CN109279003A - 竖直起飞和降落的飞行器 - Google Patents
竖直起飞和降落的飞行器 Download PDFInfo
- Publication number
- CN109279003A CN109279003A CN201810811734.6A CN201810811734A CN109279003A CN 109279003 A CN109279003 A CN 109279003A CN 201810811734 A CN201810811734 A CN 201810811734A CN 109279003 A CN109279003 A CN 109279003A
- Authority
- CN
- China
- Prior art keywords
- wing
- component
- fan
- vte
- vertical thrust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 73
- 230000008859 change Effects 0.000 claims description 31
- 230000003281 allosteric effect Effects 0.000 claims description 12
- 238000009792 diffusion process Methods 0.000 description 185
- 230000035755 proliferation Effects 0.000 description 53
- 238000010276 construction Methods 0.000 description 27
- 238000002485 combustion reaction Methods 0.000 description 17
- 230000001965 increasing effect Effects 0.000 description 10
- 230000005611 electricity Effects 0.000 description 8
- 238000002156 mixing Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 230000000116 mitigating effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- VEMKTZHHVJILDY-UHFFFAOYSA-N resmethrin Chemical group CC1(C)C(C=C(C)C)C1C(=O)OCC1=COC(CC=2C=CC=CC=2)=C1 VEMKTZHHVJILDY-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
- B64C29/0008—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
- B64C29/0016—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
- B64C29/0025—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/10—Shape of wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/32—Wings specially adapted for mounting power plant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/026—Aircraft characterised by the type or position of power plants comprising different types of power plants, e.g. combination of a piston engine and a gas-turbine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/30—Aircraft characterised by electric power plants
- B64D27/31—Aircraft characterised by electric power plants within, or attached to, wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/30—Aircraft characterised by electric power plants
- B64D27/33—Hybrid electric aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/30—Aircraft characterised by electric power plants
- B64D27/35—Arrangements for on-board electric energy production, distribution, recovery or storage
- B64D27/357—Arrangements for on-board electric energy production, distribution, recovery or storage using batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/40—Arrangements for mounting power plants in aircraft
- B64D27/406—Suspension arrangements specially adapted for supporting thrust loads, e.g. thrust links
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D29/00—Power-plant nacelles, fairings, or cowlings
- B64D29/04—Power-plant nacelles, fairings, or cowlings associated with fuselages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D31/00—Power plant control systems; Arrangement of power plant control systems in aircraft
- B64D31/02—Initiating means
- B64D31/06—Initiating means actuated automatically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D33/00—Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
- B64D33/04—Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of exhaust outlets or jet pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D35/00—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
- B64D35/02—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D35/00—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
- B64D35/02—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants
- B64D35/021—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants for electric power plants
- B64D35/022—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants for electric power plants of hybrid-electric type
- B64D35/023—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants for electric power plants of hybrid-electric type of series-parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/40—Arrangements for mounting power plants in aircraft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/70—Application in combination with
- F05D2220/76—Application in combination with an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/09—Purpose of the control system to cope with emergencies
- F05D2270/093—Purpose of the control system to cope with emergencies of one engine in a multi-engine system
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- General Engineering & Computer Science (AREA)
Abstract
一种用于操作竖直起飞和降落的飞行器的方法包括相对于与多个竖直推力电风扇的第二部分相关联的翼的第二可变构件改变与多个竖直推力电风扇的第一部分相关联的翼的第一可变构件,以调整多个竖直推力电风扇的第一部分相对于多个竖直推力电风扇的第二部分的暴露比。
Description
相关申请
本申请基于2017年7月21日提交的序列号为62/535444的美国临时专利申请且要求享有其优先权。
技术领域
本主题大体上涉及具有竖直起飞和降落能力的飞行器,以及用于控制其的方法。
背景技术
开发了飞行器,其具有执行竖直起飞和降落的能力。此能力可允许飞行器到达相对崎岖的地带和偏僻的位置,在那里建造大到足以允许传统飞行器(缺乏竖直起飞能力)起飞或降落的跑道可能不实际或不可行。
典型地,能够执行竖直起飞和降落的这些飞行器具有发动机和推进器,推进器被矢量化来生成竖直推力和向前推力两者。这些推进器可相对较大,以生成竖直起飞和降落以及向前飞行所需的推力的量。然而,此构造可产生复杂性,因为推进器大体上设计成在竖直推力操作或向前推力操作中的一个期间最高效。这种情况可因此导致飞行器内的低效。因此,设计成解决这些低效的竖直起飞和降落的飞行器将为有用的。
发明内容
本发明的方面和优点将在以下描述中部分地阐释,或可从描述中明显,或可通过实践本发明而学习到。
在本公开的一个方面,提供了一种用于操作竖直起飞和降落的飞行器的方法,飞行器包括机身、从机身延伸的翼以及具有沿翼布置的多个竖直推力电风扇的推进系统。该方法包括:相对于与多个竖直推力电风扇的第二部分相关联的翼的第二可变构件改变与多个竖直推力电风扇的第一部分相关联的翼的第一可变构件,以调整多个竖直推力电风扇的第一部分相对于多个竖直推力电风扇的第二部分的暴露比。。
在某些示例性方面,相对于第二可变构件改变第一可变构件包括将第一可变构件定位在向前推力位置。
例如,在某些示例性方面,将第一可变构件定位在竖直推力位置包括大致完全封闭多个向前推力电风扇的第一部分。
例如,在某些示例性方面,相对于第二可变构件改变第一可变构件还包括将第二可变构件定位在竖直推力位置。
例如,在某些示例性方面,将第二可变构件定位在竖直推力位置包括大致完全暴露翼中的多个竖直推力电风扇的第二部分。
例如,在某些示例性方面,该方法还包括向多个竖直推力电风扇的第一部分提供第一电功率量且向多个竖直推力电风扇的第二部分提供第二电功率量,且其中第一电功率量小于第二电功率量。
在某些示例性方面,相对于第二可变构件改变第一可变构件包括将第一可变构件定位在中间位置,且其中将第一可变构件定位在中间位置包括部分地暴露多个竖直推力电风扇的第一部分以及部分地封闭多个竖直推力电风扇的第一部分。
在某些示例性方面,第一可变构件沿翼的长度与第二可变构件间隔开。
在某些示例性方面,多个竖直推力电风扇中的每一个以定向固定在翼内且沿翼的长度大致线性地布置。
在某些示例性方面,翼的第一可变构件是第一部分翼组件,其中翼的第二可变构件是第二部分翼组件。
在某些示例性方面,翼是右舷翼,其中多个竖直推力电风扇是第一多个竖直推力电风扇,其中飞行器还包括从机身延伸的左舷翼,其中推进系统包括沿左舷翼布置的第二多个竖直推力电风扇,且其中该方法还包括:相对于与第二多个竖直推力风扇的第二部分相关联的左舷翼的第二可变构件改变与第二多个竖直推力电风扇的第一部分相关联的左舷翼的第一可变构件,以调整第二多个竖直推力电风扇的第一部分相对于第二多个竖直推力电风扇的第二部分的暴露比。
在本公开的另一示例性实施例中,提供了一种用于操作竖直起飞和降落的飞行器的方法,飞行器包括机身、从机身延伸的翼以及具有沿翼布置的多个竖直推力电风扇的推进系统,该方法包括相对于与多个竖直推力电风扇的第二部分相关联的翼的第二可变构件改变与多个竖直推力电风扇的第一部分相关联的翼的第一可变构件,以相对于多个竖直推力电风扇的第二部分的有效推力轮廓调整多个竖直推力电风扇的第一部分的有效推力轮廓。
在某些示例性方面,第一可变构件是第一扩散组件,且其中第二可变构件是第二扩散组件。
例如,在某些示例性方面,相对于第二可变构件改变第一可变构件包括将第一扩散组件定位在延伸位置。
例如,在某些示例性方面,相对于第二可变构件改变第一可变构件还包括将第二扩散组件定位在收缩位置。
例如,在某些示例性方面,相对于第二可变构件改变第一可变构件包括相对于第二扩散组件的扩散面积比改变第一扩散组件的扩散面积比。
在某些示例性方面,第一可变构件沿翼的长度与第二可变构件间隔开。
在某些示例性方面,多个竖直推力电风扇中的每一个以定向固定在翼内且沿翼的长度大致线性地布置。
在某些示例性方面,翼的第一可变构件是第一部分翼组件,其中翼的第二可变构件是第二部分翼组件。
在本公开的一个示例性实施例中,提供了一种限定垂直方向的飞行器。该飞行器包括:机身;推进系统,其包括功率源和由功率源驱动的多个竖直推力电风扇;以及从机身延伸的翼。多个竖直推力电风扇沿翼的长度布置,翼包括可变几何形状组件,其包括与多个竖直推力电风扇的第一部分相关联的第一可变构件和与多个竖直推力电风扇的第二部分相关联的第二可变构件,第一可变构件可相对于第二可变构件移动以调整多个竖直推力电风扇的第一部分相对于多个竖直推力电风扇的第二部分的暴露比。
技术方案1. 一种用于操作竖直起飞和降落的飞行器的方法,所述飞行器包括机身、从所述机身延伸的翼以及具有沿所述翼布置的多个竖直推力电风扇的推进系统,所述方法包括:
相对于与所述多个竖直推力电风扇的第二部分相关联的所述翼的第二可变构件改变与所述多个竖直推力电风扇的第一部分相关联的所述翼的第一可变构件,以调整所述多个竖直推力电风扇的第一部分相对于所述多个竖直推力电风扇的第二部分的暴露比。
技术方案2. 根据技术方案1所述的方法,其中,相对于所述第二可变构件改变所述第一可变构件包括将所述第一可变构件定位在向前推力位置。
技术方案3. 根据技术方案2所述的方法,其中,将所述第一可变构件定位在所述竖直推力位置包括大致完全封闭所述多个向前推力电风扇的第一部分。
技术方案4. 根据技术方案2所述的方法,其中,相对于所述第二可变构件改变所述第一可变构件还包括将所述第二可变构件定位在竖直推力位置。
技术方案5. 根据技术方案4所述的方法,其中,将所述第二可变构件定位在所述竖直推力位置包括大致完全暴露所述翼中的所述多个竖直推力电风扇的第二部分。
技术方案6. 根据技术方案4所述的方法,其中,还包括:
向所述多个竖直推力电风扇的第一部分提供第一电功率量且向所述多个竖直推力电风扇的第二部分提供第二电功率量,且其中所述第一电功率量小于所述第二电功率量。
技术方案7. 根据技术方案1所述的方法,其中,相对于所述第二可变构件改变所述第一可变构件包括将所述第一可变构件定位在中间位置,且其中将所述第一可变构件定位在所述中间位置包括部分地暴露所述多个竖直推力电风扇的第一部分以及部分地封闭所述多个竖直推力电风扇的第一部分。
技术方案8. 根据技术方案1所述的方法,其中,所述第一可变构件沿所述翼的长度与所述第二可变构件间隔开。
技术方案9. 根据技术方案1所述的方法,其中,所述多个竖直推力电风扇中的每一个以定向固定在所述翼内且沿所述翼的长度大致线性地布置。
技术方案10. 根据技术方案1所述的方法,其中,所述翼的第一可变构件是第一部分翼组件,其中所述翼的第二可变构件是第二部分翼组件。
技术方案11. 根据技术方案1所述的方法,其中,所述翼是右舷翼,其中所述多个竖直推力电风扇是第一多个竖直推力电风扇,其中所述飞行器还包括从所述机身延伸的左舷翼,其中所述推进系统包括沿所述左舷翼布置的第二多个竖直推力电风扇,且其中所述方法还包括:
相对于与所述第二多个竖直推力风扇的第二部分相关联的所述左舷翼的第二可变构件改变与所述第二多个竖直推力电风扇的第一部分相关联的所述左舷翼的第一可变构件,以调整所述第二多个竖直推力电风扇的第一部分相对于所述第二多个竖直推力电风扇的第二部分的暴露比。
技术方案12. 一种用于操作竖直起飞和降落的飞行器的方法,所述飞行器包括机身、从所述机身延伸的翼以及具有沿所述翼布置的多个竖直推力电风扇的推进系统,所述方法包括:
相对于与所述多个竖直推力电风扇的第二部分相关联的所述翼的第二可变构件改变与所述多个竖直推力电风扇的第一部分相关联的所述翼的第一可变构件,以相对于所述多个竖直推力电风扇的第二部分的有效推力轮廓调整所述多个竖直推力电风扇的第一部分的有效推力轮廓。
技术方案13. 根据技术方案12所述的方法,其中,所述第一可变构件是第一扩散组件,且其中所述第二可变构件是第二扩散组件。
技术方案14. 根据技术方案13所述的方法,其中,相对于所述第二可变构件改变所述第一可变构件包括将所述第一扩散组件定位在延伸位置。
技术方案15. 根据技术方案14所述的方法,其中,相对于所述第二可变构件改变所述第一可变构件还包括将所述第二扩散组件定位在收缩位置。
技术方案16. 根据技术方案13所述的方法,其中,相对于所述第二可变构件改变所述第一可变构件包括相对于所述第二扩散组件的扩散面积比改变所述第一扩散组件的扩散面积比。
技术方案17. 根据技术方案12所述的方法,其中,所述第一可变构件沿所述翼的长度与所述第二可变构件间隔开。
技术方案18. 根据技术方案12所述的方法,其中,所述多个竖直推力电风扇中的每一个以定向固定在所述翼内且沿所述翼的长度大致线性地布置。
技术方案19. 根据技术方案12所述的方法,其中,所述翼的第一可变构件是第一部分翼组件,其中所述翼的第二可变构件是第二部分翼组件。
技术方案20. 一种限定垂直方向的飞行器,包括:
机身;
推进系统,其包括功率源和由所述功率源驱动的多个竖直推力电风扇;以及
从所述机身延伸的翼,所述多个竖直推力电风扇沿所述翼的长度布置,所述翼包括可变几何形状组件,其包括与所述多个竖直推力电风扇的第一部分相关联的第一可变构件和与所述多个竖直推力电风扇的第二部分相关联的第二可变构件,所述第一可变构件可相对于所述第二可变构件移动以调整所述多个竖直推力电风扇的第一部分相对于所述多个竖直推力电风扇的第二部分的暴露比。
参照以下描述和所附权利要求,本发明的这些和其他特征、方面和优点将变得更好理解。并入该说明书中且构成该说明书的一部分的附图示出了本发明的实施例,且与描述一起用于说明本发明的原理。
附图说明
针对本领域的普通技术人员对本发明的完整和充分的公开(包括其最佳模式)参照附图在说明书中阐释,在附图中:
图1是根据本公开的各种示例性实施例的飞行器的透视图。
图2是处于竖直飞行位置的图1的示例性飞行器的顶部示意图。
图3是处于向前飞行位置的图1的示例性飞行器的顶部示意图。
图4是图1的示例性飞行器的功率源的示意图。
图5是处于向前飞行位置的根据本公开的示例性实施例的翼的侧部示意性截面视图,其可并入图1的示例性飞行器中。
图6是处于竖直飞行位置的图5的示例性翼的侧部示意性截面视图。
图7是处于竖直飞行位置的根据本公开的另一示例性实施例的飞行器的顶部示意图。
图8是处于部分竖直飞行位置的图7的示例性飞行器的顶部示意图。
图9是处于竖直飞行位置的根据本公开的示例性实施例的翼的侧部示意性截面视图,其可并入根据本公开的还有另一示例性实施例的飞行器中。
图10是处于竖直飞行位置的根据本公开的又一示例性实施例的飞行器的翼的顶部示意图。
图11是处于竖直飞行位置的图10的示例性翼的侧部示意性截面视图。
图12是处于向前飞行位置的图10的示例性翼的侧部示意性截面视图。
图13是沿处于竖直飞行位置的图10的示例性翼的长度方向的向前示意性截面视图。
图14是具有定位在其中的根据本公开的示例性实施例的扩散组件的飞行器的翼的侧部示意性截面视图,其中翼处于向前飞行位置。
图15是具有图14的示例性扩散组件的飞行器的翼的侧部示意性截面视图,其中翼处于竖直飞行位置。
图16是具有图14的示例性扩散组件的飞行器的翼沿竖直方向的示意性下侧视图。
图17是具有图14的示例性扩散组件的飞行器的翼沿竖直方向的另一示意性下侧视图。
图18是处于竖直推力位置的具有根据本公开的还有另一示例性实施例的扩散组件的飞行器的翼的示意性下侧视图。
图19是处于竖直推力位置的具有图18的示例性扩散组件的飞行器的翼的示意性侧部截面视图。
图20是处于向前推力位置的具有图18的示例性扩散组件的飞行器的翼的示意性侧部截面视图。
图21是具有根据本公开的又一示例性实施例的扩散组件的飞行器的翼的示意性下侧视图。
图22是图18的示例性扩散组件的示意图。
图23是根据本公开的另一示例性实施例的飞行器的顶部示意图。
图24是根据本公开的示例性方面的用于操作飞行器的方法的流程图。
图25是根据本公开的另一示例性方面的用于操作飞行器的方法的流程图。
具体实施方式
现在将详细参照本发明的实施例,其一个或多个示例在附图中示出。详细描述使用数字和字母标号来表示附图中的特征。附图和描述中的相似和类似的标号用于表示本发明的相似和类似的部分。
如本文使用的那样,用语“第一”、“第二”和“第三”可互换地使用来将一个构件与另一个构件区分开,且不意在表示独立构件的位置和重要性。
用语“前”和“后”指燃气涡轮发动机或载具内的相对位置,以及指燃气涡轮发动机或载具的正常操作姿势。例如,关于燃气涡轮发动机,前指的是较接近发动机入口的位置,且后指的是较接近发动机喷嘴或排出口的位置。
用语“上游”和“下游”指的是相对于流体路径中的流体流的相对方向。例如,“上游”指液体流自的方向,且“下游”指流体流至的方向。
用语“联接”、“固定”、“附接至”等指的是直接联接、固定或附接以及通过一个或多个中间构件或特征来间接联接、固定或附接两者,除非在本文中另外说明。
单数形式“一个”、“一种”和“该”包括复数参照,除非上下文另外清楚地指出。
如在本文中贯穿说明书和权利要求使用的近似语言用于修饰可容许改变而不导致与其相关的基本功能的变化的任何数量表达。因此,由诸如“大约”、“近似”和“大致”的一个或多个用语修饰的值不限于指定的准确值。在至少一些情况下,近似语言可对应于用于测量值的仪器的精度,或用于构建或制造构件和/或系统的机器或方法的精度。例如,近似语言可指在10%的裕度内。
这里以及贯穿说明书和权利要求,范围限制组合和互换,此范围是确定的且包括包含在其中的所有子范围,除非上下文或语言另外指示。例如,本文公开的所有范围包含端点,且端点可与彼此独立地组合。
本公开大体上涉及一种用于操作竖直起飞和降落的飞行器的方法。飞行器可包括电推进系统或混合电推进系统,该推进系统带有沿飞行器的一个或多个翼布置的多个竖直推力电风扇。翼中的至少一个包括多个可变构件,诸如第一可变构件和第二可变构件。该方法大体上包括相对于与多个竖直推力电风扇的第二部分相关联的翼的第二可变构件改变与多个竖直推力电风扇的第一部分相关联的翼的第一可变构件,以调整所述多个竖直推力电风扇的第一部分相对于所述多个竖直推力电风扇的第二部分的暴露比。
例如,相对于第二可变构件改变第一可变构件可完成以相对于多个竖直推力电风扇的第二部分的有效推力轮廓调整多个竖直推力电风扇的第一部分的有效推力轮廓。另外,或备选地,相对于第二可变构件改变第一可变构件可完成以调整多个竖直推力电风扇的第一部分相对于多个竖直推力电风扇的第二部分的暴露比。
