电解质为 1 M LiPF6 的 EC+DMC+DEC溶液,锂离子电池组装所有操作均在手套箱中进行。
图1为VN空心球的XRD图(a)和透射电镜图(b);由图1中的(a)可知,所合成的VN是纯相,由图1中的(b)可知,VN内部为空心结构。图2是VN空心球在1 A/g的电流密度下的循环性能图;由图2可知,在电流密度为 1 A/g下,循环1000圈后,其比容量维持在456 mA h/g。图3是VN空心球的倍率性能;由图3可知,当电流重新回到0.2 A/g, 容量重新回到了之前的容量,表明了VN空心球的电化学性能稳定。图2和图3展现出VN空心球具有良好的循环稳定性和倍率性能。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (2)

1.一种简单合成VN空心球的方法,其特征在于,包括以下步骤:
将0.35 g VO(acac)2放入35 ml异丙醇中并搅拌1小时;然后放进200℃烘箱中反应12小时后取出,待其冷却至室温;离心,并用乙醇和去离子水洗涤数遍,放进70℃烘箱烘干,获得VN前驱体,然后在600℃氨气氛围下煅烧1小时,得到VN空心球。
2.如权利要求1所述的制备方法制得的VN空心球的应用,其特征在于,所述VN空心球作为负极材料在锂离子电池中的应用,该锂离子电池的组装:按质量比:VN空心球:乙炔黑:PVDF= 7:2:1混合均匀后涂布在铜箔上做负极,参比电极和对电极均为锂,电解质为 1 MLiPF6 的 EC+DMC+DEC溶液,锂离子电池组装所有操作均在手套箱中进行。
CN201811264965.6A 2018-10-29 2018-10-29 一种简单合成vn空心球的方法及应用 Pending CN109437126A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811264965.6A CN109437126A (zh) 2018-10-29 2018-10-29 一种简单合成vn空心球的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811264965.6A CN109437126A (zh) 2018-10-29 2018-10-29 一种简单合成vn空心球的方法及应用

Publications (1)

Publication Number Publication Date
CN109437126A true CN109437126A (zh) 2019-03-08

Family

ID=65548521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811264965.6A Pending CN109437126A (zh) 2018-10-29 2018-10-29 一种简单合成vn空心球的方法及应用

Country Status (1)

Country Link
CN (1) CN109437126A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212178A (zh) * 2019-05-18 2019-09-06 福建师范大学 一种氮硫共掺杂vn/cnf钾离子电池负极材料的制备方法
CN112919428A (zh) * 2019-12-06 2021-06-08 中国科学院过程工程研究所 一种氮化钒微球及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431146A (zh) * 2003-02-21 2003-07-23 中国科学院上海硅酸盐研究所 立方相纳米氮化钒粉体的制备方法
CN1775661A (zh) * 2005-12-07 2006-05-24 冯良荣 一种制备氮化钒的方法
CN104724756A (zh) * 2013-12-23 2015-06-24 中国科学院上海硅酸盐研究所 一种一步法制备尺寸可控、特定结构钒氧化物的方法
CN106809808A (zh) * 2015-11-27 2017-06-09 中国科学院大连化学物理研究所 一种均匀空心球状vn纳米颗粒的制备方法
CA3042942A1 (en) * 2016-10-05 2018-04-12 Exxonmobil Chemical Patents Inc. Method for producing metal nitrides and metal carbides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431146A (zh) * 2003-02-21 2003-07-23 中国科学院上海硅酸盐研究所 立方相纳米氮化钒粉体的制备方法
CN1775661A (zh) * 2005-12-07 2006-05-24 冯良荣 一种制备氮化钒的方法
CN104724756A (zh) * 2013-12-23 2015-06-24 中国科学院上海硅酸盐研究所 一种一步法制备尺寸可控、特定结构钒氧化物的方法
CN106809808A (zh) * 2015-11-27 2017-06-09 中国科学院大连化学物理研究所 一种均匀空心球状vn纳米颗粒的制备方法
CA3042942A1 (en) * 2016-10-05 2018-04-12 Exxonmobil Chemical Patents Inc. Method for producing metal nitrides and metal carbides