不管怎样,此改变可通过更精确地控制竖直推力电风扇的第一部分和第二部分对于飞行器如何用于相对于彼此生成推力而允许对飞行器增加的控制水平。例如,此改变可允许竖直推力电风扇的第一部分以大致全功率操作来大致生成那个翼所需的所有竖直推力(在以全功率操作时竖直推力电风扇潜在地更高效),而竖直推力电风扇的其它部分以大致零功率操作,从而导致整体上更高效的操作。
现在参照附图,其中相同数字贯穿附图指示相同元件,图1至图3绘出了根据本公开的各种实施例的飞行器10。更特别地,图1提供了示例性飞行器10的透视图;图2提供了处于竖直推力构造的图1的示例性飞行器10的顶部示意图;且图3提供了处于向前推力构造的图1的示例性飞行器10的顶部示意图。如图1至图3中共同示出的那样,飞行器10限定纵向方向L(且纵向中心线12延伸穿过其中)、竖直方向V和横向方向T。此外,飞行器10限定左舷侧14和相对的右舷侧16。
飞行器10包括大体上沿飞行器10的纵向中心线12在前端部20和后端部22之间延伸的机身18。飞行器10另外包括一个或多个翼,各个翼从机身18延伸。更特别地,对于绘出的实施例,飞行器10包括附接至机身18或与机身18整体结合形成的四个翼。特别地,对于绘出的实施例,飞行器10包括第一翼、第二翼、第三翼和第四翼,或更具体地后右舷翼24、后左舷翼26、前右舷翼28和前左舷翼30。这些翼24、26、28、30中的每一个附接至机身18或与机身18整体结合形成,且大体上沿横向方向T从机身18向外延伸(即,相对于机身18向外)。将了解的是,尽管前左舷翼30和前右舷翼28绘出为单独的翼,但在其它实施例中,前左舷翼30和前右舷翼28可整体结合形成且一起附接至机身18。类似地,尽管后左舷翼26和后右舷翼24绘出为单独的翼,但在其它实施例中,后左舷翼26和后右舷翼24可整体结合形成且一起附接至机身18。
尽管未绘出,但在其它实施例中,飞行器10可另外包括一个或多个稳定器,诸如一个或多个竖直稳定器、水平稳定器等。此外,将了解的是,尽管未绘出,但在某些实施例中,翼和/或稳定器(如果包括)中的一个或多个可另外包括襟翼,诸如前缘襟翼或后缘襟翼,以用于在飞行期间帮助控制飞行器10。
仍然参照图1至图3,示例性飞行器10还包括推进系统32,以用于在操作期间为飞行器10提供期望量的推力。宽泛地说,示例性推进系统32包括:用于在某些操作期间生成竖直推力的多个竖直推力电风扇(或“VTE风扇”),用于在某些操作期间生成向前(且可选地相反)推力的多个向前推力推进器34,以及用于驱动多个VTE风扇和向前推力推进器34的功率源36。此外,对于绘出的实施例,推进系统32包括电通信总线38,例如,用于将电功率从功率源36提供至多个VTE风扇。
更特别地,对于绘出的实施例,功率源36包括燃烧发动机40、电机42和电能储存单元44。更特别地,现在也参照图4,提供了上文参照图1至图3描述的推进系统32的功率源36的示例性燃烧发动机40的示意图。如图绘出的那样,燃烧发动机40构造成机械地驱动向前推力推进器34。更特别地,向前推力推进器34选择性地或耐久地机械联接至燃烧发动机40。另外,燃烧发动机40联接至电机42。因此,在至少某些实施例中,燃烧发动机40可驱动电机42,使得电机42可生成电功率。如此,电机42可构造为发电机,且功率源36可大体上称为“混合-电功率源”。此外,关于此示例性实施例,例如,电机42可在飞行器的至少某些操作期间提供电功率至VTE风扇,提供至电能储存单元44,或两者。如此,多个VTE风扇可由功率源36驱动,且更具体地可至少部分地由电机42驱动。
另外,电能储存单元44可为电池或用于储存电功率的其他适合的构件。例如,电能储存单元44可从电机42(操作为发电机)接收电功率,且储存电功率以用于在飞行器10的操作期间使用。例如,电能储存单元44可在某些操作期间从电机42(操作为发电机)接收和储存电功率,且随后在其它操作期间将电功率提供至多个VTE风扇。另外,在还有其它操作中,电能储存单元44可将电功率提供回电机42,以例如短期为后风扇供能,在紧急操作期间为燃烧发动机40供能,或在高功率需求操作期间对向前推力推进器34和/或燃烧发动机40增加功率。因此,关于此示例性实施例,电机42还可构造为电动马达。
更特别地,具体参照图4,对于绘出的实施例,燃烧发动机40是涡轮轴发动机。涡轮轴发动机以串流顺序包括:包括低压压缩机62和高压压缩机64的压缩机区段,燃烧区段66,包括高压涡轮68和低压涡轮70的涡轮区段。在操作期间,空气流接收在压缩机区段内且在空气流流过其中时(即,当空气流从低压压缩机62流至高压压缩机64时)逐渐压缩。压缩空气然后提供至燃烧区段66,在那里其与燃料混合且燃烧以生成热燃烧气体。飞行器10还包括燃料箱71,以用于将燃料提供至燃烧区段66(见图2和图3)。
热燃烧气体通过涡轮区段膨胀,在那里从其提取旋转能。特别地,热燃烧气体使高压涡轮68和低压涡轮70旋转(在气体流过其间时)且膨胀。如假想线所绘,这些构件可例如在飞行器10的机身18内封闭在壳体72内。尽管未绘出,热燃烧气体可从低压涡轮70排出,例如至大气。
并且对于绘出的实施例,高压涡轮68通过高压轴或转轴74连接至高压压缩机64,使得高压涡轮68的旋转另外使高压压缩机64旋转。类似地,低压涡轮70通过低压轴或转轴76连接至低压压缩机62,使得低压涡轮70的旋转另外使低压压缩机62旋转。
然而,将了解的是,图4中所绘的示例性涡轮轴发动机仅作为示例提供。在其它示例性实施例中,涡轮轴发动机可具有任何其它适合的构造。例如,在其它实施例中,涡轮轴发动机可包括任何其它适合数目的压缩机和/或任何其它适合数目的涡轮。此外,在还有其它实施例中,燃烧发动机可为任何其它适合的燃烧发动机,诸如旋转发动机或内燃机。
仍然参照图4,低压轴76另外驱动输出轴。更特别地,对于图4的实施例,低压轴76另外驱动涡轮轴发动机的第一输出轴或前输出轴78,且还驱动涡轮轴发动机的第二输出轴或后输出轴80。前输出轴78延伸至电机42。因此,至少在某些操作期间,涡轮轴发动机的旋转经由前输出轴78将旋转能输出至电机42。电机42继而构造成转换旋转能以生成电功率。更特别地,将了解的是,电机42的至少某些实施例(诸如所示的实施例)可大体上包括转子82和定子84。涡轮轴发动机的旋转能经由前输出轴78提供且构造成使电机42的转子82相对于定子84旋转。此相对运动可生成电功率。
包括根据此示例性实施例的涡轮轴发动机和电机42可允许电功率源36生成相对高的电功率量,且将此电功率提供至推进系统32的多个VTE风扇。
如上文简要论述的那样,涡轮轴发动机还驱动混合电推进系统32的向前推力推进器34。对于绘出的实施例,向前推力推进器34包括联接至风扇轴88的风扇86。涡轮轴发动机的后输出轴80选择性地机械联接或耐久地机械联接至风扇轴88,以允许涡轮轴发动机驱动风扇86。更特别地,在操作期间,涡轮轴发动机的后输出轴80可驱动风扇轴88以使风扇86围绕风扇轴线90旋转。注意,向前推力推进器34还包括包绕风扇86的至少一部分的外机舱92。如此,向前推力推进器34可称为导管风扇。
还将了解的是,对于绘出的实施例,向前推力推进器34在飞行器10的后端部22处安装至飞行器10的机身18。尽管未绘出,但向前推力推进器34可包括在飞行器10的外机舱92和机身18之间延伸的一个或多个支柱或其它结构部件,以将向前推力推进器34安装至飞行器10的机身18。此外,向前推力推进器34构造为边界层吸入风扇,其限定围绕机身18延伸大致360度的入口94。如此,向前推力推进器34可在机身18上吸入边界层气流,且可使此气流重新增能,以产生用于飞行器10的向前推力。
此外,向前推力推进器34的风扇86包括联接至盘98的多个风扇叶片96,其中盘98联接至风扇轴88。更特别地,对于绘出的实施例,多个风扇叶片96中的每一个可围绕相应的桨距轴线100旋转地联接至盘98。向前推力推进器34还包括桨距改变机构102,其可关于多个风扇叶片96中的每一个操作以使多个风扇叶片96中的每一个围绕其相应的桨距轴线100例如一致地旋转。因此,对于绘出的实施例,向前推力推进器34构造为可变桨距风扇。
仍然参照图4,将了解的是,绘出的示例性推进系统32还包括联接单元106,其中涡轮轴发动机通过联接单元106选择性地机械联接至向前推力推进器34。联接单元106可为离合器或转矩转换器中的至少一者。更特别地,对于绘出的实施例,联接单元106包括离合器,且更特别地包括单向离合器。例如,在某些实施例中,单向离合器可为斜撑离合器。
例如,在某些示例性实施例中,如假想线中所绘,向前推力推进器34还可包括联接至风扇轴88的驱动电机104(确切地说,驱动马达)。驱动电机104可通过电通信总线38电联接至功率源36,诸如至电机42或电能储存单元44中的一个或多个。驱动电机104可在例如紧急操作期间接收电功率来驱动向前推力推进器34的风扇86。在联接单元106中包括单向离合器(诸如斜撑离合器)可允许驱动电机104使风扇86旋转,而不必相应地使燃烧发动机40(对于绘出的实施例,即,涡轮轴)旋转。
然而,将了解的是,在其它示例性实施例中,离合器可替代地为可在接合位置和脱离位置之间促动的双向离合器。在处于接合位置时,风扇轴88可与涡轮轴发动机的后输出轴80一起旋转(经由中间轴108)。相比而言,在处于脱离位置时,涡轮轴发动机的后输出轴80可独立于风扇轴88旋转。例如,在某些实施例中,飞行器10可在例如竖直起飞、竖直降落或盘旋操作(其中不需要从向前推力推进器34的向前推力)期间将离合器移动至脱离位置。然而,当飞行器10过渡至向前推力操作(诸如,巡航操作)时,离合器可移动至接合位置,以允许向前推力推进器34生成用于飞行器10的向前推力。
此外,仍然对于图4中绘出的实施例,飞行器10另外包括速度改变机构110,其中涡轮轴发动机通过速度改变机构110机械联接至向前推力推进器34。更特别地,对于图4的实施例,速度改变机构110构造为齿轮箱。更特别地,仍然对于图4的实施例,速度改变机构110构造为行星齿轮箱。
然而,将了解的是,在其它示例性实施例中,示例性飞行器且更特别地示例性混合电推进系统,可包括任何其它适合的燃烧发动机和向前推力推进器。例如,在其它实施例中,燃烧发动机可替代地为具有任何其它适合构造的涡轮轴发动机、内部燃烧发动机等。另外,在其它实施例中,向前推力推进器可以以任何其它适合的方式联接至燃烧发动机。例如,在其它实施例中,向前推力推进器可为电驱动推进器、非导管风扇等。此外,尽管在飞行器的后端部22处绘出,但在其它实施例中,向前推力推进器可替代地位于例如飞行器的前端部20或任何其它适合的位置处。
此外,仍然在本公开的其它示例性实施例中,推进系统可包括任何其它适合的功率源,以用于驱动多个VTE风扇和向前推力推进器。例如,在其它示例性实施例中,推进系统可不为“混合电推进系统”,且替代地可为纯电推进系统。关于此示例性实施例,用于VTE风扇和向前推力推进器的大致所有功率可从电能储存单元44提供。
现在往回具体参照图1至图3,飞行器10的多个翼中的第一个且更具体地图2中所绘的后右舷翼24限定长度48(以及长度方向LW),且推进系统32包括第一多个VTE风扇46,其沿后右舷翼24的长度48布置,且更特别地,沿后右舷翼24的长度48(即,沿后右舷翼24的长度48以大致直线布置的第一多个VTE风扇46中的各个的中心/轴线)大致线性地布置。更特别地,仍然将了解的是,对于绘出的实施例,第一多个VTE风扇46整体结合到后右舷翼24中,且定向成大体上沿竖直方向V生成推力。如此,第一多个VTE风扇46中的每一个为竖直升力风扇,且如将在下文中更详细地论述的那样,固定就位使得它们仅能够沿飞行器10的竖直方向V生成推力。如将在下文中更详细地论述的那样,第一多个VTE风扇46中的每一个电联接至功率源36,以例如从电机42或电能储存单元44接收电功率。
将了解的是,如本文所使用,用语“沿飞行器10的竖直方向V”指的是由飞行器10的法向定向限定的竖直方向。例如,如果飞行器10例如在某些操作期间向前倾斜,则第一多个VTE风扇46可沿方向(仍沿飞行器10的竖直方向,但相对于绝对竖直方向倾斜)提供推力。此外,在这种语境下,用语“大体上”指的是在飞行器10的竖直方向V的大约三十度内,诸如在竖直方向V的大约十五度内。
另外,对于绘出的实施例,第一多个VTE风扇46包括至少三个VTE风扇46,且更特别地包括四个VTE风扇46。然而,在其它实施例中,第一多个VTE风扇46可替代地包括任何其它适合数目的VTE风扇46,诸如两个、五个或更多个VTE风扇46。在某些实施例中,第一多个VTE风扇46中的每一个可以以与彼此相同的方式构造,或备选地第一多个VTE风扇46中的至少一个可不同地构造(例如,可变桨距或固定桨距,可变速度或固定速度等)。
注意,通过使第一多个VTE风扇46沿后右舷翼24的长度48分布,由第一多个VTE风扇46在后右舷翼24上生成的升力可以以类似于向前飞行操作期间在后右舷翼24上生成的升力的分布的方式分布。如此,后右舷翼24的结构框架(下文称为本体部分114)可用作在竖直飞行操作期间支撑升力以及在向前飞行操作期间支撑升力的双重功能。这可大体上导致更高效构建的飞行器10。
还将了解的是,示例性推进系统32包括类似多个电风扇,其整体结合到飞行器10的其它翼26、28、30中。这些电风扇中的每一个类似地定向,以大体上沿飞行器10的竖直方向V生成推力,且如此可因而也构造为VTE风扇。更特别地,推进系统32还包括:整体结合到后左舷翼26中且沿后左舷翼26的长度大致线性地布置的第二多个VTE风扇52,整体结合到前右舷翼28中且沿前右舷翼28的长度大致线性地布置的第三多个VTE风扇54,以及整体结合到前左舷翼30中且沿前左舷翼30的长度大致线性地布置的第四多个VTE风扇56。
对于绘出的实施例,第二多个VTE风扇52包括四个VTE风扇,且第三多个VTE风扇54和第四多个VTE风扇56各自包括两个VTE风扇。然而,将了解的是,在其它实施例中,相应多个VTE风扇46、52、54、56中的每一个可具有任何其它适合数目的VTE风扇,且进一步在某些示例性实施例中,多个VTE风扇46、52、54、56中的每一个可以以与彼此大致相同的方式构造,或此多个VTE风扇46、52、54、56中的一个或多个可不同地构造。例如,在某些示例性实施例中,第一多个VTE风扇46、第二多个VTE风扇52、第三多个VTE风扇54和第四多个VTE风扇56中的每一个可构造为可变速度、固定桨距风扇,或备选地可各自构造为可变速度、可变桨距风扇(下文描述的“可变速度”功能性)。或者,备选地,这些VTE风扇46、52、54、56中的仅选择数目可具有此功能性。
此外,如图2中最清楚地绘出的那样,电通信总线38将功率源36(例如,对于绘出的实施例,电机42和/或电能储存单元44)电连接至多个VTE风扇46、52、54、56中的每一个。注意,对于绘出的实施例,电通信总线38包括主控制器58和多个电功率控制器60。主控制器58电连接至电机42和电能储存单元44两者,且构造成例如将电功率从电机42和电能储存单元44中的一者或两者引导到多个VTE风扇46、52、54、56中的每一个。例如,在某些操作中,主控制器58可将电功率从电机42引导到多个VTE风扇46、52、54、56中的每一个,可将电功率从电能储存单元44引导到多个VTE风扇46、52、54、56中的每一个,可将电功率从电机42引导到电能储存单元44(例如,在向前飞行期间),或可将电功率从电能储存单元44引导到电机42(例如,在紧急操作或高功率需求操作期间)。也可构思其它操作。
更特别地,在图2的实施例中,电通信总线38包括用于各个VTE风扇(即,第一多个VTE风扇46中的各个VTE风扇,第二多个VTE风扇52中的各个VTE风扇,第三多个VTE风扇54中的各个VTE风扇和第四多个VTE风扇56中的各个VTE风扇)的电功率控制器60。另外,多个电功率控制器60中的每一个与多个VTE风扇46、52、54、56中的一个VTE风扇相关联。更特别地,仍然,功率源36通过相应的电功率控制器60电连接至多个VTE风扇46、52、54、56中的各个VTE风扇。如此,电功率控制器60可改变从功率源36提供至各个相应的VTE风扇的电功率。因此,对于所示实施例,推进系统32包括十二个电功率控制器60,对于推进系统32内包括的十二个VTE风扇中的每一个各一个。
在某些示例性实施例中,电功率控制器60中的每一个可为功率转换器、功率变换器、变压器中的一个或多个。因此,在某些示例性实施例中,电功率控制器60可构造成将通过电通信总线38接收的电功率从交流(“AC”)电功率转换成直流(“DC”)电功率,或反之亦然,且在至少某些实施例中还可构造成在将此电功率传递至相应的VTE风扇之前改变通过电通信总线38从功率源36接收的电功率(例如,电压或电流)。
因此,在至少某些实施例中,电功率控制器60中的每一个可改变提供至相应的VTE风扇的电功率的量,如将了解的那样,这可允许飞行器10且更特别地允许主控制器58改变多个VTE风扇46、52、54、56中的各个VTE风扇的旋转速度。例如,电功率控制器60中的每一个可通过例如有线或无线通信总线(未示出)可操作地联接至主控制器58,使得主控制器58可控制提供至独立VTE风扇中的每一个的电功率。
因此,将了解的是,在至少某些实施例中,多个VTE风扇46、52、54、56中的各个VTE风扇可为可变速度风扇。因此,通过改变通过相应的电功率控制器60提供至各个VTE风扇的电功率的量,飞行器10可改变相应的VTE风扇的旋转速度且因此由相应的VTE风扇提供的竖直推力的量。如此,飞行器10可在竖直起飞和降落或其它竖直推力操作期间允许更多动态控制。
然而,应当了解的是,在其它示例性实施例中,飞行器10(确切地说,电通信总线38)可不包括用于独立VTE风扇中的每一个的电功率控制器60。例如,替代地,在其它实施例中,电通信总线38可包括用于独立的多个VTE风扇46、52、54、56中的每一个的单个电功率控制器60。然而,在还有其他实施例中,可提供任何适合的构造。
具体参照图2和图3,将了解的是,翼24、26、28、30中的每一个大体上包括结构本体部分114(图2)以及选择性地暴露包括在其中的多个VTE风扇的一个或多个构件。对于所示实施例,该一个或多个构件包括可变几何形状组件116,其可相对于相应的翼的本体部分114在竖直推力位置(见图2)和向前推力位置(见图3)之间移动,以便于飞行器10的竖直起飞和降落,或飞行器10的其它竖直推力操作。
例如,具体参照后右舷翼24,对于绘出的实施例,联接至机身18且从机身18延伸的后右舷翼24包括结构本体部分114(具体见图2)和可变几何形状组件116。可变几何形状组件116在处于向前推力位置(见图3)时至少部分地覆盖和封闭第一多个VTE风扇46中的至少一个VTE风扇,且在处于竖直推力位置(见图2)时至少部分地暴露第一多个VTE风扇46中的该至少一个VTE风扇。更特别地,对于所示实施例,可变几何形状组件116在处于向前推力位置时沿后右舷翼24的长度48延伸且至少部分地覆盖第一多个VTE风扇46中的至少两个VTE风扇,且在处于竖直推力位置时至少部分地暴露第一多个VTE风扇46中的至少两个VTE风扇。
更特别地,仍然对于图2和图3的实施例,可变几何形状组件116包括在可变几何形状组件116处于向前推力位置时至少部分地覆盖第一多个VTE风扇46中的至少一个VTE风扇的部分翼组件。更特别地,对于绘出的实施例,在可变几何形状组件116处于向前推力位置时,部分翼组件至少部分地覆盖第一多个VTE风扇46中的每一个。对于绘出的实施例,部分翼组件是前部分翼组件118,在可变几何形状组件116处于向前推力位置时,前部分翼组件118沿后右舷翼24的长度48(即,在后右舷翼24的长度方向LW上)延伸且至少部分地覆盖第一多个VTE风扇46中的每一个。此外,对于绘出的实施例,可变几何形状组件116还包括后部分翼组件120。对于绘出的实施例,在可变几何形状组件116处于向前推力位置时,后部分翼组件120也沿后右舷翼24的长度48延伸且至少部分地覆盖第一多个VTE风扇46中的每一个。注意,在可变几何形状组件116处于向前推力位置时,前部分翼组件118和后部分翼组件120可各自称为处于收缩位置。相反地,在可变几何形状组件116处于竖直推力位置时,前部分翼组件118和后部分翼组件120可各自称为处于延伸位置。
现在还参照图5和图6,提供了后右舷翼24的截面视图。更特别地,图5提供了穿过图3中的线5-5的后右舷翼24的截面视图(其中可变几何形状组件116处于向前推力位置);且图6提供了穿过图2中的线6-6的后右舷翼24的截面视图(其中可变几何形状组件116处于竖直推力位置)。
如将了解的那样,飞行器10还限定水平方向。如本文使用的水平方向大体上指的是垂直于竖直方向V的任何方向,且因此也可认为是水平平面。如将了解的那样,水平方向L在水平方向/水平平面内延伸,且因此平行于水平方向/水平平面。可变几何形状组件116可大体上沿水平方向在向前推力位置和竖直推力位置之间移动,且更特别地,对于绘出的实施例,可大体上沿纵向方向L移动。还更特别地,将了解的是,后右舷翼24限定垂直于长度方向LW的宽度方向W,且对于所示实施例,可变几何形状组件116可大体上沿后右舷翼24的宽度方向W移动。(然而,应当了解的是,在其它实施例中,可变几何形状组件116的方面可替代地在沿水平平面的任何其它适合的方向上移动或平移。另外,尽管宽度方向W和纵向方向L例如在图5和图6中绘出为大体上彼此平行,但在某些实施例中,这两个方向W、L可相对于彼此限定角度)。
更特别地,当可变几何形状组件116在向前推力位置和竖直推力位置之间移动时,前部分翼组件118大体上定位在后右舷翼24的前侧且可大体上沿水平方向移动。特别地,对于绘出的实施例,在可变几何形状组件116从例如向前推力位置(图3、图5)移动至竖直推力位置(图2、图6)时,前部分翼组件118大体上沿纵向方向L(且更特别地,沿宽度方向W)向前移动。
相比而言,后部分翼组件120大体上定位在后右舷翼24的后侧。然而,类似于前部分翼组件118,当可变几何形状组件116在向前推力位置和竖直推力位置之间移动时,后部分翼组件120可大体上沿水平方向移动。更特别地,对于绘出的实施例,在可变几何形状组件116从例如向前推力位置(图3、图5)移动至竖直推力位置(图2、图6)时,后部分翼组件120大体上沿纵向方向L(且更特别地,沿宽度方向W)向后移动。
因此,如所述的那样,且如将从图3和图5了解的那样,当可变几何形状组件116处于向前推力位置(且可变几何形状组件116的前部分翼组件118和后部分翼组件120处于收缩位置)时,可变几何形状组件116的前部分翼组件118和后部分翼组件120各自至少部分地封闭第一多个VTE风扇46中的至少一个VTE风扇,且一起大致完全封闭后右舷翼24内的第一多个VTE风扇46中的每一个。如此,在可变几何形状组件116处于向前推力位置时,第一多个VTE风扇46中的每一个大致完全封闭在后右舷翼24内。
相比而言,如将从图2和图6了解的那样,当可变几何形状组件116处于竖直推力位置(且可变几何形状组件116的前部分翼组件118和后部分翼组件120处于延伸位置)时,可变几何形状组件116的前部分翼组件118和后部分翼组件120各自至少部分地暴露第一多个VTE风扇46中的至少一个VTE风扇,且一起大致完全暴露后右舷翼24内的第一多个VTE风扇46中的每一个。如此,在可变几何形状组件116处于竖直推力位置时,第一多个VTE风扇46中的每一个大致完全暴露。注意,如本文关于VTE风扇使用的用语“暴露”指的是,此风扇具有大致开放的入口和大致开放的排出口(除了任何排出流路构件外,诸如下文描述的扩散组件构件),使得风扇可大致自由地接收空气流且大致自由地排出此空气流。
然而,将了解的是,在其它示例性实施例中,在处于向前推力位置时,可变几何形状组件116可非大致完全封闭第一多个VTE风扇46中的每一个。例如,在某些示例性实施例中,可变几何形状组件116在处于向前推力位置时可仅部分地封闭第一多个VTE风扇46中的一个或多个。如此,飞行器10可构造成在第一多个VTE风扇46中的一个或多个至少部分地暴露时(在翼24的入口侧/顶侧上,在翼24的出口侧/底侧上,或两者的组合)相对高效地向前飞行。
还将了解的是,如上文所述,可变几何形状组件116且更特别地可变几何形状组件116的前部分翼组件118和后部分翼组件120大致沿后右舷翼24的整个长度48延伸。更具体地,前部分翼组件118和后部分翼组件120中的每一个限定长度122(见图3)。对于绘出的实施例,这些部分翼组件118、120中的每一个的长度122大于或等于翼的长度48的至少大约百分之七十五(75%),且小于或等于后右舷翼24的长度48的大约百分之一百二十五(125%)。更特别地,仍然,部分翼组件118、120中的每一个的长度122大于或大致等于沿长度方向LW从第一多个VTE风扇46中的最内VTE风扇的内边缘到第一多个VTE风扇46中的最外VTE风扇的外边缘的长度,诸如大于此长度达大约百分之二十五或百分之五十。将了解的是,在此语境下,用语内和外是相对于飞行器10的机身18限定的相对位置用语。
如此,可变几何形状组件116且更特别地前部分翼组件118和后部分翼组件120可例如一致地移动,以暴露沿后右舷翼24的长度48布置且整体结合到后右舷翼24中的第一多个VTE风扇46中的每一个。
此外,将了解的是,对于图1至图3中所绘的实施例,其它翼(即,翼26、28、30)中的每一个类似地包括可变几何形状组件116,其可在大致完全覆盖整体结合到其中的多个VTE风扇(即,相应地,多个风扇52、54、56)的向前推力位置(图3)与大致完全暴露整体结合到其中的多个VTE风扇(再次,即,相应地,多个风扇52、54、56)的竖直推力位置(图2)之间移动。这些翼26、28、30的可变几何形状组件116中的每一个可构造成与上文描述的后右舷翼24的可变几何形状组件116大致相同的方式,或备选地可构造成任何其它适合的方式。
然而,应当了解的是,在其它示例性实施例中,飞行器10的翼中的一个或多个可具有以任何其它适合的方式构造的可变几何形状组件116。例如,现在参照图7和图8,提供了根据本公开的另一示例性实施例的飞行器10。图7和图8的示例性飞行器10可构造成与上文参照图1至6描述的示例性飞行器10大致相同的方式。因此,相同或类似的数字可表示相同或类似的部分。
例如,飞行器10大体上包括机身18和具有功率源36的推进系统32。此外,飞行器10包括从机身18延伸且联接至机身18的多个翼。例如,多个翼包括前右舷翼28、后右舷翼24、前左舷翼30和后左舷翼26。推进系统32包括由功率源36驱动的多个VTE风扇,且更具体地包括:沿后右舷翼24的长度48布置的第一多个VTE风扇46,沿后左舷翼26的长度布置的第二多个VTE风扇52,沿前右舷翼28的长度布置的第三多个VTE风扇54,以及沿前左舷翼30的长度布置的第四多个VTE风扇56。
此外,翼中的每一个包括用于选择性地暴露相应多个VTE风扇的一个或多个构件。更特别地,翼中的每一个包括可在向前推力位置和竖直推力位置之间移动的可变几何形状组件116,以至少部分地覆盖和至少部分地暴露沿其长度布置且更特别地整体结合到其中的相应多个VTE风扇。然而,对于绘出的实施例,这些可变几何形状组件116中的每一个可操作成选择性地暴露和/或覆盖少于全部的沿相应的翼的长度布置的相应多个VTE风扇。
例如,具体地参照包括第一多个VTE风扇46的后右舷翼24,可变几何形状组件116包括部分翼组件,其中部分翼组件在可变几何形状组件116处于向前推力位置时至少部分地覆盖少于全部的第一多个VTE风扇46。更特别地,对于图7和图8的实施例,部分翼组件是内部分翼组件,且可变几何形状组件116还包括外部分翼组件(即,相对于飞行器10的机身18的内和外)。还更特别地,内部分翼组件是内前部分翼组件118A,且外部分翼组件是外前部分翼组件118B。内前部分翼组件118A和外前部分翼组件118B沿后右舷翼24的长度48(更具体地,沿后右舷翼24的长度方向LW)顺序地布置。对于绘出的实施例,内前部分翼组件118限定长度122。长度122小于或等于后右舷翼24的长度48的大约百分之五十(50%),且大于或等于后右舷翼24的长度48的至少大约百分之十(10%)。此外,对于绘出的实施例,外前部分翼组件118B限定大致等于内前部分翼组件118A的长度124。然而,在其它实施例中,外前部分翼组件118B的长度124可不同于内前部分翼组件118A的长度122。
此外,仍然对于绘出的实施例,后右舷翼24的可变几何形状组件116还包括内后部分翼组件120A和外后部分翼组件120B。内后部分翼组件120A可与内前部分翼组件118A一起操作以大致完全覆盖或暴露第一多个VTE风扇46的第一部分46A,且外后部分翼组件120B可与外前部分翼组件118B一起操作以大致完全覆盖或暴露第一多个VTE风扇46的第二部分46B。
将了解的是,如图8中所示,在某些实施例中,内前部分翼组件118A和内后部分翼组件120A可一起操作且独立于外前部分翼组件118B和外后部分翼组件120B。因此,可变几何形状组件116可移动至竖直推力位置的各种“程度”,且如本文使用的那样,参照特定翼的可变几何形状组件116的用语“竖直推力位置”大体上指的是其中相应多个VTE风扇中的至少一个VTE风扇至少部分地暴露且能够生成竖直推力的位置。
例如,如绘出的那样,可变几何形状组件116可移动至一个或多个部分竖直推力位置,诸如示出的位置,其中内前部分翼组件118A和内后部分翼组件120A处于收缩位置以大致完全覆盖第一多个VTE风扇46的第一部分46A,且其中外前部分翼组件118B和外后部分翼组件120B处于延伸位置以大致完全暴露第一多个VTE风扇46的第二部分46B。这可允许第一多个VTE风扇46例如在飞行器10的过渡飞行条件(例如,从竖直飞行过渡至向前飞行,或反之亦然)期间提供减少量的竖直推力。
此外,将了解的是,对于绘出的实施例,其它翼(即,后左舷翼26、前右舷翼28和前左舷翼30)中的各个的可变几何形状组件116绘出为构造成与后右舷翼24的示例性可变几何形状组件116类似的方式。注意,上文参照图7和图8描述的飞行器10的至少某些操作将在下文参照图24和图25描述。
此外,仍然应当了解的是,尽管图7和图8中绘出的示例性可变几何形状组件116大体上包括沿相应翼的长度方向顺序地布置的两组部分翼组件,但在其它实施例中,可变几何形状组件可包括沿相应翼的长度方向顺序地布置的任何其它适合数目的部分翼组件组(即,对应对的前部分翼组件和后部分翼组件)。例如,在其它示例性实施例中,可变几何形状组件116中的一个或多个可包括沿相应翼的长度方向间隔开的三组部分翼组件,沿相应翼的长度方向顺序地布置的四组部分翼组件等。此外,在某些示例性实施例中,翼中的一个或多个可包括可变几何形状组件,其具有针对沿此翼的长度布置的多个VTE风扇中的各个VTE风扇的独立组的部分翼组件。此外,尽管对于图7和图8中绘出的实施例,各个翼的可变几何形状组件116包括相同数目的部分翼组件组,但在其它实施例中,翼中的某些可包括相比其它翼具有不同数目的部分翼组件组的可变几何形状组件。
如此,将了解的是,图7和图8中所示的实施例仅作为示例。此外,尽管对于图1至图6以及图7和图8的实施例,飞行器10的各个翼的可变几何形状组件116大体上包括前部分翼组件118和后部分翼组件120,但在其它实施例中,这些可变几何形状组件116中的一个或多个可替代地包括单个部分翼组件(即,前部分翼组件118或后部分翼组件120中的仅一者),其可移动以选择性地暴露或覆盖相应多个VTE风扇中的一个或多个VTE风扇。此外,在还有其它示例性实施例中,这些可变几何形状组件116中的一个或多个可具有任何其它适合的构造,以用于选择地暴露和/或覆盖相应多个VTE风扇中的一个或多个VTE风扇。
往回参照图2和图3,大体上,将了解的是,根据本公开的一个或多个示例性方面的飞行器10可包括用于增加推进系统32所包括的VTE风扇的效率的特征。更特别地,翼中的至少一者且可选地翼中的每一个(包括沿其长度布置的VTE风扇)包括用于增强多个VTE风扇的入口流路和/或排出流路的特征,以用于增加由这样多个VTE风扇生成的推力的量。例如,在至少某些示例性实施例中,翼中的至少一者(包括沿其长度布置的VTE风扇)可包括用于缓和在相应VTE风扇中的一个或多个的下游的气流130的特征。如将了解的那样,且如将在下文中更详细地论述的那样,通过包括这些扩散特征,可对于VTE风扇实现较高功率负载,从而导致出自每盘面积的VTE风扇增加的性能(即,对于VTE风扇的给定尺寸/直径增加的性能)。这可导致包括较小VTE风扇同时对于飞行器10的竖直推力操作提供期望量的竖直推力的能力。另外,此优点可允许沿翼的长度分布多个较小的VTE风扇,从而允许从其生成的升力沿翼的长度更均匀分布,且进一步允许较高展弦比的翼,分别在下文更详细地论述。
例如,首先简要参照图9,提供了飞行器10的后右舷翼24的侧部截面视图,其可构造成与图1至图6的示例性飞行器10类似的方式。例如,图9的视图可为图5和图6中提供的相同视图。因此,对于图9的实施例,后右舷翼24包括一个或多个构件,其可移动以选择性地暴露沿后右舷翼24的长度48布置的第一多个VTE风扇46中的至少一个VTE风扇(见图2和图3)。更特别地,对于绘出的实施例,可移动以选择性暴露该至少一个VTE风扇的该一个或多个构件是可变几何形状组件116。绘出的示例性可变几何形状组件116包括前部分翼组件118和后部分翼组件120。如上文参照图5和图6所述,当可变几何形状组件116从向前推力位置移动至竖直推力位置时,前部分翼组件118和后部分翼组件120可各自大体上沿水平方向移动,或更特别地,大体上沿飞行器10的纵向方向L移动。更特别地,当可变几何形状组件116从向前推力位置动至竖直推力位置时,前部分翼组件118可大体上沿纵向方向L向前移动,且后部分翼组件120可大体上沿纵向方向L向后移动。
具体参照图9,将了解的是,后右舷翼24还包括扩散组件126,其至少在某些构造中定位在该至少一个VTE风扇下游。更特别地,对于绘出的实施例,可变几何形状组件116另外构造为扩散组件126(即,后右舷翼24的扩散组件126构造为后右舷翼24的可变几何形状组件116的部分)。因此,将了解的是,在至少某些实施例中,扩散组件126定位在第一多个VTE风扇46中的多个的下游,诸如第一多个VTE风扇46中的每一个的下游。例如,如上文论述且在图2和图3中绘出的那样,在某些实施例中,前部分翼组件118和后部分翼组件120可从第一多个VTE风扇46的最内VTE风扇的内(即,相对于机身18的内)边缘沿后右舷翼24的长度方向LW至少延伸至第一多个VTE风扇46的最外VTE风扇的外(即,相对于机身18的外)边缘。前部分翼组件118和后部分翼组件120可如此连续地延伸(例如,见图1至图3的实施例),或备选地可包括如此延伸的多个部分翼组件(例如,见图7至图8的实施例)。
更具体地,为了形成扩散组件126,可变几何形状组件116构造成使前部分翼组件118和后部分翼组件120向下枢转成图9中所示的扩散构造。如此,在可变几何形状组件116移动至竖直推力位置时,除了大体上沿飞行器10的纵向方向L向前移动之外,前部分翼组件118还构造成向下枢转。类似地,在可变几何形状组件116移动至竖直推力位置时,除了大体上沿飞行器10的纵向方向L向后移动之外,后部分翼组件120可构造成向下枢转。如绘出的那样,提供的示例性后右舷翼24包括联接至本体部分114的轨道129(也见图5和图6),其中前部分翼组件118和后部分翼组件120构造成在相应地向前或向后移动且向下枢转时沿这些轨道129滑动。可提供任何适合的促动部件来如此移动前部分翼组件118和后部分翼组件120。例如,可使用任何适合的液压、气动或电促动部件。
此外,将了解的是,用于图9的实施例的扩散组件126大体上限定入口128以及出口132,入口128构造成接收来自第一多个VTE风扇46的气流130。尽管未绘出,但翼24可还包括内端部襟翼和外端部襟翼以封闭限定在入口128和出口132以及前部分翼组件118和后部分翼组件120之间的排出通道131(类似于图13的实施例中所示的襟翼190、192)。
注意,如所示的那样,且如将在下文更详细论述的那样,入口128可大体上限定入口截面面积,且出口132可大体上限定出口截面面积。出口截面面积可大于入口截面面积,使得扩散组件126大体上限定大于1:1的扩散面积比。如此,可变几何形状组件116的前部分翼组件118和后部分翼组件120可在操作期间作用为在第一多个VTE风扇46下游缓和来自第一多个VTE风扇46的气流130。如将在下文更详细论述的那样,这可允许第一多个VTE风扇46更高效地操作。
在某些示例性实施例中,飞行器10的其它翼中的每一个可构造成与本文参照图9描述的示例性后右舷翼24大致相同的方式。然而,将了解的是,在其它示例性实施例中,可关于根据本公开的竖直起飞和降落的飞行器10的翼中的一个或多个包括任何其它适合的扩散组件126。
例如,现在参照图10至图12,提供了根据本公开的另一示例性方面的包括具有扩散组件126的翼的飞行器10的视图。在某些示例性实施例中,飞行器10可构造成与上文参照图1至图6描述的示例性飞行器10大致相同的方式。因此,相同或类似的数字可表示相同或类似的部分。
例如,往回参照图2和图3,在至少某些实施例中,飞行器10大体上包括机身18和具有功率源36的推进系统32。此外,飞行器10包括从机身18延伸且联接至机身18的多个翼。例如,多个翼包括前右舷翼28、后右舷翼24、前左舷翼30和后左舷翼26。推进系统32包括由功率源36驱动的多个VTE风扇,且更具体地,包括:沿后右舷翼24的长度48布置的第一多个VTE风扇46,沿后左舷翼26的长度布置的第二多个VTE风扇52,沿前右舷翼28的长度布置的第三多个VTE风扇54,以及沿前左舷翼30的长度布置的第四多个VTE风扇56。
此外,翼24、26、28、30中的每一个包括一个或多个构件,其可移动以选择性地暴露相应多个VTE风扇46、52、54、56中的至少一个VTE风扇。例如,翼24、26、28、30中的每一个的该一个或多个构件可包括可在向前推力位置和竖直推力位置之间移动的可变几何形状组件116,以至少部分地覆盖以及至少部分地暴露沿其长度布置且更特别地整体结合到其中的相应多个VTE风扇46、52、54、56。特别地参照图10,提供了示例性飞行器10(且更特别地,示例性飞行器10的示例性后右舷翼24)的局部放大示意图,后右舷翼24以竖直推力位置绘出。将可变几何形状组件116定位在竖直推力位置可便于飞行器10的竖直起飞和降落或其它竖直推力操作。对于绘出的实施例,后右舷翼24还包括本体部分114,且可变几何形状组件116包括部分翼组件。本体部分114继而包括导轨134和主促动器136。部分翼组件的框架可移动地(确切地说,可滑动地)联接至后右舷翼24的本体部分114。更特别地,部分翼组件的框架可通过本体部分114的主促动器136沿本体部分114的导轨134移动。
此外,对于绘出的实施例,部分翼组件是前部分翼组件118,部分翼组件的框架是前框架138,且后右舷翼118的可变几何形状组件116还包括后部分翼组件120。后部分翼组件120类似地包括后框架140,且可至少部分地沿纵向方向L移动。当可变几何形状组件116移动至竖直推力位置(如所示的那样;也见下面的图11)时,前部分翼组件118和后部分翼组件120相应地大体上向前和向后移动至延伸位置,且当可变几何形状组件116移动至向前推力位置(见下面的图12)时,前部分翼组件118和后部分翼组件120相应地大体上向后和向前移动至收缩位置。此外,如同前部分翼组件118,后部分翼组件120的框架140也可移动地(确切地说,可滑动地)联接至后右舷翼24的本体部分114。更特别地,后部分翼组件120的后框架140可通过本体部分114的主促动器136沿本体部分114的导轨134移动。
对于绘出的实施例,后右舷翼24的本体部分114包括两个主促动器136,其中这些主促动器136中的每一个联接至前部分翼组件118和后部分翼组件120两者,以使前部分翼组件118和后部分翼组件120在其相应的收缩位置(在可变几何形状组件116处于向前推力位置时)和延伸位置(在可变几何形状组件116处于竖直推力位置时)之间移动。主促动器136可为电促动器(例如,包括电动马达)、液压促动器、气动促动器或任何其它适合的促动器,以用于使前部分翼组件118和后部分翼组件120以本文描述的方式大体上沿纵向方向L移动。
此外,对于绘出的实施例,后右舷翼24的本体部分114包括三个导轨134,且前部分翼组件118和后部分翼组件120中的每一个包括联接至其相应框架140的滑动部件142(以假想线绘出;也见图11和图12),其中滑动部件142沿对应的导轨134移动。然而,将了解的是,在其它示例性实施例中,后右舷翼24的本体部分114可替代地包括定位在任何其它适合的位置处的任何其它适合数目的主促动器136,且还可包括定位在任何其它适合的位置处的任何其它适合数目的导轨134。例如,在其它实施例中,后右舷翼24的本体部分114可包括单个主促动器136和单个导轨134、两个导轨134、三个主促动器136、四个导轨134和/或主促动器136等。此外,将了解的是,尽管前部分翼组件118和后部分翼组件120构造成大体上沿纵向方向L移动,但后右舷翼24的本体部分114固定地联接至机身18,使得其在飞行器10的所有操作条件期间相对于机身18保持静止。
现在将具体地参照图11和图12。图11和图12各自提供了沿图10的线11-11截取的定位在图10的后右舷翼24内的VTE风扇的侧部截面视图。更特别地,图11提供了后右舷翼24的侧部截面视图(其中可变几何形状组件116处于向前推力位置);且图12提供了后右舷翼24的侧部截面视图(其中可变几何形状组件处于向前推力位置)。如将从图11和图12了解的那样,在可变几何形状组件116处于向前推力位置(图12)时,后右舷翼24内的第一多个VTE风扇46大致完全封闭在后右舷翼24内。相比而言,对于绘出的实施例,在可变几何形状组件116处于竖直推力位置(图11)时,第一多个VTE风扇46大致完全暴露。注意,如本文关于VTE风扇使用的用语“暴露”指的是,此风扇具有大致开放的入口和大致开放的排出口(除了任何排出流路构件外,诸如下文描述的扩散组件构件),使得风扇可大致自由地接收空气流且大致自由地排出此空气流。
此外,首先参照前部分翼组件118,将了解的是,前部分翼组件118还包括第一部件144。在可变几何形状组件116移动至竖直推力位置时,第一部件144可相对于前部分翼组件118的前框架138移动以形成用于多个VTE风扇46中的至少一个的排出路径146,且更具体地,可相对于前框架138移动以形成用于第一多个VTE风扇46中的该至少一个的排出路径146。更特别地,仍然对于绘出的实施例,在可变几何形状组件116移动至竖直推力位置时,第一部件144可相对于前框架138移动以形成用于第一多个VTE风扇46中的每一个的排出路径146。因此,将了解的是,对于绘出的实施例,第一部件144在第一多个VTE风扇46中的每一个附近沿后右舷翼24的长度48大致连续地延伸。更特别地,第一部件144大致从第一多个VTE风扇46中的最内VTE风扇的内边缘(即,相对于飞行器10的机身18的内)延伸至第一多个VTE风扇46中的最外VTE风扇的外边缘(即,相对于飞行器10的机身18的外)(见图10)。
此外,将了解的是,对于绘出的实施例,前部分翼组件118的第一部件144构造为前部分翼组件118的底部部件,且因此,构造成在可变几何形状组件116移动至竖直推力位置(且前部分翼组件118移动至延伸位置)时,大体上沿竖直方向V向下移动。对于绘出的实施例,底部部件在接头148处可枢转地联接至前部分翼组件118的前框架138,且因此,构造成在可变几何形状组件116移动至竖直推力位置时,围绕接头148大体上沿竖直方向V向下枢转。在某些实施例中,接头148可沿第一部件144的长度连续地延伸,或备选地,接头148可包括沿第一部件144的长度(即,沿后右舷翼24的长度方向LW)间隔开的多个独立接头134。
另外,仍然参照前部分翼组件118,对于绘出的示例性实施例,前部分翼组件118还包括第二部件150,其类似地可相对于前部分翼组件118的前框架138移动以至少部分地限定用于第一多个VTE风扇46中的至少一个VTE风扇的入口路径152。更特别地,仍然对于绘出的实施例,在可变几何形状组件116移动至竖直推力位置时,第二部件150可相对于前框架138移动以形成用于第一多个VTE风扇46中的每一个的入口路径152。因此,将了解的是,对于绘出的实施例,第二部件150也在第一多个VTE风扇46中的每一个附近沿后右舷翼24的长度48大致连续地延伸(即,大致从第一多个VTE风扇46中的最内VTE风扇的内边缘至第一多个VTE风扇46中的最外VTE风扇的外边缘)。
此外,对于所示实施例,第二部件120为顶部部件,且构造成在可变几何形状组件116移动至竖直推力位置时,大体上沿竖直方向V向上移动。更具体地,如同底部部件,顶部部件在接头154处可枢转地联接至前部分翼组件118的前框架138,且因此,构造成在可变几何形状组件116移动至竖直推力位置时围绕接头154大体上沿竖直方向V向上枢转。如同接头148,接头154可为连续接头(即,沿第二部件120的长度大致连续地延伸),或备选地可为沿第二部件120的长度间隔开的多个独立接头。
仍然参照图11和图12,后部分翼组件120类似地包括第一部件156,其也可相对于后部分翼组件120的框架140移动以至少部分地形成用于第一多个VTE风扇46中的至少一个VTE风扇46的排出路径146,且更具体地,在可变几何形状组件116移动至竖直推力位置时,可相对于框架140移动以至少部分地形成用于第一多个VTE风扇46中的该至少一个VTE风扇46的排出路径146。更特别地,仍然对于绘出的实施例,后部分翼组件120的第一部件156构造为后部分翼组件120的底部部件,且因此,构造成在后部分翼组件120移动至竖直推力位置时大体上沿竖直方向V向下移动。对于绘出的实施例,底部部件在接头158处可枢转地联接至前部分翼组件118的前框架138,且因此,构造成在可变几何形状组件116移动至竖直推力位置时围绕接头158大体上沿竖直方向V向下枢转。
此外,如同前部分翼组件118,对于绘出的示例性实施例,后部分翼组件120也包括第二部件160,其类似地可相对于后部分翼组件120的框架140移动以至少部分地形成用于第一多个VTE风扇46中的至少一个VTE风扇的入口路径152。更特别地,对于所示实施例,第二部件160为顶部部件,其构造成在可变几何形状组件116移动至竖直推力位置时大体上沿竖直方向V向上移动。更具体地,如同底部部件,顶部部件在接头162处可枢转地联接至后部分翼组件120的框架140,且因此,构造成在可变几何形状组件116移动至竖直推力位置时围绕接头162大体上沿竖直方向V向上枢转。
注意,如同前部分翼组件118的第一部件144和第二部件150,后部分翼组件120的第一部件156和第二部件160可各自沿后右舷翼24的长度48大致连续地延伸,使得它们各自在第一多个VTE风扇46中的每一个附近延伸(即,大致从第一多个VTE风扇46中的最内VTE风扇的内边缘至第一多个VTE风扇46中的最外VTE风扇的外边缘)。
然而,应当了解的是,在其它示例性实施例中,前部分翼组件118的第一部件144和第二部件150和/或后部分翼组件120的第一部件156和第二部件160可不如此连续地延伸,且替代地可具有任何其它适合的构造。例如,在其它示例性实施例中,此部件144、150、156、160中的一个或多个可包括沿后右舷翼24的长度48顺序地布置的多个独立部件。在此实施例中,此多个部件可独立于彼此操作,且/或可一致地操作。
不管怎样,仍然参照图11和图12,将了解的是,对于绘出的实施例,前部分翼组件118的第一部件144和第二部件150以及后部分翼组件120的第一部件156和第二部件160中的每一个可大体上在开放位置(图11)和闭合位置(图12)之间移动。当在闭合位置时,前部分翼组件118的第一部件144和第二部件150以及后部分翼组件120的第一部件156和第二部件160一起形成用于后右舷翼24的翼型件截面形状。更特别地,当前部分翼组件118的第一部件144和第二部件150以及后部分翼组件120的第一部件156和第二部件160处于闭合位置且可变几何形状组件116处于向前推力位置时(图12),前部分翼组件118的第一部件144和第二部件150以及后部分翼组件120的第一部件156和第二部件160各自形成用于后右舷翼24的翼型件截面形状。相比而言,当前部分翼组件118的第一部件144和第二部件150以及后部分翼组件120的第一部件156和第二部件160处于开放位置时,它们各自至少部分地形成用于第一多个VTE风扇46中的至少一个VTE风扇的入口路径152或排出路径146。
另外,对于绘出的实施例,前部分翼组件118的第一部件144和第二部件150可相应地通过第一部件促动器164和第二部件促动器166移动。对于绘出的实施例,第一部件促动器164和第二部件促动器166各自构造为气动促动器,且更特别地,构造为可膨胀囊,其构造成在前部分翼组件118移动至向前推力位置时接收加压空气流来膨胀,以便使第一部件144沿竖直方向V向下枢转至其开放位置,且使第二部件150沿竖直方向V向上枢转至其开放位置。注意,在某些实施例中,第一部件144和第二部件150可朝闭合/收缩位置偏置,使得第一部件144和第二部件150可通过释放或收缩相应的(气动)促动器164、166来移动至其相应的闭合位置。
因此,将了解的是,对于所示实施例,第一部件促动器164和第二部件促动器166可独立于上文参照图10描述的主促动器136操作,其构造成大体上沿纵向轴线L相应地向前和向后移动前部分翼组件118和后部分翼组件120。另外,对于绘出的实施例,第一部件促动器164也可独立于第二部件促动器166操作。因此,在某些实施例中,第一部件144可移动至其开放位置,而第二部件150保持在其闭合位置。这例如在过渡操作条件期间(诸如,在飞行器从竖直飞行过渡至向前飞行时)可为有益的。
还如绘出的那样,后部分翼组件120的第一部件156和第二部件160类似地可分别通过第一部件促动器164和第二部件促动器166移动。后部分翼组件120的第一部件促动器164可以以与前部分翼组件118的第一部件促动器164大致相同的方式操作。另外,后部分翼组件120的第二部件促动器166可以以与后部分翼组件120的第二部件促动器166大致相同的方式操作。因此,将了解的是,后部分翼组件120的第一部件156和第二部件160也可以以与如上文所述的前部分翼组件118的第一部件156和第二部件160大致相同的方式移动。(注意,如此,后部分翼组件120的第一部件156和第二部件160也可朝其相应的闭合位置偏置)。
具体参照图11,如上文论述的那样,绘出后右舷翼24,其中可变几何形状组件116处于竖直推力位置,且前部分翼组件118和后部分翼组件120的第一部件144、156各自处于开放位置以形成用于至少一个VTE风扇的排出路径146。注意,对于绘出的实施例,排出路径146是用于VTE风扇的扩散排出流路。如此,将了解的是,扩散组件126且更特别地第一部件144、156一起限定入口128和出口132。由于示例性流路146是扩散流路,将了解的是,扩散组件126可大体上限定入口128处的入口截面面积,其小于出口128处的出口截面面积。如将在下文更加详细地论述的那样,包括扩散排出流路146可增加VTE风扇的总体效率。