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DI ZHAO ET AL.: "VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
MINGDENG WEI ET AL.: "Two-dimensional MoN@N-doped carbon hollow spheres as an anode material for high performance lithium-ion battery", 《ELECTROCHIMICA ACTA》 *
毛立娟: "钒氧化物纳米材料的可控合成和性能研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212178A (zh) * 2019-05-18 2019-09-06 福建师范大学 一种氮硫共掺杂vn/cnf钾离子电池负极材料的制备方法
CN110212178B (zh) * 2019-05-18 2022-02-22 福建师范大学 一种氮硫共掺杂vn/cnf钾离子电池负极材料的制备方法
CN112919428A (zh) * 2019-12-06 2021-06-08 中国科学院过程工程研究所 一种氮化钒微球及其制备方法和用途
CN112919428B (zh) * 2019-12-06 2023-09-05 中国科学院过程工程研究所 一种氮化钒微球及其制备方法和用途

Similar Documents

Publication Publication Date Title
CN108777294B (zh) 一种由纳米片组成的碳支持的多孔球形MoN及其作为负极材料在锂电池中的应用
CN108658119B (zh) 一种低温硫化技术用于制备硫化铜纳米片及其复合物的方法和应用
CN107275639B (zh) 纳米颗粒组装的CoP/C分级纳米线及其制备方法和应用
CN112520705B (zh) 一种硒化铋/硒化钼异质结构电极材料的制备方法及其应用
CN106629665B (zh) 熔盐法制备硫掺杂硬碳纳米片及其在钠离子电池中的应用
CN106876676B (zh) 碳壳包覆的NiS分级微米球及其制备方法和应用
CN107623121B (zh) 一种金属包覆多孔硅复合物电极材料及其制备方法
CN104466155B (zh) 一种高库伦效率锂离子电池负极材料菊花形状纳米二氧化钛的制备方法
CN109449379A (zh) 一种氮掺杂碳复合的SnFe2O4锂离子电池负极材料及其制备方法与应用
CN109437126A (zh) 一种简单合成vn空心球的方法及应用
CN109279663B (zh) 一种硼酸盐类钠离子电池负极材料及其制备和应用
CN115057485A (zh) 一种非金属硼掺杂的层状氧化物钠离子电池正极材料及其制备方法和应用
CN105084425B (zh) 一种具有无定型结构二硫化钴微米球的制备方法及应用
CN106744776A (zh) 一种纯相磷酸钛锂正极材料的制备方法
CN109467080A (zh) 一种可用于载硫的石墨化中空碳微球制备方法及其应用
CN105098157A (zh) Fe4[Fe(CN)6]3@Co3[Co(CN)6]2复合材料的制备方法及其应用
CN108767211B (zh) 电极材料的制备方法及其电极材料
CN110364702A (zh) 板栗状分级硒化锰/碳复合材料作为锂离子电池负极材料的应用
CN109860535A (zh) 原位合成MoS2@MoN空心球的方法及其应用
CN114094063B (zh) 一种利用空腔前驱体与zif衍生物相结合制备电池负极材料的方法
CN109205671A (zh) 一种由vs2纳米片组成的分等级结构球的制备方法及应用
CN108767237B (zh) 一步法合成碳支持的空心球形三氧化二钒复合物及其制备方法和应用
CN105070891B (zh) 锂离子电池用Ge/GeO2‑介孔碳复合电极材料制备及其应用
CN108511696A (zh) 一种二氧化钛/石墨烯复合材料的制备方法
CN113968590A (zh) 一种碱金属离子插层SnS2及其制备方法和其在电池负极材料中的应用及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190308