此外,将了解的是,对于绘出的实施例,第一多个VTE风扇46中的第一VTE风扇46-1(也见图10)(即,绘出的至少一个VTE风扇)限定风扇轴线170。当可变几何形状组件116处于向前推力位置且当第一部件144处于其闭合位置时(图12),前部分翼组件118的第一部件144与风扇轴线170限定第一角度172,且此外,当可变几何形状组件116处于竖直推力位置且当第一部件144处于其开放位置时(图11),前部分翼组件118的第一部件144与风扇轴线170限定第二角度174。(注意,为了方便起见,第一角度172和第二角度174连同下文提到的角度示出为参照风扇线170’限定,风扇线170’平行于实际风扇轴线170)。显然,第一角度172大于第二角度174。例如,对于绘出的实施例,第一角度172在大约七十五(75)度和大约一百零五(105)度之间,而第二角度174在大约负三十(-30)度和大约七十五(75)度之间。例如,在至少某些示例性实施例中,第一角度172可在大约八十(80)度和一百(100)度之间,且第二角度174可在大约负六十(60)度和零(0)度之间,诸如在大约四十五(45)度和五(5)度之间。备选地,将了解的是,替代构造成形成扩散排出流路的一部分,第一部件144可替代地构造成形成喷嘴排出流路。关于此示例性实施例,第二角度174可在零(0)度和负三十(-30)度之间,诸如小于大约负五(-5)度。
注意,对于绘出的实施例,当可变几何形状组件116处于竖直推力位置且当第一部件156处于其开放位置时(图11),后部分翼组件120的第一部件156也与风扇轴线170限定第一角度176,且当可变几何形状组件116处于向前推力位置且当第一部件156处于其闭合位置时(图12),后部分翼组件120的第一部件156与风扇轴线170限定第二角度178。后部分翼组件120的第一部件156与风扇轴线170之间限定的第一角度176可大致等于前部分翼组件118的第一部件144与风扇轴线170之间限定的第一角度172,且类似地,后部分翼组件120的第一部件156与风扇轴线170之间限定的第二角度178可大致等于前部分翼组件118的第一部件144与风扇轴线170之间限定的第二角度174。
此外,对于绘出的实施例,当可变几何形状组件116处于向前推力位置且当第二部件150处于其闭合位置时(图12),前部分翼组件118的第一部件150类似地与风扇轴线170限定第一角度180,且此外,当可变几何形状组件116处于竖直推力位置且当第二部件150处于其开放位置时(图11),前部分翼组件118的第二部件150与风扇轴线170限定第二角度182。显然,第一角度180小于第二角度182。例如,对于绘出的实施例,第一角度180在大约六十度和大约一百二十度之间,且第二角度182在大约一百度和大约一百八十度之间。更特别地,对于绘出的实施例,第一角度180在大约七十五度和大约一百一十度之间,且第二角度182在大约一百一十度和大约一百七十度之间。
注意,对于绘出的实施例,当可变几何形状组件116处于竖直推力位置且当第一部件156处于其开放位置时(图11),后部分翼组件120的第二部件160也与风扇轴线170限定第一角度181,且当可变几何形状组件116处于向前推力位置且当第一部件156处于其闭合位置时(图12),后部分翼组件120的第二部件160与风扇轴线170限定第二角度183。后部分翼组件120的第二部件160与风扇轴线170之间限定的第一角度181可大致等于前部分翼组件118的第二部件150与风扇轴线170之间限定的第一角度180,且类似地,后部分翼组件120的第二部件160与风扇轴线170之间限定的第二角度183可大致等于前部分翼组件118的第二部件150与风扇轴线170之间限定的第二角度182。
此外,将了解的是,对于绘出的实施例,前部分翼组件118的第一部件144限定长度184,且多个VTE风扇46中的第一VTE风扇46-1(即,绘出的至少一个VTE风扇)限定风扇直径186。对于绘出的实施例,前部分翼组件118的第一部件144的长度184是风扇直径186的至少大约百分之二十五(25)。类似地,后部分翼组件120的第一部件156限定长度188。后部分翼组件120的第一部件156的长度188也是风扇直径186的至少大约百分之二十五(25)。此外,前部分翼组件118和后部分翼组件120的第一部件144、156的长度184、188相应地可达到风扇直径186的大约百分之一百五十。
此外,简要参照图13,提供了上文参照图10至图12描述的示例性后右舷翼24的大体上沿后右舷翼24的长度方向LW的从后向前看的截面视图。图13简要地示出了在至少某些示例性实施例中,扩散组件126还可包括用于封闭排出流路146的一个或多个特征,排出流路146至少部分地由相应地整体结合到前部分翼组件118和后部分翼组件120中的第一部件144、156限定。更特别地,对于绘出的实施例,扩散组件126还包括内襟翼190和外襟翼192。内襟翼190可在流路146的内端部处在第一部件144、146之间大体上沿纵向方向L或宽度方向W延伸,且外襟翼192可在流路146的外端部处在第一部件144、146之间大体上沿纵向方向L或宽度方向W延伸。内襟翼190和外襟翼192可包括促动器,其类似于第一部件促动器164和第二部件促动器166,或根据任何其它适合的构造。此外,将了解的是,当可变几何形状组件116移动至竖直推力位置时(如图所示),内襟翼190和外襟翼192可例如沿方向箭头193从闭合位置(提供的方向箭头)移动至开放位置(如图所示)。
此外,将了解的是,尽管图10至图13中所示的实施例涉及上文参照图1至图3描述的示例性飞行器10的后右舷翼24,但在某些实施例中,飞行器10的其它翼中的每一个也可包括参照图11和图12描述的示例性特征中的一个或多个。例如,在某些实施例中,后左舷翼26、前右舷翼28和前左舷翼30也可各自包括前部分翼组件118和后部分翼组件120,其中前部分翼组件118和后部分翼组件120具有第一底部部件和第二顶部部件,它们构造成与图10至图13的前部分翼组件118和后部分翼组件120的第一部件144和第二部件150大致相同的方式。
包括根据本公开的示例性实施例的包括第一部件的前部分翼组件118和包括第一部件的后部分翼组件120可允许翼形成用于多个VTE风扇46的排出流路,其能够改进多个VTE风扇的性能。如此,较小且较小功率的VTE风扇可包括在飞行器10内,同时仍提供用于例如竖直起飞和竖直降落的期望量的竖直推力。
然而,应当了解的是,参照图10至图13描述的示例性扩散组件126仅作为示例提供。例如,在其它实施例中,可提供任何其它适合的构造。例如,在其它实施例中,前部分翼组件118可不包括第二部件150,且类似地,后部分翼组件120可不包括第二部件160。
此外,将了解的是,在还有其它示例性实施例中,可关于竖直起飞和降落的飞行器10的翼中的一个或多个包括其它适合的扩散组件。
例如,现在大体上参照图14至图16,提供了根据本公开的还有另一示例性实施例的包括具有扩散组件126的翼的飞行器10的方面。在某些示例性实施例中,飞行器10可构造成与上文参照图1至图3描述的示例性飞行器10大致相同的方式。因此,相同或类似的标号可表示相同或类似的部分。
例如,往回简要参照图2和图3,在至少某些实施例中,飞行器10大体上包括机身18和具有功率源36的推进系统32。此外,飞行器10包括从机身18延伸且联接至机身18的多个翼。例如,多个翼包括前右舷翼28、后右舷翼24、前左舷翼30和后左舷翼26。推进系统32包括由功率源36驱动的多个VTE风扇,且更具体地包括:沿后右舷翼24的长度48布置的第一多个VTE风扇46,沿后左舷翼26的长度布置的第二多个VTE风扇52,沿前右舷翼28的长度布置的第三多个VTE风扇54,以及沿前左舷翼30的长度布置的第四多个VTE风扇56。
此外,翼24、26、28、30中的每一个包括一个或多个构件,其可移动以选择性地暴露相应多个VTE风扇46、52、54、56中的至少一个VTE风扇。例如,翼24、26、28、30的一个或多个构件可为可在向前推力位置和竖直推力位置之间移动的可变几何形状组件116的构件,以至少部分地覆盖以及至少部分地暴露沿其长度布置且更特别地整体结合到其中的相应多个VTE风扇46、52、54、56。例如,现在具体参照图14和图15,根据本示例性实施例的后右舷翼24的可变几何形状组件116绘出为在图14中处于向前推力位置,且在图15中处于竖直推力位置。更特别地,图14提供了穿过第一多个VTE风扇46中的第一VTE风扇46-1的示例性后右舷翼24的侧部截面视图(其中可变几何形状组件116处于向前推力位置);且图15提供了穿过第一VTE风扇46-1的后右舷翼24的侧部截面视图(其中可变几何形状组件116处于竖直推力位置)。
另外,如上文所述,后右舷翼24包括扩散组件126。然而,如图所示,对于绘出的实施例,扩散组件126未整体结合到可变几何形状组件116中。更特别地,后右舷翼24的扩散组件126包括多个部件,其与可变几何形状组件116分开且可大体上在第一位置(图14)和第二位置(图15)之间移动。更特别地,示例性扩散组件126大体上包括第一部件194和第二部件196。第二部件196可大体上沿竖直方向V相对于第一部件194移动,使得在扩散组件126处于第二位置时(图15),第一部件194和第二部件196一起至少部分地限定用于第一VTE风扇46-1的排出流路146。更具体地,如图所示,第一VTE风扇46-1大体上限定轴线170,第一VTE风扇46-1围绕轴线170旋转,且在扩散组件126从第一位置(图14)移动至第二位置(图15)时,第二部件196可大体上沿竖直方向V且沿轴线170向下移动。
此外,对于绘出的示例性实施例,扩散组件126还包括第三部件198,第三部件198类似地可大体上沿竖直方向V相对于第一部件194和第二部件196移动,使得在扩散组件126处于第二位置时(图15),第三部件198也至少部分地限定用于第一VTE风扇46-1的排出流路146。更特别地,在扩散组件126从第一位置移动至第二位置时,第三部件198也可大体上向下沿竖直方向V沿第一VTE风扇46-1的轴线170移动。
对于绘出的实施例,第一部件194、第二部件196和第三部件198大体上嵌套在彼此内。更特别地,将了解的是,对于绘出的实施例,第一位置是收缩位置(图14),且第二位置是延伸位置(图15)。当扩散组件126处于收缩位置时,第一部件194至少部分地嵌套在第二部件196内,且第二部件196至少部分地嵌套在第三部件196内。将了解的是,如本文所使用的那样,参照扩散组件126的部件194、196、198的用语“嵌套”指的是较小部件大致完全定位在较大部件内。
此外,也简要参照图16,沿竖直方向V从扩散组件126和第一VTE风扇46-1的底侧提供了扩散组件126和第一VTE风扇46-1的视图。从图16将了解的是,第一部件194、第二部件196和第三部件198各自限定闭合截面形状(即,水平截面中的闭合形状)。更特别地,对于绘出的实施例,第一部件194、第二部件196和第三部件198各自限定大致圆形形状。此外,也往回参照图13和图14(且具体地,图15中的标注A),第一部件194、第二部件196和第三部件198中的每一个限定最小内部交叉量度。对于所示实施例,在这些部件的闭合截面形状是圆形截面形状时,最小内部交叉量度是最小内径(即,第一部件194限定第一最小内径200,第二部件196限定第二最小内径202,且第三部件198限定第三最小内径204)。
此外,将了解的是,第一部件194沿第一VTE风扇46-1的轴线170限定大致截头圆锥形状,第二部件196沿第一VTE风扇46-1的轴线170限定大致截头圆锥形状,且第三部件198也沿第一VTE风扇46-1的轴线170限定大致截头圆锥形状。如此,将了解的是,扩散组件126的第一部件194、第二部件196和第三部件198中的每一个各自另外相应地限定最大内径201、203、205,其中限定最小内径的相应部件的部分沿竖直方向V在限定最大内径的相应部件的部分上方。
如此,将了解的是,扩散组件126大体上限定在第一VTE风扇46-1的直接下游的入口128以及在入口128下游的出口132。扩散组件126还限定出口132处的出口截面形状,其比入口128处的入口截面形状大,使得绘出的示例性扩散组件126限定大于大约1:1且小于大约2:1的扩散面积比。此构造的优点将在下文更加详细地描述。
具体参照绘出的实施例,将了解的是,第一多个VTE风扇46的第一VTE风扇46-1限定风扇直径186,且扩散组件126的第一部件194的最小内径大于或大致等于风扇直径186。另外,第二部件196大体上比第一部件194大,且第三部件198大体上比第二部件196大。这可在扩散组件126处于收缩位置(图14)时允许嵌套构造。因此,将了解的是,第二部件196的最小内径202大于第一部件194的最小内径200,且此外,第三部件198的最小内径204大于第二部件196的最小内径202。类似地,第二部件196的最大内径203大于第一部件194的最大内径201,且第三部件198的最大内径205大于第二部件196的最大内径203。
此外,给定第一部件194、第二部件196和第三部件198的大致截头圆锥形状,第二部件196可构造成在移动至延伸位置时靠在第一部件194上,且类似地,第三部件198可构造成在移动至延伸位置时靠在第二部件196上。因此,将了解的是,第一部件194限定比第二部件196的最小内径202大的最大外径207(即,在沿竖直方向V的底部端部处;具体见图15中的标注A),且类似地,第二部件196限定比第三部件198的最小内径大的最大外径209(即,在沿竖直方向V的底部端部处;具体见图15中的标注A)。
为了使扩散组件126在第一收缩位置(图14)和第二延伸位置(图15)之间移动,扩散组件126还包括促动部件206。更具体地,对于绘出的实施例,扩散组件126包括成对促动部件206,其安装至后右舷翼24的本体部分114。各个促动部件206包括延伸部208,其联接至扩散组件126的第三部件198。促动部件206的延伸部208可使扩散组件126的第三部件198大体上沿竖直方向V移动以使扩散组件126在延伸位置和收缩位置之间移动。然而,注意,在其它实施例中,第二部件196和第三部件198可替代地朝延伸位置偏置,且促动部件206可仅将扩散组件126移动至收缩位置。备选地,在还有其它实施例中,第二部件196和第三部件198可朝收缩位置偏置,且促动部件206可仅将扩散组件126移动至延伸位置。
此外,在其它实施例中,可提供任何其它适合的促动部件206,以用于使各种部件在延伸位置和收缩位置之间移动。此外,尽管对于所示实施例,第一部件194、第二部件196和第三部件198各自限定大致圆形截面形状(且更具体地,对于所示实施例,大致截头圆锥形状),但在其它实施例中,第一部件194、第二部件196和第三部件198中的一个或多个可限定任何其它适合的截面形状。此外,尽管对于绘出的实施例,扩散组件126包括三个部件,但在其它实施例中,扩散组件126可包括任何其它适合数目的部件。例如,在其它实施例中,扩散组件126可包括两个部件、四个部件、五个部件或更多。
此外,仍然,尽管上文参照图14至图16论述的示例性扩散组件126论述为仅与第一多个VTE风扇46中的第一VTE风扇46-1相关联,但在其它示例性实施例中,后右舷翼24可包括与第一多个VTE风扇46中的每一个相关联的另外的扩散组件。例如,简要参照图17,提供了后右舷翼24的示意性下侧视图,将了解的是,上文论述的扩散组件126可为第一扩散组件126A,且翼可还包括多个扩散组件126,其中各个扩散组件126与第一多个VTE风扇46中的相应VTE风扇中的一个相关联。更特别地,对于绘出的实施例,第一多个VTE风扇46还包括第二VTE风扇46-2、第三VTE风扇46-3和第四VTE风扇46-4。另外,后右舷翼24相应地还包括:与第二VTE风扇46-2相关联的第二扩散组件126B,与第三VTE风扇46-3相关联的第三扩散组件126C,以及与第四VTE风扇46-4相关联的第四扩散组件126D。第二扩散组件126B、第三扩散组件126C和第四扩散组件126D中的每一个可构造成与上文参照图14至图16论述的示例性扩散组件126大致相同的方式。因此,例如,尽管在图17中为了清楚而未示出,但第二扩散组件126B可类似地包括第一部件、第二部件和第三部件,其中第二部件可大体上沿竖直方向V相对于第一部件移动,且第三部件可大体上沿竖直方向V相对于第二部件移动。第二扩散组件126B可因此在第一收缩位置和第二延伸位置之间以与上文参照图14至图16描述的扩散组件126大致相同的方式移动。在第二扩散组件126B处于第二延伸位置时(还见图14和图15),第一部件、第二部件和第三部件可一起至少部分地限定用于第二VTE风扇46-2的第二排出流路146B。注意,当第二扩散组件126B处于收缩位置时,第二扩散组件126B的第一部件可至少部分地嵌套在第二扩散组件126B的第二部件内,且第二扩散组件的第二部件可至少部分地嵌套在第二扩散组件126B的第三部件内。
此外,仍然将了解的是,尽管示例性扩散组件126描述和绘出为包括在后右舷翼24内,但在某些实施例中,其余翼中的一个或多个也可包括类似的扩散组件126。例如,在其它实施例中,后左舷翼26、前右舷翼28和前左舷翼30中的每一个可包括扩散组件126,其构造成与上文参照图14至图16描述的实施例类似的方式,此扩散组件126与沿其长度布置或更特别地整体结合到其中的相应多个VTE风扇中的各个VTE风扇相关联。然而,在其它实施例中,少于这些VTE风扇的全部可具有与其相关联的此扩散组件126,或备选地,可具有根据与其相关联的任何其它适合的实施例构造的扩散组件126。
然而,还将了解的是,在还有其它示例性实施例中,可关于竖直起飞和降落的飞行器10的翼中的一个或多个包括其它适合的扩散组件126。
例如,现在参照图18至图20,提供了根据本公开的还有另一示例性实施例的包括具有扩散组件126的翼的飞行器10的方面。在某些示例性实施例中,飞行器10可构造成与上文参照图1至图3描述的示例性飞行器10大致相同的方式。因此,相同或类似的数字可表示相同或类似的部分。
例如,往回简要参照图2和图3,在至少某些实施例中,飞行器10大体上包括机身18和具有功率源36的推进系统32。此外,飞行器10包括从机身18延伸且联接至机身18的多个翼。例如,多个翼包括前右舷翼28、后右舷翼24、前左舷翼30和后左舷翼26。推进系统32包括由功率源36驱动的多个VTE风扇,且更具体地包括:沿后右舷翼24的长度48布置的第一多个VTE风扇46,沿后左舷翼26的长度布置的第二多个VTE风扇52,沿前右舷翼28的长度布置的第三多个VTE风扇54,以及沿前左舷翼30的长度布置的第四多个VTE风扇56。
此外,翼24、26、28、30中的每一个包括一个或多个构件,其可移动以选择性地暴露相应多个VTE风扇46、52、54、56中的至少一个VTE风扇。例如,翼24、26、28、30的一个或多个构件可为可在向前推力位置和竖直推力位置之间移动的可变几何形状组件116的构件以至少部分地覆盖以及至少部分地暴露沿其长度布置且更特别地整体结合到其中的相应多个VTE风扇46、52、54、56。现在具体参照图18至图20,后右舷翼24的可变几何形状组件116绘出为在图18和图19中处于竖直推力位置,且在图20中处于向前推力位置。更特别地,图18提供了处于竖直推力位置的后右舷翼24的示意性底部侧视图;图19提供了沿图18中的线19-19穿过第一多个VTE风扇46中的第一VTE风扇46-1的后右舷翼24的侧部截面视图,其中可变几何形状组件116也处于竖直推力位置;且图19提供了穿过第一VTE风扇46-1的后右舷翼24的侧部截面视图,其中可变几何形状组件116处于向前推力位置。
然而,如同上面的示例性实施例中的某些,对于绘出的实施例,扩散组件126未整体结合到可变几何形状组件116中。更特别地,后右舷翼24的扩散组件126与可变几何形状组件116分开。还更特别地,绘出的示例性扩散组件126大体上包括多个部件,其在后右舷翼24中的第一多个VTE风扇46中的至少第一VTE风扇46-1下游的位置处固定就位,以用于缓和来自第一VTE风扇46-1的气流130。
更具体地,如图18中所示,对于绘出的实施例,扩散组件126定位在第一多个VTE风扇46中的各个VTE风扇的下游,以用于缓和来自第一多个VTE风扇46中的每一个的气流130。多个扩散部件大体上包括在第一多个VTE风扇46中的每一个的前边缘处沿后右舷翼24的长度48延伸的前扩散部件210,且还包括在第一多个VTE风扇46中的每一个的后边缘处沿后右舷翼24的长度48延伸的后扩散部件212。
此外,如图所示,将了解的是,后右舷翼24还限定长度方向LW和垂直于长度方向LW的宽度方向W。除了前扩散部件210和后扩散部件212之外,绘出的扩散组件126还包括大体上沿宽度方向W在第一多个VTE风扇46中的各个相邻VTE风扇之间延伸的分隔扩散部件214。此外,对于绘出的实施例,分隔扩散部件214大体上从前扩散部件210延伸至后扩散部件212。类似地,扩散组件126包括端部扩散部件216,其在第一多个VTE风扇46的内端部处和在第一多个VTE风扇46的外端部处(即,相对于飞行器10的机身18的内端部和外端部)在前扩散部件210和后扩散部件212之间延伸。注意,分隔扩散部件214和端部扩散部件216可辅助提供通过第一多个VTE风扇46的气流130的期望的扩散,且还可提供来自第一多个VTE风扇46中的每一个的气流130的分隔,使得第一多个VTE风扇46在此第一多个VTE风扇46中的一者失效的情况下仍可提供期望量的竖直推力。另外,或备选地,此构造可在例如过渡飞行时段期间允许少于第一多个VTE风扇46的全部的操作。
注意,除了前扩散部件210和后扩散部件212之外,将了解的是,示例性扩散组件126还包括多个内扩散部件218,其大体上沿后右舷翼24的长度方向LW延伸且沿后右舷翼24的宽度方向W与彼此、前扩散部件210和后扩散部件212间隔开。更特别地,对于所示实施例,扩散组件126包括三个内扩散部件218。然而,在其它实施例中,扩散组件126可替代地包括任何其它适合数目的内扩散部件218,以用于提供通过第一多个VTE风扇46的气流130的期望量的扩散。
另外,将了解的是,在其它示例性实施例中,扩散部件中的一个或多个可沿后右舷翼24的长度方向LW限定任何其它适合形状。例如,尽管多个内扩散部件218大体上沿后右舷翼24的长度方向LW线性地延伸,但在其它实施例中,一个或多个这些内扩散部件218或其它扩散部件可以以任何其它形状或方向延伸。例如,简要参照图21,其提供了包括根据本公开的另一示例性实施例的扩散组件126的后右舷翼24的示意性下侧视图,将了解的是,在其它实施例中,内扩散部件218中的一个或多个相对于纵向方向L限定弯曲形状。更特别地,对于图21的实施例,内扩散部件218大体上包括中心扩散部件218A,其近似穿过第一多个VTE风扇46中的每一个的轴线(包括第一VTE风扇46-1的轴线170)延伸。内扩散部件218另外包括定位在中心扩散部件218A和前扩散部件210之间的内扩散部件218B,以及定位在中心扩散部件218A和后扩散部件212之间的内扩散部件218C。对于绘出的实施例,前扩散部件210和中心扩散部件218A之间的内扩散部件218B限定相对于第一多个VTE风扇46中的每一个的轴线(包括第一VTE风扇46-1的轴线170)凸起的弯曲形状,且类似地,后扩散部件212和中心扩散部件218A之间的内扩散部件218C限定相对于第一多个VTE风扇46中的每一个的轴线(包括第一VTE风扇46-1的轴线170)凸起的弯曲形状。然而,注意,在其它实施例中,可提供任何适合的构造。
现在参照图22,提供了上文参照图18至图20描述的示例性扩散组件126的简化示意图。更特别地,图22是包括上文描述的示例性扩散组件126的第一多个VTE风扇46中的第一VTE风扇46-1的简化示意性截面视图。如绘出的那样,扩散组件126大体上限定入口128和出口132。入口128更特别地在标注A中示出,且出口132更特别地在标注B中示出。入口128位于第一多个VTE风扇46中的第一VTE风扇46-1的直接下游,且限定大致圆形截面形状(在垂直于轴线170的平面中截取的截面)。此外,入口128在尺寸上与第一多个VTE风扇46中的第一VTE风扇46-1大致对应。更特别地,第一VTE风扇46-1限定风扇直径186,且入口128限定大致等于风扇直径186的入口直径220。相比而言,出口132比入口128大且限定大致矩形形状(例如,大致方形形状)。另外,出口132限定最小交叉量度222,最小交叉量度222大于风扇直径186。
注意,将了解的是,扩散组件126还可限定位于第一多个VTE风扇46中的每一个的直接下游的多个入口128,且还可限定位于相应多个入口128下游的多个出口132。例如,往回简要参照图18,图22中所示的入口128可为第一入口128A,且扩散组件126还可限定:在第二VTE风扇46-2的直接下游的第二入口128B,在第三VTE风扇46-3的直接下游的第三入口128C,以及在第四VTE风扇46-4的直接下游的第四入口128D。另外,出口132可为第一出口132A,且扩散组件126还可包括:在第二入口128B下游的第二出口132B,在第三入口128C下游的第三出口132C,以及在第四入口128D下游的第四出口132D。第二入口128B、第三入口128C和第四入口128D中的每一个可构造成与图22中所绘的入口128大致相同的方式,且第二出口132B、第三出口132C和第四出口132D中的每一个可构造成与图22中所绘的出口132大致相同的方式。相邻出口132中的每一个可由分隔扩散部件214分隔(见图18)。
此外,将了解的是,利用包括扩散组件126的多个扩散部件(包括前扩散部件210和后扩散部件212、内扩散部件218、分隔扩散部件214和端部扩散部件216),扩散组件126(确切地说扩散组件126中的多个扩散部件210、212、214、216、218中的每一个)可限定沿竖直方向V的相对小的最大高度223。注意,如本文使用,用语“沿竖直方向V的最大高度”指的是沿任何扩散部件的竖直方向V从扩散组件126的入口128到扩散组件126的出口132的最大量度。
更具体地,将了解的是,为了提供期望量的扩散,下文进一步论述的是,需要来自第一多个VTE风扇46的气流130暴露于的各种扩散部件的表面面积的最小量。包括多个扩散部件可允许这些扩散部件中的每一个辅助扩散,且有助于此扩散所需的表面面积的总量,而不需要沿竖直方向V的相对长的部件。因此,这可为扩散组件126提供相对低的轮廓。例如,在某些示例性实施例中,多个扩散部件的最大高度223可小于风扇直径186的大约百分之三十(30%),诸如小于风扇直径186的大约百分之二十五(25%),诸如小于风扇直径186的大约百分之二十(20%)。注意,对于绘出的实施例,扩散部件中的每一个沿竖直方向V为大致相同的高度223。
如此,将了解的是,在可变几何形状组件116在竖直推力位置和向前推力位置之间移动时,扩散部件不延伸或收缩,从而提供相对简单的翼组件。例如,如此,在可变几何形状组件116处于竖直推力位置时,可变几何形状组件116除了第一多个VTE风扇46之外大致完全覆盖扩散组件126的多个扩散部件。
此外,从附图和上文描述,将了解的是,示例性扩散组件126大体上限定扩散面积比。扩散面积比指的是出口132(见图22的标注B)的截面面积与入口128(见图22的标注A)的截面面积之比。对于上文参照图18至图21描述的实施例,其中扩散组件126包括多个入口128和多个出口132,扩散面积比更特别地指的是出口132的累积截面面积与入口128的累积截面面积之比。
现在大体上参照本方描述的扩散组件的各种实施例(例如,参照图9;图10至图13;图14至图17;以及图18至图22),将了解的是,包括如本文描述的限定扩散面积比的扩散组件可导致更高效的VTE风扇。更特别地,对于本文描述的实施例,扩散面积比大于1:1。例如,扩散面积比可大于1.15:1,诸如大于大约1.25:1。此外,在某些示例性实施例中,扩散面积比可小于大约2:1,例如,扩散面积比可小于大约1.85:1,诸如小于大约1.75:1。(然而,注意,在其它实施例中,扩散组件可限定小于1:1或大于2:1的其它扩散面积比)。
此外,将了解的是,包括扩散组件可导致第一多个VTE风扇46中的第一VTE风扇46-1在竖直推力操作期间限定相对高的功率负载。如本文使用的那样,功率负载指的是施加的每单位功率产生的推力的量的量度。更特别地,通过使用电风扇(如VTE风扇)在飞行器10的竖直推力操作期间沿竖直方向V生成推力且包括扩散组件126以用于以本文描述的方式缓和来自VTE风扇的气流130,第一多个VTE风扇46中的第一VTE风扇46-1可在此竖直推力操作期间限定大于大约三磅每马力且达到(确切地说小于)大约十五磅每马力的功率负载。例如,在某些示例性实施例中,第一VTE风扇46-1可在竖直推力操作期间限定大于大约四磅每马力且小于大约十磅每马力的功率负载。还更特别地,飞行器10可设计成用于需要一定量的竖直推力的某些飞行操作。例如,在某些示例性实施例中,扩散组件126和推进系统32可设计成使得第一多个VTE风扇46中的第一VTE风扇46-1限定在大约六磅每马力和大约九磅每马力之间的功率负载,或备选地,可设计成使得第一多个VTE风扇46中的第一VTE风扇46-1限定在大约四磅每马力和大约七磅每马力之间的功率负载。
此外,应当了解的是,在某些示例性实施例中,第一多个VTE风扇46中的每一个可在竖直推力操作期间限定此功率负载,且此外,推进系统的其它VTE风扇中的每一个也可在竖直推力操作期间限定此功率负载。
包括限定此功率负载的VTE风扇可允许包括沿后右舷翼24的长度48布置以及沿其它翼的长度布置的相对小直径的VTE风扇。如此,翼中的每一个可限定相对高的展弦比,其可提供相对高效的向前飞行。更特别地,对于本文描述的实施例,诸如图1至图3中绘出的示例性实施例,后右舷翼24限定大于大约3:1的展弦比,诸如在大约3:1和大约6.5:1之间。更特别地,对于绘出的实施例,后右舷翼24可限定在大约4:1和大约5.5:1之间的展弦比。后左舷翼26可限定与后右舷翼24的展弦比大致相等的展弦比。此外,飞行器10的前翼(即,前左舷翼30和前右舷翼28)相比后翼限定较小的展弦比,但仍为相对高的展弦比。例如,前右舷翼28和前左舷翼30各自限定在大约1.5:1和大约5:1之间的展弦比,诸如在大约1.7:1和大约3:1之间。
将了解的是,如本文所使用的那样,参照翼24、26、28、30的用语“展弦比”大体上指的是翼的翼展与其平均翼弦之比。
总之,将了解的是,在本公开的各种实施例中,提供了飞行器10,其具有从机身18延伸的翼以及具有沿翼布置的多个VTE风扇的推进系统32。翼可包括一个或多个构件,其可移动以选择性地暴露多个VTE风扇中的至少一个VTE风扇。例如,一个或多个构件可为可变几何形状组件116的构件,其可包括例如可移动以选择性地暴露沿翼的长度148布置的多个VTE风扇的前部分翼组件118和后部分翼组件120。翼还可包括扩散组件126,其定位在多个VTE风扇中的至少一个VTE风扇的下游且限定大于1:1且小于大约2:1的扩散面积比。此扩散面积比可由扩散组件126限定,而与形成扩散组件126的具体结构无关。例如,扩散组件126可为固定扩散组件126,诸如上文参照图18至图22描述的实施例,或备选地,扩散组件126可包括一个或多个可移动构件,其可移动至延伸位置以限定扩散面积比,诸如上文参照图9、图10至图13和图14至图17描述的实施例中那样。此外,在还有其它示例性实施例中,扩散组件126可与第一多个VTE风扇46中的单个VTE风扇相关联,且翼可还包括多个扩散组件,其中相应多个扩散组中的每一个与第一多个VTE风扇46中的VTE风扇中的一个相关联,诸如上文参照图14至图17描述的实施例。另外,或备选地,扩散组件126可定位在第一多个VTE风扇46中的VTE风扇中的两个或更多个的下游,诸如第一多个VTE风扇46中的每一个的下游,诸如关于上文参照图9、图10至图13、和图18至图22描述的示例性实施例。关于此示例性实施例,扩散面积比可相对于多个VTE风扇46中的每一个限定(即,累积出口截面面积与累积入口截面面积之比)。
将了解的是,在其它示例性实施例中,飞行器10和推进系统32可具有任何其它适合的构造。例如,现在简要参照图23,提供了根据本公开的另一示例性实施例的包括推进系统32的飞行器10。图23的示例性飞行器10和推进系统32可构造成与上文参照图1至图22描述的示例性飞行器10和推进系统32中的一个或多个大致相同的方式。例如,飞行器10大体上包括机身18和一个或多个翼,且限定前端部20、后端部22、左舷侧14和右舷侧16。此外,示例性推进系统32大体上包括功率源36和由功率源36驱动的多个竖直推力电风扇(“VTE风扇”)。如同上面的实施例,多个VTE风扇中的每一个电联接至功率源36,以例如从功率源36的电机42或电能储存单元44接收电功率。
然而,对于绘出的实施例,飞行器10不包括以鸭式构造布置的四个翼(例如,对照图1),且替代地包括两个翼,即,在飞行器10的右舷侧16上从飞行器10的机身18延伸的第一翼24,以及在飞行器10的左舷侧14上从飞行器10的机身18延伸的第二翼26。然而,注意,在还有其它示例性实施例中,飞行器10还可具有任何其它适合的构造。例如,在还有其它示例性实施例中,飞行器10可具有混合翼构造。
仍然参照图23,对于绘出的实施例,示例性推进系统32还从图1至图23的实施例改变。例如,示例性推进系统32包括大体上沿第一翼24的长度布置的第一多个VTE风扇46以及大体上沿第二翼26的长度布置的第二多个VTE风扇。然而,假定图23的示例性飞行器10仅包括两个翼,推进系统32不包括第三多个VTE风扇或第四多个VTE风扇(例如,参照图2)。
此外,如将了解的那样,多个VTE风扇46、52可沿相应第一翼24和第二翼26的长度以任何适合的方式布置。特别地,对于所示实施例,第一多个VTE风扇46沿第一翼24的长度以大致线性方式布置。然而,相比而言,第二多个VTE风扇52沿第二翼26的长度以交错方式布置。尽管第一多个VTE风扇46和第二多个VTE风扇52对于所示实施例以不同方式布置,但这仅为了说明目的而简化。在其它实施例中,第一多个VTE风扇46和第二多个VTE风扇52可各自沿翼24、26的长度以线性方式或以交错方式布置,或进一步以任何其它适合的方式(诸如,混合线性-交错方式)布置。
另外,尽管在图23中未绘出,但在某些示例性实施例中,翼24、26可包括任何适合的可变几何形状组件或多个组件以用于在操作期间(诸如,竖直飞行操作或向前飞行操作期间)暴露/或覆盖VTE风扇46、52中的一个或多个,以及任何适合的扩散组件或多个组件。例如,在某些实施例中,翼24、26可包括上文参照图2至图22描述的示例性可变几何形状组件和/或扩散组件中的一个或多个。
此外,绘出的示例性推进系统32包括用于在某些操作期间生成向前(且可选地相反)推力的向前推力推进器34。对于绘出的实施例,向前推力推进器34在飞行器10的后端部22处安装至飞行器10的机身18,且更特别地,对于所示实施例,向前推力推进器34构造为边界层吸入风扇。如此,向前推力推进器34可构造成与上文参照图2至图4描述的向前推力推进器34大致类似的方式。然而,在其它实施例中,可提供任何其它适合的向前推力推进器(或多个推进器)34,诸如一个或多个在翼、机身、稳定器下安装的向前推力推进器,诸如一个或多个涡扇、涡轮螺旋桨或涡轮喷气发动机。
另外,如以假想线绘出的那样,在某些示例性实施例中,推进系统32还可包括一个或多个VTE风扇47,其定位在飞行器10中的其它地方,诸如邻近飞行器10的后端部22的机身18中,如在图23中以假想线绘出的那样。如此,此VTE风扇47可另外与功率源36电连通,使得功率源36可驱动嵌入机身的VTE风扇47。
然而,在其它实施例中,可提供还有其它构造。
现在参照图24,提供了根据本公开的示例性方面的用于操作竖直起飞和降落的飞行器的方法300的流程图。在某些示例性方面,方法300可构造成用于操作上文参照图1至图23描述的示例性飞行器中的一个或多个。因此,在某些示例性方面,由方法300操作的飞行器可包括机身、从机身延伸的翼以及推进系统,推进系统继而具有沿翼布置的多个竖直推力电风扇。
如绘出的那样,示例性方法300包括在(302)处相对于与多个竖直推力电风扇的第二部分相关联的第二可变构件改变与多个竖直推力电风扇的第一部分相关联的翼的可变构件,以调整多个竖直推力电风扇的第一部分相对于多个竖直推力电风扇的第二部分的暴露比。在至少某些示例性方面,竖直推力电风扇的第一部分可为一个或多个内竖直推力电风扇,且竖直推力电风扇的第二部分可为一个或多个外竖直推力电风扇(即,相对于机身的内和外)。例如,当沿翼布置的多个竖直推力电风扇包括四个竖直推力电风扇时,竖直推力电风扇的第一部分可为第一竖直推力电风扇和第二竖直推力电风扇,且竖直推力电风扇的第二部分可为第三竖直推力电风扇和第四竖直推力电风扇。
更特别地,对于所绘示例性方面,在(302)处相对于第二可变构件改变第一可变构件包括在(304)处将第一可变构件定位在向前推力位置。还更特别地,在(304)处将第一可变构件定位在向前推力位置包括在(306)处大致完全封闭多个竖直推力电风扇的第一部分。
另外,对于所绘示例性方面,在(302)处相对于第二可变构件改变第一可变构件还包括在(308)处将第二可变构件定位在竖直推力位置。更特别地,对于绘出的示例性方面,在(308)处将第二可变构件定位在竖直推力位置包括在(310)处大致完全暴露翼中的多个竖直推力电风扇的第二部分。(注意,此构造可类似于上文参照图8论述的构造)。
因此,将了解的是,在某些示例性方面,第一可变构件和第二可变构件可各自构造为可变几何形状组件(诸如上文描述的示例性可变几何形状组件116中的一个或多个)的部分。更特别地,在某些示例性方面,翼的第一可变构件可为可变几何形状组件的第一部分翼组件,且翼的第二可变构件可为可变几何形状组件的第二部分翼组件。例如,在某些示例性实施例中,第一可变构件可为可变几何形状组件的第一前部分翼组件,且第二可变构件可为可变几何形状组件的第二前部分翼组件。关于此示例性方面,第一可变构件/第一前部分翼组件可沿翼的长度与第二可变构件/第二前部分翼组件间隔开(例如,顺序地)(类似于图7和图8的第一前部分翼组件118A和第二前部分翼组件118B)。然而,在其它示例性方面,第一可变构件和第二可变构件可构造成任何其它适合的方式以用于至少部分地暴露以及至少部分地覆盖第一多个竖直推力电风扇中的一个或多个。
注意,将了解的是,如本文所使用的那样,用语“暴露比”指的是多个竖直推力电风扇的第一部分相对于多个竖直推力电风扇的第二部分的相对暴露。例如,暴露比可指未由翼的任何部分覆盖的竖直推力电风扇的第一部分的总面积(即,暴露的)与未由翼的任何部分覆盖的竖直推力电风扇的第二部分的总面积(即,暴露的)的比较。
仍然参照图24,方法300还包括在(312)处向多个竖直推力电风扇的第一部分提供第一电功率量,以及向多个竖直推力电风扇的第二部分提供第二电功率量。假定对于所绘示例性实施例,第一可变构件处于向前推力位置且第二可变构件处于竖直推力位置,则第一电功率量可小于第二电功率量。例如,第一电功率量可大致等于零。
通过改变多个竖直推力电风扇的第一部分相对于多个竖直推力电风扇的第二部分的暴露比,方法300可在竖直推力操作期间对于飞行器提供增加的控制。例如,改变多个竖直推力电风扇的第一部分相对于多个竖直推力电风扇的第二部分的暴露比可允许方法300在过渡操作条件期间提供中间量的竖直推力,诸如从向前飞行过渡至竖直飞行(例如,降落期间)、从竖直飞行过渡至向前飞行(例如,起飞期间)。因此,将了解的是,此中间量的竖直推力可通过以相对高的功率操作竖直推力电风扇的一部分且以零或大致零功率操作竖直推力电风扇的另一部分(相比于以例如半功率操作所有竖直推力电风扇)来提供,这可导致总体更高效的操作,因为竖直推力电风扇在较接近全功率时可大体上更高效地操作。
此外,如图24中以假想线所示,在某些示例性方面,在(302)处相对于第二可变构件改变第一可变构件可还包括在(314)处将第一可变构件定位在中间位置。在(314)处将第一可变构件定位在中间位置继而可包括在(316)处部分地暴露多个竖直推力电风扇的第一部分且部分地封闭多个竖直推力电风扇的第一部分。将了解的是,在至少某些示例性方面,在(314)处将第一可变构件定位在中间位置还可允许方法300在过渡操作条件期间使用多个竖直推力电风扇的第一部分对飞行器提供中间量的竖直推力。
此外,仍然参照图24中所绘的方向300的示例性方面,将了解的是,在至少某些示例性方面,翼可为右舷翼,且多个竖直推力电风扇可为推进系统的第一多个竖直推力电风扇。关于此示例性方面,飞行器还可包括也从机身延伸的左舷翼,且推进系统还可包括沿左舷翼布置的第二多个竖直推力电风扇。关于此示例性方面,也如图24中以假想线所绘,方法300还可包括在(318)处相对于与第二多个竖直推力电风扇的第二部分相关联的左舷翼的第二可变构件改变与第二多个竖直推力电风扇的第一部分相关联的左舷翼的第一可变构件,以调整第二多个竖直推力电风扇的第一部分相对于第二多个竖直推力电风扇的第二部分的暴露比。
在某些示例性方面,在(318)处相对于左舷翼的第二可变构件改变左舷翼的第一可变构件还可包括,与在(302)处相对于右舷翼的第二可变构件改变右舷翼的第一可变构件相结合,在(320)处相对于左舷翼的第二可变构件改变左舷翼的第一可变构件。例如,方法300可协调这些改变,使得第一多个竖直推力电风扇的第一部分与第二部分的暴露比大致等于第二多个竖直推力电风扇的第一部分与第二部分的暴露比。备选地,方法300可协调这些改变,使得第一多个竖直推力电风扇的第一部分与第二部分的暴露比高于或低于第二多个竖直推力电风扇的第一部分与第二部分的暴露比,以便实现飞行器的操纵(例如,朝飞行器的右舷侧倾斜,或备选地,朝飞行器的左舷侧倾斜)。
此外,将了解的是,在至少某些示例性实施例中,飞行器可包括多于两个翼,VTE风扇附接至其或整体结合到其中。例如,在至少某些示例性方面,右舷翼可为后右舷翼,且左舷翼可为后左舷翼。关于此示例性方面,飞行器可还包括前右舷翼和前左舷翼,各自也在后右舷翼和后左舷翼前方的位置处从机身延伸。此外,关于此构造,推进系统可还包括沿前右舷翼布置的第三多个竖直推力电风扇(或至少一个竖直推力电风扇)以及沿前左舷翼布置的第四多个竖直推力电风扇(或至少一个竖直推力电风扇)。前左舷翼和前右舷翼可包括类似于后左舷翼和后右舷翼的可变几何形状构件。如此,方法300还可包括相对于相应前翼的第二可变几何形状构件改变前翼(例如,前左舷翼或前右舷翼)的第一可变几何形状构件,以调整相应多个竖直推力电风扇的第一部分相对于相应多个竖直推力电风扇的第二部分的暴露比。此外,前左舷翼或前右舷翼的可变几何形状构件的此改变可与后左舷翼或后右舷翼的可变几何形状构件的改变相结合(类似于在(320)处进行的在后左舷翼和后右舷翼之间的改变)。这可促进飞行器的进一步操纵(例如,升起/拉回,下冲/俯冲等)。
此外,现在参照图25,提供了根据本公开的另一示例性方面的用于操作竖直起飞和降落的飞行器的方法400的流程图。在某些示例性方面,方法400还可构造成用于操作上文参照图1至图23描述的示例性飞行器中的一个或多个。因此,在某些示例性方面,由方法400操作的飞行器可包括机身、从机身延伸的翼以及推进系统,推进系统继而具有沿翼布置的多个竖直推力电风扇。
如绘出的那样,示例性方法400包括在(402)处相对于与多个竖直推力电风扇的第二部分相关联的翼的第二可变构件改变与多个竖直推力电风扇的第一部分相关联的翼的第一可变构件,以相对于多个竖直推力电风扇的第二部分的有效推力轮廓调整多个竖直推力电风扇的第一部分的有效推力轮廓。将了解的是,如本文所使用的那样,用语“推力轮廓”大体上指的是沿给定方向(例如,沿飞行器的竖直方向)由竖直推力电风扇的给定部分生成的推力的量。
在某些示例性方面,在(402)处相对于翼的第二可变构件改变翼的第一可变构件可包括以一种方式改变可变几何形状组件,以调整多个竖直推力电风扇的第一部分相对于多个竖直推力电风扇的第二部分的暴露比(例如,见上文参照图24描述的示例性方法300)。
然而,对于图25中绘出的示例性方面,在(402)处相对于第二可变构件改变翼的第一可变构件替代地包括改变构造成有效地增加或减小多个竖直推力电风扇的第一部分和第二部分的效率的翼的可变特征,且更具体地,改变构造成有效地增加或减小多个竖直推力电风扇的第一部分和第二部分的功率负载的翼的可变特征。
更特别地,仍然对于绘出的示例性方面,第一可变构件是第一扩散组件,且第二可变构件是第二扩散组件。第一扩散组件和第二扩散组件可具有可相对于彼此操作的任何适合的构造。例如,在某些示例性方面,示例性方法400可与扩散组件一起使用,该扩散组件构造成与上文参照图9描述的示例性扩散组件126(例如,其中前部分翼组件包括沿后右舷翼的长度方向顺序地间隔开的多个前部分翼组件的实施例)、与上文参照图10至图13描述的示例性扩散组件126(例如,其中前部分翼组件和后部分翼组件的第一部件包括沿后右舷翼的长度方向顺序地间隔开的多个第一部件节段的实施例)或与上文参照图14至图17描述的示例性扩散组件126类似的方式。然而,备选地,扩散组件126可根据任何其它适合的实施例来构造。
往回参照图25中所示的示例性方面,将了解的是,对于绘出的示例性实施例,在(402)处相对于第二可变构件改变第一可变构件包括在(404)处将第一扩散组件定位在延伸位置,以及在(406)处将第二扩散组件定位在收缩位置。另外,对于图25中绘出的方法400的示例性方面,在(402)处相对于第二可变构件改变第一可变构件还包括在(408)处相对于第二扩散组件的扩散面积比改变第一扩散组件的扩散面积比。注意,在(408)处相对于多个竖直推力电风扇的第二部分的扩散面积比改变多个竖直推力电风扇的第一部分的扩散面积比将另外(假定某些其它条件保持恒定)相对于多个竖直推力电风扇的第二部分的功率负载改变多个竖直推力电风扇的第一部分的功率负载。
将了解的是,根据示例性方法400的示例性方面的一者或多者来操作竖直起飞和降落的飞行器可通过能更精确地控制沿飞行器的翼的长度布置的多个竖直推力电风扇的各种部分生成的推力的量而允许对飞行器操纵的增加的程度。
注意,如同上文参照图24描述的示例性方面,在图25中绘出的方法400的某些示例性方面,翼可为右舷翼,且多个竖直推力电风扇可为推进系统的第一多个竖直推力电风扇。关于此示例性方面,飞行器还可包括也从机身延伸的左舷翼,且推进系统还可包括沿左舷翼布置的第二多个竖直推力电风扇。关于此示例性方面,方法400还可包括,如以假想线所绘,在(410)处,相对于与第二多个竖直推力电风扇的第二部分相关联的左舷翼的第二可变构件改变与第二多个竖直推力电风扇的第一部分相关联的左舷翼的第一可变构件,以相对于第二多个竖直推力电风扇的第二部分的有效推力轮廓调整第二多个竖直推力电风扇的第一部分的有效推力轮廓。
在某些示例性方面,在(410)处相对于左舷翼的第二可变构件改变左舷翼的第一可变构件可另外包括,与在(402)处相对于右舷翼的第二可变构件改变右舷翼的第一可变构件相结合,在(412)处相对于左舷翼的第二可变构件改变左舷翼的第一可变构件。例如,方法400可协调这些改变,使得第一多个竖直推力电风扇的第一部分与第二部分的推力轮廓大致等于第二多个竖直推力电风扇的第一部分与第二部分的推力轮廓。备选地,方法可协调这些改变,使得第一多个竖直推力电风扇的第一部分与第二部分的推力轮廓高于或低于第二多个竖直推力电风扇的第一部分与第二部分的推力轮廓,以便实现飞行器的操纵(例如,朝飞行器的右舷侧倾斜,或备选地,朝飞行器的左舷侧倾斜)。
此外,将了解的是,在至少某些示例性实施例中,飞行器可包括多于两个翼,VTE风扇附接至其或整体结合到其中。例如,在至少某些示例性方面,右舷翼可为后右舷翼且左舷翼可为后左舷翼。关于此示例性方面,飞行器可还包括前右舷翼和前左舷翼,各自也在后右舷翼和后左舷翼前方的位置处从机身延伸。此外,关于此构造,推进系统还可包括沿前右舷翼布置的第三多个竖直推力电风扇(或至少一个竖直推力电风扇),以及沿前左舷翼布置的第四多个竖直推力电风扇(或至少一个竖直推力电风扇)。前左舷翼和前右舷翼可包括类似于后左舷翼和后右舷翼的可变几何形状构件。如此,方法400还可包括相对于相应前翼的第二可变几何形状构件改变前翼(例如,前左舷翼或前右舷翼)的第一可变几何形状构件,以调整相应多个竖直推力电风扇的第一部分相对于相应多个竖直推力电风扇的第二部分的有效推力轮廓。此外,前左舷翼或前右舷翼的可变几何形状构件的此改变可与后左舷翼或后右舷翼的可变几何形状构件的改变相结合(类似于在(412)处进行的在后左舷翼和后右舷翼之间的改变)。这可促进飞行器的进一步操纵(例如,升起/拉回,下冲/俯冲等)。
然而,注意,将了解的是,在本公开的其它示例性方面,可提供任何其它适合的方法以用于操作根据本公开的一个或多个示例性实施例的竖直起飞和降落的飞行器。
该书面描述使用示例来公开本发明,包括最佳模式,并且还使本领域的任何技术人员能够实践本发明,包括制造和使用任何装置或系统以及执行任何并入的方法。本发明可申请专利的范围由权利要求限定,且可包括本领域的技术人员想到的其它示例。如果这些其它示例包括不与权利要求的字面语言不同的结构元件,或者如果它们包括与权利要求的字面语言无实质差异的等同结构元件,则意在使这些其它示例处于权利要求的范围内。
Claims (10)
1.一种用于操作竖直起飞和降落的飞行器的方法,所述飞行器包括机身、从所述机身延伸的翼以及具有沿所述翼布置的多个竖直推力电风扇的推进系统,所述方法包括:
相对于与所述多个竖直推力电风扇的第二部分相关联的所述翼的第二可变构件改变与所述多个竖直推力电风扇的第一部分相关联的所述翼的第一可变构件,以调整所述多个竖直推力电风扇的第一部分相对于所述多个竖直推力电风扇的第二部分的暴露比。
2.根据权利要求1所述的方法,其特征在于,相对于所述第二可变构件改变所述第一可变构件包括将所述第一可变构件定位在向前推力位置。
3.根据权利要求2所述的方法,其特征在于,将所述第一可变构件定位在所述竖直推力位置包括大致完全封闭所述多个向前推力电风扇的第一部分。
4.根据权利要求2所述的方法,其特征在于,相对于所述第二可变构件改变所述第一可变构件还包括将所述第二可变构件定位在竖直推力位置。
5.根据权利要求4所述的方法,其特征在于,将所述第二可变构件定位在所述竖直推力位置包括大致完全暴露所述翼中的所述多个竖直推力电风扇的第二部分。
6.根据权利要求4所述的方法,其特征在于,还包括:
向所述多个竖直推力电风扇的第一部分提供第一电功率量且向所述多个竖直推力电风扇的第二部分提供第二电功率量,且其中所述第一电功率量小于所述第二电功率量。
7.根据权利要求1所述的方法,其特征在于,相对于所述第二可变构件改变所述第一可变构件包括将所述第一可变构件定位在中间位置,且其中将所述第一可变构件定位在所述中间位置包括部分地暴露所述多个竖直推力电风扇的第一部分以及部分地封闭所述多个竖直推力电风扇的第一部分。
8.根据权利要求1所述的方法,其特征在于,所述第一可变构件沿所述翼的长度与所述第二可变构件间隔开。
9.根据权利要求1所述的方法,其特征在于,所述多个竖直推力电风扇中的每一个以定向固定在所述翼内且沿所述翼的长度大致线性地布置。
10.根据权利要求1所述的方法,其特征在于,所述翼的第一可变构件是第一部分翼组件,其中所述翼的第二可变构件是第二部分翼组件。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211205636.0A CN115535231A (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762535444P | 2017-07-21 | 2017-07-21 | |
US62/535444 | 2017-07-21 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211205636.0A Division CN115535231A (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109279003A true CN109279003A (zh) | 2019-01-29 |
CN109279003B CN109279003B (zh) | 2022-10-25 |
Family
ID=63035884
Family Applications (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810811734.6A Active CN109279003B (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
CN201810811056.3A Active CN109279000B (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
CN201810811060.XA Active CN109279002B (zh) | 2017-07-21 | 2018-07-23 | 带有排放流动路径外部的风扇叶片的vtol交通工具 |
CN201810811735.0A Active CN109279004B (zh) | 2017-07-21 | 2018-07-23 | 具有用于升力风扇的扩散组件的竖直起飞和降落的飞行器 |
CN201810811057.8A Active CN109279001B (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
CN202211205636.0A Pending CN115535231A (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
CN201810810661.9A Active CN109278997B (zh) | 2017-07-21 | 2018-07-23 | 垂直起飞与降落飞行器的操作 |
CN201810811789.7A Active CN109279005B (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
CN201810811040.2A Active CN109278999B (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
CN201810810711.3A Active CN109278998B (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
CN201811044142.2A Active CN109466764B (zh) | 2017-07-21 | 2018-09-07 | 垂直起降飞行器 |
Family Applications After (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810811056.3A Active CN109279000B (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
CN201810811060.XA Active CN109279002B (zh) | 2017-07-21 | 2018-07-23 | 带有排放流动路径外部的风扇叶片的vtol交通工具 |
CN201810811735.0A Active CN109279004B (zh) | 2017-07-21 | 2018-07-23 | 具有用于升力风扇的扩散组件的竖直起飞和降落的飞行器 |
CN201810811057.8A Active CN109279001B (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
CN202211205636.0A Pending CN115535231A (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
CN201810810661.9A Active CN109278997B (zh) | 2017-07-21 | 2018-07-23 | 垂直起飞与降落飞行器的操作 |
CN201810811789.7A Active CN109279005B (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
CN201810811040.2A Active CN109278999B (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
CN201810810711.3A Active CN109278998B (zh) | 2017-07-21 | 2018-07-23 | 竖直起飞和降落的飞行器 |
CN201811044142.2A Active CN109466764B (zh) | 2017-07-21 | 2018-09-07 | 垂直起降飞行器 |
Country Status (4)
Country | Link |
---|---|
US (13) | US10737797B2 (zh) |
EP (2) | EP3431385B1 (zh) |
CN (11) | CN109279003B (zh) |
CA (1) | CA3015096C (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11875914B2 (en) | 2018-06-20 | 2024-01-16 | The Boeing Company | Conductive compositions of conductive polymer and metal coated fiber |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10926874B2 (en) * | 2016-01-15 | 2021-02-23 | Aurora Flight Sciences Corporation | Hybrid propulsion vertical take-off and landing aircraft |
WO2018027017A1 (en) | 2016-08-05 | 2018-02-08 | Textron Aviation Inc. | Hybrid aircraft with transversely oriented engine |
US11673676B2 (en) * | 2017-02-23 | 2023-06-13 | William J. Neff | Hybrid VTOL aerial vehicle |
US10737797B2 (en) * | 2017-07-21 | 2020-08-11 | General Electric Company | Vertical takeoff and landing aircraft |
US12043377B2 (en) * | 2018-01-30 | 2024-07-23 | Joseph Raymond RENTERIA | Rotatable thruster aircraft |
US10906637B2 (en) | 2018-05-17 | 2021-02-02 | Textron Innovations Inc. | Assisted landing systems for rotorcraft |
FR3083206A1 (fr) * | 2018-06-29 | 2020-01-03 | Airbus Operations | Groupe propulseur d'aeronef comprenant un assemblage d'au moins deux arbres coaxiaux, l'un etant relie a la soufflante et l'autre a l'ensemble d'aubes fixes |
US11352132B2 (en) * | 2018-07-23 | 2022-06-07 | General Electric Company | Lift fan with diffuser duct |
US11325698B2 (en) * | 2018-07-27 | 2022-05-10 | Walmart Apollo, Llc | Hybrid unmanned aerial vehicle for delivering cargo |
JP7021054B2 (ja) * | 2018-11-08 | 2022-02-16 | 本田技研工業株式会社 | ハイブリッド飛行体 |
US11370554B2 (en) | 2018-11-08 | 2022-06-28 | Rolls-Royce North American Technologies, Inc. | Hybrid propulsion systems |
US11159024B2 (en) | 2018-11-08 | 2021-10-26 | Rolls-Royce North American Technologies, Inc. | Electrical architecture for hybrid propulsion |
US11225881B2 (en) * | 2018-11-08 | 2022-01-18 | Rolls-Royce North American Technologies, Inc. | Hybrid propulsion systems |
WO2020137103A1 (ja) * | 2018-12-27 | 2020-07-02 | 本田技研工業株式会社 | 飛行体 |
FR3094314B1 (fr) * | 2019-03-29 | 2021-07-09 | Airbus Helicopters | Procédé d’optimisation du bruit généré en vol par un giravion. |
CN109854378B (zh) * | 2019-04-08 | 2023-10-24 | 沈阳建筑大学 | 一种具有模式调节能力的涡轮风扇发动机 |
EP3730404B1 (en) * | 2019-04-23 | 2021-08-18 | LEONARDO S.p.A. | Vertical take-off and landing aircraft and related control method |
EP3750793B1 (en) * | 2019-06-14 | 2023-04-05 | Hamilton Sundstrand Corporation | Aircraft having hybrid-electric propulsion system with electric storage located in fuselage |
EP4023552A4 (en) * | 2019-08-28 | 2023-02-22 | Denso Corporation | CONTROL DEVICE FOR AN ELECTRIC VERTICAL TAKE OFF AND LANDING AIRCRAFT |
US11718395B2 (en) * | 2019-09-13 | 2023-08-08 | Rolls-Royce Corporation | Electrically controlled vertical takeoff and landing aircraft system and method |
JP7541830B2 (ja) * | 2020-02-04 | 2024-08-29 | 株式会社Subaru | 垂直離着陸機 |
US11834167B2 (en) * | 2020-04-30 | 2023-12-05 | Sierra Nevada Corporation | Hybrid fixed VTOL aircraft powered by heavy fuel engine |
US11624319B2 (en) * | 2020-05-15 | 2023-04-11 | Pratt & Whitney Canada Corp. | Reverse-flow gas turbine engine with electric motor |
US11001377B1 (en) * | 2020-05-21 | 2021-05-11 | Horizon Aircraft Inc. | Aircraft airfoil and aircraft having the same |
CN111619823A (zh) * | 2020-06-02 | 2020-09-04 | 西北工业大学 | 一种短距/垂直起降飞行器分布式推进系统试验台 |
US11591081B2 (en) * | 2020-06-08 | 2023-02-28 | Textron Innovations Inc. | Vertical-lift augmentation system |
US11448135B2 (en) * | 2020-07-23 | 2022-09-20 | Ge Aviation Systems Llc | Systems and methods of power allocation for turboprop and turboshaft aircraft |
WO2022040463A1 (en) * | 2020-08-19 | 2022-02-24 | Levanta Tech Llc | Airfoils and vehicles incorporating the same |
CN112046762B (zh) * | 2020-09-07 | 2021-10-22 | 南京航空航天大学 | 基于涡桨发动机的混合动力无人机及其起降控制方法 |
US11964753B2 (en) * | 2020-09-17 | 2024-04-23 | Doroni Aerospace Inc. | Personal quadcopter aircraft |
US11319062B1 (en) * | 2020-10-11 | 2022-05-03 | Textron Innovations Inc. | Contra-rotating rotors with dissimilar numbers of blades |
KR20220055991A (ko) * | 2020-10-27 | 2022-05-04 | 현대자동차주식회사 | 항공운송수단용 추력장치 |
US11597509B1 (en) * | 2020-11-04 | 2023-03-07 | Reynaldo Thomas Alfaro | Vertical take-off and landing aircraft and methods of taking-off, landing, and aircraft control |
KR20220062178A (ko) * | 2020-11-06 | 2022-05-16 | 현대자동차주식회사 | 하이브리드 에어모빌리티 |
CN112373702B (zh) * | 2020-11-24 | 2022-07-05 | 中国航空发动机研究院 | 一种背撑式翼身融合体飞机推进系统及其控制方法 |
KR20220087212A (ko) * | 2020-12-17 | 2022-06-24 | 현대자동차주식회사 | 에어 모빌리티 |
KR20220089223A (ko) * | 2020-12-21 | 2022-06-28 | 현대자동차주식회사 | 에어모빌리티 추진 모듈 |
FR3119159B1 (fr) * | 2021-01-23 | 2022-12-09 | Bernard Etcheparre | Aile pour aéronef, à disques dynamiques concave. |
EP3998194A1 (en) * | 2021-02-19 | 2022-05-18 | Lilium eAircraft GmbH | Wing assembly for an aircraft |
KR20240068588A (ko) * | 2021-05-19 | 2024-05-17 | 제톱테라 잉크. | 적응형 유체 추진 시스템 |
US20230002034A1 (en) * | 2021-07-01 | 2023-01-05 | Beta Air, Llc | System for fixed-pitch lift configured for use in an electric aircraft |
CN113320693A (zh) * | 2021-08-04 | 2021-08-31 | 中国空气动力研究与发展中心空天技术研究所 | 一种新型可收放串列旋翼复合翼飞行器布局 |
CN115993078A (zh) * | 2021-10-18 | 2023-04-21 | 北京理工大学 | 一种可快速回收的高速巡飞弹 |
US11548621B1 (en) | 2021-11-04 | 2023-01-10 | Horizon Aircraft Inc. | Aircraft airfoil having an internal thrust unit, and aircraft having the same |
CN113859530B (zh) * | 2021-11-05 | 2022-07-19 | 中国科学院力学研究所 | 一种携载auv的多栖跨介质航行器 |
CN114044150B (zh) * | 2021-11-29 | 2024-01-02 | 中国航发沈阳发动机研究所 | 一种分布式混合电推进系统优化方法及装置 |
CN114194412B (zh) * | 2021-12-15 | 2024-06-18 | 中国航空工业集团公司成都飞机设计研究所 | 一种适用于活塞动力无人机的巡航桨发匹配优化方法 |
US20230331381A1 (en) * | 2022-01-14 | 2023-10-19 | Paul Budge | Aircraft with lift thrust system concealed in an airfoil |
US12107459B2 (en) | 2022-03-25 | 2024-10-01 | Beta Air Llc | Rotor for an electric aircraft motor comprising a plurality of magnets |
EP4325087A1 (en) * | 2022-08-12 | 2024-02-21 | RTX Corporation | Aircraft propulsion system geartrain |
CN115056972A (zh) * | 2022-08-17 | 2022-09-16 | 中国空气动力研究与发展中心空天技术研究所 | 一种复合翼飞行器的可升降旋翼整流罩 |
US12091173B2 (en) * | 2022-09-30 | 2024-09-17 | Wing Aviation Llc | UAV with distributed propulsion and blown control surfaces |
WO2024112772A1 (en) * | 2022-11-23 | 2024-05-30 | General Electric Company | Aeronautical propulsion system having electric fans |
FR3143549A1 (fr) | 2022-12-19 | 2024-06-21 | Ascendance Flight Technologies | aile d’aéronef à décollage et atterrissage vertical |
US20240278904A1 (en) * | 2023-02-17 | 2024-08-22 | Levanta Tech Inc. | Airfoils and vehicles incorporating the same |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1305028A (fr) * | 1961-11-06 | 1962-09-28 | English Electric Co Ltd | Avion à décollage vertical |
US4469294A (en) * | 1982-05-20 | 1984-09-04 | Clifton Robert T | V/STOL Aircraft |
CN87105599A (zh) * | 1986-07-16 | 1988-02-03 | 金伯利·维尔·萨德利阿 | 垂直起落飞机及其部件 |
US4828203A (en) * | 1986-12-16 | 1989-05-09 | Vulcan Aircraft Corporation | Vertical/short take-off and landing aircraft |
US6561456B1 (en) * | 2001-12-06 | 2003-05-13 | Michael Thomas Devine | Vertical/short take-off and landing aircraft |
US20100224721A1 (en) * | 2008-06-06 | 2010-09-09 | Frontline Aerospace, Inc. | Vtol aerial vehicle |
CN102076560A (zh) * | 2008-06-27 | 2011-05-25 | 马丁飞机有限公司 | 包括有散热器冷却通道的个人飞行设备 |
US20120280091A1 (en) * | 2009-08-26 | 2012-11-08 | Manuel Munoz Saiz | Lift, propulsion and stabilising system for vertical take-off and landing aircraft |
US20130251525A1 (en) * | 2010-09-14 | 2013-09-26 | Manuel M. Saiz | Lift Propulsion and Stabilizing System and Procedure For Vertical Take-Off and Landing Aircraft |
CN103448910A (zh) * | 2013-08-31 | 2013-12-18 | 西北工业大学 | 一种可垂直起降的高速飞行器 |
DE202015003815U1 (de) * | 2015-05-27 | 2015-07-22 | Maximilian Salbaum | Senkrecht startend- und landendes Flugzeug mit elektrischen Mantelpropellern |
CN204916182U (zh) * | 2015-07-29 | 2015-12-30 | 王志冲 | 高速垂直起降飞机 |
WO2016018486A2 (en) * | 2014-05-07 | 2016-02-04 | XTI Aircraft Company | Vtol aircraft |
US20160311529A1 (en) * | 2013-12-18 | 2016-10-27 | Neva Aerospace, Ltd. | Modular Electric VTOL Aircraft |
US20170158321A1 (en) * | 2014-07-18 | 2017-06-08 | Pegasus Universal Aerospace (Pty) Ltd. | Vertical take-off and landing aircraft |
CN106915458A (zh) * | 2015-12-26 | 2017-07-04 | 赵润生 | 双模式升降载人/无人型多用途飞机 |
US20170197711A1 (en) * | 2016-01-11 | 2017-07-13 | The Boeing Company | Ducted fan doors for aircraft |
Family Cites Families (209)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3128970A (en) | 1964-04-14 | Vehicle soft landing system | ||
US2330907A (en) * | 1938-09-10 | 1943-10-05 | J H Everest | Aerodynamic device |
US2558501A (en) * | 1947-06-14 | 1951-06-26 | Charline Elizabeth Turner | Aircraft propeller rotatable about the external periphery of the aircraft body |
US2973166A (en) * | 1955-04-21 | 1961-02-28 | Stahmer Bernhardt | Turbine principle helicopter-type blade for aircraft |
US3179353A (en) * | 1958-02-04 | 1965-04-20 | Ryan Aeronautical Co | Jet powered ducted fan convertiplane |
US3056565A (en) * | 1958-04-01 | 1962-10-02 | Rolls Royce | Vertical take-off aircraft |
US3045947A (en) * | 1959-04-24 | 1962-07-24 | Bertin & Cie | Ejectors, particularly for producing lift in aircraft |
FR1254416A (fr) * | 1959-10-16 | 1961-02-24 | Bertin & Cie | Diffuseur pour fluide et appareils en comportant application |
US3013744A (en) * | 1960-03-11 | 1961-12-19 | Gen Electric | Vtol boundary layer control system |
US3088694A (en) * | 1960-12-29 | 1963-05-07 | Gen Electric | Wing-fan doors |
GB1018581A (en) | 1961-01-12 | 1966-01-26 | Bristol Siddeley Engines Ltd | Improvements in aircraft jet propulsion nozzles |
US3117748A (en) * | 1961-04-20 | 1964-01-14 | Gen Electric | Tip-turbine ducted fan powered aircraft |
US3083935A (en) * | 1962-01-15 | 1963-04-02 | Piasecki Aircraft Corp | Convertible aircraft |
US3249323A (en) | 1962-04-25 | 1966-05-03 | Piasecki Aircraft Corp | Closure for vtol aircraft |
US3194516A (en) * | 1962-10-22 | 1965-07-13 | Messerschmitt Ag | Arrangement for jet engines at the tail end of aircraft |
US3161374A (en) | 1962-10-22 | 1964-12-15 | Boeing Co | Vertical lift aircraft |
GB1076152A (en) | 1963-03-26 | 1967-07-19 | Bristol Siddeley Engines Ltd | Improvements in aircraft power plants |
US3212731A (en) | 1963-09-09 | 1965-10-19 | Gen Electric | Fan powered aircraft |
GB1101262A (en) * | 1964-01-31 | 1968-01-31 | Hawker Siddeley Aviation Ltd | Improvements in or relating to aircraft |
US3171613A (en) * | 1964-05-15 | 1965-03-02 | Ryan Aeronautical Co | Combined ducted fan door and wing flap |
US3312448A (en) * | 1965-03-01 | 1967-04-04 | Gen Electric | Seal arrangement for preventing leakage of lubricant in gas turbine engines |
US3388878A (en) | 1965-06-01 | 1968-06-18 | Ryan Aeronautical Co | Vtol aircraft with balanced power, retractible lift fan system |
DE1481542A1 (de) | 1967-01-18 | 1969-03-20 | Entwicklungsring Sued Gmbh | Insbesondere fuer VTOL-Flugzeuge bestimmte Triebwerksanlage |
US3618875A (en) * | 1969-02-24 | 1971-11-09 | Gen Electric | V/stol aircraft |
FR2086055B1 (zh) * | 1970-04-14 | 1975-01-17 | Hawker Siddeley Aviat | |
US3762667A (en) | 1971-12-29 | 1973-10-02 | D Pender | Vertical take-off and landing aircraft |
DE2242048A1 (de) * | 1972-08-26 | 1974-03-07 | Motoren Turbinen Union | Turbinenstrahltriebwerk in mehrstromund mehrwellen-bauweise |
US3819134A (en) * | 1972-11-30 | 1974-06-25 | Rockwell International Corp | Aircraft system lift ejector |
FR2271982B1 (zh) * | 1973-12-20 | 1979-10-12 | Dornier System Gmbh | |
US4222233A (en) * | 1977-08-02 | 1980-09-16 | General Electric Company | Auxiliary lift propulsion system with oversized front fan |
DE3070047D1 (en) * | 1979-05-01 | 1985-03-14 | Edgley Aircraft | Ducted-propeller aircraft |
US4796836A (en) * | 1985-02-28 | 1989-01-10 | Dieter Schatzmayr | Lifting engine for VTOL aircrafts |
US5035377A (en) * | 1985-02-28 | 1991-07-30 | Technolizenz Establishment | Free standing or aircraft lift generator |
US4789115A (en) | 1986-08-29 | 1988-12-06 | Theodore Koutsoupidis | VTOL aircraft |
FR2622507B1 (zh) * | 1987-10-28 | 1990-01-26 | Snecma | |
US5054716A (en) | 1989-10-16 | 1991-10-08 | Bell Helicopter Textron Inc. | Drive system for tiltrotor aircraft |
US5209428A (en) | 1990-05-07 | 1993-05-11 | Lockheed Corporation | Propulsion system for a vertical and short takeoff and landing aircraft |
JPH06502364A (ja) * | 1990-07-25 | 1994-03-17 | サドレアー・ヴィートール・エアクラフト・カンパニー・プロプライエタリー・リミテッド | Vtol航空機のための推進ユニット |
US5141176A (en) | 1991-06-12 | 1992-08-25 | Grumman Aerospace Corporation | Tilt wing VTOL aircraft |
US5244167A (en) * | 1991-08-20 | 1993-09-14 | John Turk | Lift augmentation system for aircraft |
US5765777A (en) | 1991-11-20 | 1998-06-16 | Freewing Aerial Robotics Corporation | STOL/VTOL free wing aircraft with variable pitch propulsion means |
US5312069A (en) | 1992-07-15 | 1994-05-17 | Lockheed Corporation | Propulsion system for an aircraft providing V/STOL capability |
US5320305A (en) | 1992-07-22 | 1994-06-14 | Lockheed Corporation | Propulsion system for an aircraft providing V/STOL capability |
GB2323065B (en) | 1993-03-13 | 1998-12-09 | Rolls Royce Plc | Vectorable nozzle for aircraft |
US5542625A (en) | 1993-03-26 | 1996-08-06 | Grumman Aerospace Corporation | Gull wing aircraft |
FR2719549B1 (fr) * | 1994-05-04 | 1996-07-26 | Eurocopter France | Dispositif anti-couple à rotor caréné et modulation de phase des pales, pour hélicoptère. |
US5769317A (en) | 1995-05-04 | 1998-06-23 | Allison Engine Company, Inc. | Aircraft thrust vectoring system |
US5758844A (en) | 1996-05-28 | 1998-06-02 | Boeing North American, Inc. | Vertical/short take-off and landing (V/STOL) air vehicle capable of providing high speed horizontal flight |
IT1297108B1 (it) * | 1997-12-10 | 1999-08-03 | Franco Capanna | Sistema per la trasformazione di un aeromobile a decollo e volo orizzontale autosostentato in aeromobile integrato, ibrido a decollo |
US6270037B1 (en) | 1998-12-16 | 2001-08-07 | United Technologies Corporation | Rapid response attitude control logic for shaft-driven lift fan STOVL engine |
US6616094B2 (en) * | 1999-05-21 | 2003-09-09 | Vortex Holding Company | Lifting platform |
US6343768B1 (en) * | 2000-05-16 | 2002-02-05 | Patrick John Muldoon | Vertical/short take-off and landing aircraft |
US20030062442A1 (en) * | 2001-10-02 | 2003-04-03 | Milde Karl F. | VTOL personal aircraft |
JP2003137192A (ja) | 2001-10-31 | 2003-05-14 | Mitsubishi Heavy Ind Ltd | 垂直離着陸機 |
US6808140B2 (en) * | 2002-02-08 | 2004-10-26 | Moller Paul S | Vertical take-off and landing vehicles |
US6729575B2 (en) | 2002-04-01 | 2004-05-04 | Lockheed Martin Corporation | Propulsion system for a vertical and short takeoff and landing aircraft |
US6860449B1 (en) | 2002-07-16 | 2005-03-01 | Zhuo Chen | Hybrid flying wing |
US7104499B1 (en) | 2002-09-25 | 2006-09-12 | Northrop Grumman Corporation | Rechargeable compressed air system and method for supplemental aircraft thrust |
US6843447B2 (en) * | 2003-01-06 | 2005-01-18 | Brian H. Morgan | Vertical take-off and landing aircraft |
US7857253B2 (en) | 2003-10-27 | 2010-12-28 | Urban Aeronautics Ltd. | Ducted fan VTOL vehicles |
FR2864029B1 (fr) | 2003-12-23 | 2006-04-07 | Eurocopter France | Aeronef convertible pourvu de deux "tilt fan" de part et d'autre du fuselage et d'un "fan" fixe insere dans le fuselage |
FR2864030B1 (fr) | 2003-12-23 | 2006-02-17 | Eurocopter France | Aeronef convertible pourvu de deux "tilt fan" de part et d'autre du fuselage et d'un troisieme "tilt fan" agence sur la queue de l'aeronef |
US7249734B2 (en) | 2004-03-16 | 2007-07-31 | The Boeing Company | Aerodynamic vehicle having a variable geometry, co-planar, joined wing |
EP1602575B1 (de) | 2004-06-01 | 2011-08-10 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Trag- oder Leitelement |
US20070246601A1 (en) * | 2004-10-07 | 2007-10-25 | Layton Otis F | Manned/unmanned V.T.O.L. flight vehicle |
WO2006073634A2 (en) | 2004-12-02 | 2006-07-13 | Richard H Lugg | Vtol aircraft with forward-swept fixed wing |
WO2006069291A2 (en) | 2004-12-22 | 2006-06-29 | Aurora Flight Sciences Corporation | System and method for utilizing stored electrical energy for vtol aircraft thrust enhancement and attitude control |
JP2008526599A (ja) | 2005-01-10 | 2008-07-24 | アーバン エアロノーティクス リミテッド | ダクト内ファン垂直離着陸ビークル |
US7159817B2 (en) * | 2005-01-13 | 2007-01-09 | Vandermey Timothy | Vertical take-off and landing (VTOL) aircraft with distributed thrust and control |
US7267300B2 (en) * | 2005-02-25 | 2007-09-11 | The Boeing Company | Aircraft capable of vertical and short take-off and landing |
US20070018035A1 (en) * | 2005-07-20 | 2007-01-25 | Saiz Manuel M | Lifting and Propulsion System For Aircraft With Vertical Take-Off and Landing |
ES2288083B1 (es) | 2005-07-20 | 2008-10-16 | Manuel Muñoz Saiz | Disposicion sustentadora para aeronaves de despegue y aterrizaje vertical. |
CN100549388C (zh) * | 2005-08-22 | 2009-10-14 | 泰里迪尼技术股份有限公司 | 在高和低功率模式之间用阀调节的具有两偏轴线转轴的涡轮发动机 |
US7412825B2 (en) | 2005-10-06 | 2008-08-19 | The Boeing Company | Flow path splitter duct |
US8020804B2 (en) * | 2006-03-01 | 2011-09-20 | Urban Aeronautics, Ltd. | Ground effect vanes arrangement |
EP2004483B1 (de) * | 2006-03-03 | 2012-05-23 | David Posva | Flugzeug mit der eigenschaft zu schwebeflug, schnellem vorwärtsflug, gleitflug, kurzstart, kurzlandung, senkrechtstart und senkrechtlandung |
US7410122B2 (en) | 2006-03-20 | 2008-08-12 | The Boeing Company | VTOL UAV with lift fans in joined wings |
US20080230656A1 (en) * | 2006-04-11 | 2008-09-25 | Moshe Kretchmer | Aircraft wings having hinged vanes and aircraft having said wings |
EA016402B1 (ru) * | 2006-10-20 | 2012-04-30 | ЭлТиЭй КОРПОРЕЙШН | Линзообразный дирижабль |
US7665689B2 (en) | 2006-11-24 | 2010-02-23 | The Boeing Company | Unconventional integrated propulsion systems and methods for blended wing body aircraft |
US8016226B1 (en) | 2007-07-10 | 2011-09-13 | Wood Victor A | Vertical take off and landing aircraft system with energy recapture technology |
ES2540970T3 (es) | 2007-08-29 | 2015-07-15 | Advanced Product Development, Llc | Aeronave de ala oblicua confundida con el fuselaje |
US8931732B2 (en) | 2007-11-30 | 2015-01-13 | Sikorsky Aircraft Corporation | Electric powered rotary-wing aircraft |
WO2009111705A1 (en) | 2008-03-06 | 2009-09-11 | Karem Aircraft, Inc. | Rotorcraft engine and rotor speed synchronization |
CN101353084A (zh) * | 2008-09-05 | 2009-01-28 | 龙川 | 垂直起落轻型飞行器 |
US8857191B2 (en) * | 2008-10-08 | 2014-10-14 | The Invention Science Fund I, Llc | Hybrid propulsive engine including at least one independently rotatable propeller/fan |
US8128019B2 (en) | 2008-12-12 | 2012-03-06 | Honeywell International Inc. | Hybrid power for ducted fan unmanned aerial systems |
US8336806B2 (en) * | 2008-12-30 | 2012-12-25 | Rolls-Royce North American Technologies, Inc. | Lift fan flow path device |
US20100193643A1 (en) * | 2008-12-31 | 2010-08-05 | Sidelkovskiy Dmitriy B | Lift fan system |
GB0904875D0 (en) * | 2009-03-20 | 2009-05-06 | Geola Technologies Ltd | Electric vtol aircraft |
EP2432689B1 (en) | 2009-05-22 | 2013-07-17 | Bell Helicopter Textron Inc. | Co-rotating stacked rotor disks for improved hover performance |
IL199009A (en) | 2009-05-27 | 2013-11-28 | Israel Aerospace Ind Ltd | aircraft |
FR2946014B1 (fr) | 2009-05-28 | 2011-05-20 | Sagem Defense Securite | Nacelle de moteur d'aeronef comportant un capot mobile mu par des moteurs electriques |
JP5658248B2 (ja) | 2009-07-03 | 2015-01-21 | ジャワハルラール ネール センター フォー アドバンスド サイエンティフィク リサーチ | 翼及びプロペラシステム、翼及びプロペラ/ローターシステムを最適化する方法及び誘導抗力を低減させる方法 |
US8733690B2 (en) | 2009-08-24 | 2014-05-27 | Joby Aviation, Inc. | Lightweight vertical take-off and landing aircraft and flight control paradigm using thrust differentials |
CA2796432A1 (en) * | 2010-05-07 | 2011-11-10 | Flodesign Wind Turbine Corp. | Fluid turbine with moveable fluid control member |
US9132915B2 (en) | 2010-05-07 | 2015-09-15 | Ohio Univeristy | Multi-modal vehicle |
DE102010021025B4 (de) | 2010-05-19 | 2014-05-08 | Eads Deutschland Gmbh | Hubschrauber mit Hybridantrieb |
CA2801651C (en) * | 2010-07-19 | 2015-11-10 | Zee.Aero Inc. | Personal aircraft |
US9187174B2 (en) | 2010-10-06 | 2015-11-17 | Donald Orval Shaw | Aircraft with wings and movable propellers |
DE102010048139A1 (de) | 2010-10-11 | 2012-04-12 | Eads Deutschland Gmbh | Fluggerät mit variabler Geometrie |
CN201923319U (zh) * | 2010-10-15 | 2011-08-10 | 北京理工大学 | 一种唇口及扩散角可变式高效涵道 |
DE202010016820U1 (de) * | 2010-12-21 | 2012-03-26 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Diffusor für einen Ventilator sowie Ventilatoranordnung mit einem derartigen Diffusor |
US8602347B2 (en) | 2011-02-04 | 2013-12-10 | Textron Innovations Inc. | Tilt rotor aircraft with fixed engine arrangement |
US9010693B1 (en) | 2011-05-03 | 2015-04-21 | James Emmett Dee Barbieri | Collapsible wing and unmanned aircraft system including collapsible wing |
TWI538852B (zh) * | 2011-07-19 | 2016-06-21 | 季航空股份有限公司 | 個人飛機 |
EP2551193B1 (en) | 2011-07-29 | 2016-04-13 | AGUSTAWESTLAND S.p.A. | Convertiplane |
PL2551190T3 (pl) * | 2011-07-29 | 2014-04-30 | Agustawestland Spa | Zmiennopłat |
KR101125870B1 (ko) | 2011-07-29 | 2012-03-28 | 한국항공우주연구원 | 나셀틸트각과 플래퍼론각의 기계적 연동이 이루어지는 고성능 틸트로터 항공기 |
FR2979900B1 (fr) | 2011-09-12 | 2013-08-30 | Eurocopter France | Aeronef rapide a grande distance franchissable |
US20140060004A1 (en) | 2011-09-20 | 2014-03-06 | Bell Helicopter Textron Inc. | Tiltrotor vectored exhaust system |
FR2980454B1 (fr) | 2011-09-27 | 2014-01-31 | Eurocopter France | Procede de regulation de la vitesse de propulsion d'un helicoptere hybride |
US9227721B1 (en) | 2011-10-07 | 2016-01-05 | The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) | Variable camber continuous aerodynamic control surfaces and methods for active wing shaping control |
JP2014528382A (ja) * | 2011-10-17 | 2014-10-27 | ユー ティアン | 固定翼および電動マルチローターを組み合わせた航空機 |
CN103043212B (zh) * | 2011-10-17 | 2016-06-08 | 优利科技有限公司 | 固定翼与电动多旋翼组成的复合飞行器 |
JP5689538B2 (ja) * | 2011-11-10 | 2015-03-25 | 三菱電機株式会社 | 車両用空気調和装置の室外冷却ユニット |
US10427784B2 (en) * | 2011-12-05 | 2019-10-01 | Aurora Flight Sciences Corporation | System and method for improving transition lift-fan performance |
EP2610176B1 (en) | 2011-12-28 | 2018-02-07 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | Electrical powered tail rotor of a helicopter |
IL217501A (en) | 2012-01-12 | 2017-09-28 | Israel Aerospace Ind Ltd | A method and system for maneuvering aircraft |
US20130206921A1 (en) | 2012-02-15 | 2013-08-15 | Aurora Flight Sciences Corporation | System, apparatus and method for long endurance vertical takeoff and landing vehicle |
DE102012003336A1 (de) * | 2012-02-17 | 2013-08-22 | Ziehl-Abegg Ag | Diffusor, Ventilator mit einem solchen Diffusor sowie Gerät mit solchen Ventilatoren |
EP2644497B1 (en) | 2012-03-29 | 2016-01-20 | Airbus Operations GmbH | Wing for an aircraft, aircraft and method for reducing aerodynamic drag and improving maximum lift |
US9296288B2 (en) * | 2012-05-07 | 2016-03-29 | Separation Design Group Llc | Hybrid radiant energy aircraft engine |
FR2993243B1 (fr) | 2012-07-12 | 2014-07-11 | Eurocopter France | Architecture d'alimentation hybride en puissance mecanique d'un rotor, geree a partir du reseau de bord d'un giravion |
EP2903895B1 (en) * | 2012-10-05 | 2020-01-22 | Skykar Inc. | Electrically powered aerial vehicles and flight control methods |
FR2997382B1 (fr) | 2012-10-29 | 2014-11-21 | Eurocopter France | Procede de gestion d'une panne moteur sur un aeronef multimoteur muni d'une installation motrice hybride |
FR2997681B1 (fr) * | 2012-11-08 | 2015-05-15 | Snecma | Avion propulse par un turboreacteur a soufflantes contrarotatives |
EP2738091B1 (en) * | 2012-11-30 | 2015-07-22 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | Vertical take-off and landing (VTOL) aerial vehicle and method of operating such a VTOL aerial vehicle |
US9085355B2 (en) | 2012-12-07 | 2015-07-21 | Delorean Aerospace, Llc | Vertical takeoff and landing aircraft |
FR2999150B1 (fr) * | 2012-12-10 | 2015-10-09 | Bermond Gerome Maurice Paul | Aeronef convertible pourvu de deux rotors carenes en bout d'aile et d'un fan horizontal dans le fuselage |
CN103921933A (zh) | 2013-01-10 | 2014-07-16 | 深圳市大疆创新科技有限公司 | 飞行器变形结构及微型飞行器 |
JP6108077B2 (ja) * | 2013-01-29 | 2017-04-05 | 株式会社Ihi | 垂直離着陸機 |
US9327822B1 (en) | 2013-02-14 | 2016-05-03 | The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) | Variable geometry aircraft wing supported by struts and/or trusses |
US9376206B2 (en) * | 2013-03-12 | 2016-06-28 | Bell Helicopter Textron Inc. | Tiltrotor aircraft with inboard wing mounted fixed engine arrangement |
US9126678B2 (en) | 2013-03-13 | 2015-09-08 | Bell Helicopter Textron Inc. | Spindle mounted tiltrotor pylon with fixed engine arrangement |
FR3006292B1 (fr) | 2013-05-30 | 2017-01-27 | Eurocopter France | Giravion a voilure tournante muni d'une pluralite d'helices |
US9248908B1 (en) | 2013-06-12 | 2016-02-02 | The Boeing Company | Hybrid electric power helicopter |
FR3006997B1 (fr) * | 2013-06-14 | 2016-12-23 | Airbus | Aeronef a moyens de propulsion electriques |
FR3008383B1 (fr) * | 2013-07-12 | 2017-11-24 | Hutchinson | Dispositif de sustentation a soufflante(s) axiale(s), et aerodyne equipe d'un tel dispositif |
ITRM20130473A1 (it) | 2013-08-12 | 2013-11-11 | Unit 1 Srl | Convertiplano con nuove soluzionitecniche ed aerodinamiche atte a rendere sicuro e fruibile il mezzo anche in soluzioni di velivolo ultraleggero |
US9475579B2 (en) | 2013-08-13 | 2016-10-25 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Vertical take-off and landing vehicle with increased cruise efficiency |
DE102013109392A1 (de) | 2013-08-29 | 2015-03-05 | Airbus Defence and Space GmbH | Schnellfliegendes, senkrechtstartfähiges Fluggerät |
WO2015056124A1 (en) | 2013-10-14 | 2015-04-23 | Navis S.R.L. | Propulsion system for vertical or substantially vertical takeoff aircraft |
GB201320988D0 (en) * | 2013-11-28 | 2014-01-15 | Rolls Royce Plc | An aircraft |
US9694911B2 (en) | 2014-03-18 | 2017-07-04 | Joby Aviation, Inc. | Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades |
GB2539131B (en) * | 2014-03-27 | 2018-11-28 | Trane Int Inc | Diffuser collar for a condenser fan in an HVAC system |
US20150274289A1 (en) * | 2014-03-31 | 2015-10-01 | The Boeing Corporation | Vertically landing aircraft |
US9481457B2 (en) | 2014-04-02 | 2016-11-01 | Sikorsky Aircraft Corporation | Vertical take-off and landing aircraft with variable wing geometry |
CN103963959B (zh) * | 2014-05-12 | 2015-12-30 | 北京理工大学 | 基于变质心技术的可悬停式折叠机翼升力体飞行器 |
US10221861B2 (en) * | 2014-06-06 | 2019-03-05 | Airius Ip Holdings Llc | Columnar air moving devices, systems and methods |
US10381889B2 (en) | 2014-06-27 | 2019-08-13 | General Electric Company | Permanent magnet machine with segmented sleeve for magnets |
IL233902B (en) | 2014-07-31 | 2020-07-30 | Israel Aerospace Ind Ltd | egnition system |
CN104290907B (zh) * | 2014-10-15 | 2016-04-13 | 西南科技大学 | 新型混合动力垂直短距起降无人飞行器 |
US10059437B2 (en) * | 2015-01-08 | 2018-08-28 | Robert Stanley Cooper | Multi-rotor safety shield |
US10000293B2 (en) * | 2015-01-23 | 2018-06-19 | General Electric Company | Gas-electric propulsion system for an aircraft |
DE102015207445B4 (de) | 2015-04-23 | 2023-08-17 | Lilium GmbH | Tragfläche für ein Luftfahrzeug und Luftfahrzeug |
FR3036096A1 (fr) | 2015-05-11 | 2016-11-18 | Christian Roger Rene Deslypper | Avion convertible a rotors decouvrables |
GB201508138D0 (en) * | 2015-05-13 | 2015-06-24 | Rolls Royce Plc | Aircraft |
US10030608B2 (en) | 2015-05-15 | 2018-07-24 | Rohr Inc. | Variable area fan nozzle actuation system |
DE102015006511A1 (de) | 2015-05-26 | 2016-12-01 | Airbus Defence and Space GmbH | Senkrechtstartfähiges Fluggerät |
US9714090B2 (en) * | 2015-06-12 | 2017-07-25 | Sunlight Photonics Inc. | Aircraft for vertical take-off and landing |
FR3039227B1 (fr) * | 2015-07-22 | 2019-12-27 | Safran Aircraft Engines | Aeronef comprenant un propulseur arriere carene avec stator d’entree a volets mobiles |
FR3039228B1 (fr) * | 2015-07-22 | 2020-01-03 | Safran Aircraft Engines | Aeronef comprenant un propulseur arriere carene avec stator d'entree comprenant une fonction soufflage |
WO2017013360A1 (fr) * | 2015-07-22 | 2017-01-26 | Safran Aircraft Engines | Aeronef comportant une turbomachine integree au fuselage arriere a alimentation variable |
EP3124379B1 (de) * | 2015-07-29 | 2019-05-01 | Airbus Defence and Space GmbH | Hybrid-elektrischer antriebsstrang für vtol drohnen |
EP3141478B1 (en) | 2015-09-11 | 2018-11-07 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | Compound helicopter |
US9957055B2 (en) * | 2015-09-21 | 2018-05-01 | General Electric Company | Aft engine for an aircraft |
US9821917B2 (en) * | 2015-09-21 | 2017-11-21 | General Electric Company | Aft engine for an aircraft |
US9637217B2 (en) * | 2015-09-21 | 2017-05-02 | General Electric Company | Aircraft having an aft engine |
US9815560B2 (en) * | 2015-09-21 | 2017-11-14 | General Electric Company | AFT engine nacelle shape for an aircraft |
US9884687B2 (en) * | 2015-09-21 | 2018-02-06 | General Electric Company | Non-axis symmetric aft engine |
CN105217027A (zh) * | 2015-09-24 | 2016-01-06 | 苏州大闹天宫机器人科技有限公司 | 垂直起降式双模态空中飞行设备及其控制方法 |
FR3041933B1 (fr) * | 2015-10-05 | 2018-07-13 | Safran Aircraft Engines | Aeronef avec un ensemble propulsif comprenant un doublet d'helices a l'arriere du fuselage |
US10017270B2 (en) * | 2015-10-09 | 2018-07-10 | General Electric Company | Aft engine for an aircraft |
CN205203366U (zh) * | 2015-10-22 | 2016-05-04 | 龙川 | 近似水平转动推进器襟翼增升连接翼飞机 |
CN105270621A (zh) * | 2015-10-30 | 2016-01-27 | 佛山市神风航空科技有限公司 | 一种机翼带天窗的飞行器 |
US10131427B2 (en) | 2015-11-04 | 2018-11-20 | Bell Helicopter Textron Inc. | Tilt-rotor over-torque protection from asymmetric gust |
FR3043984B1 (fr) * | 2015-11-25 | 2017-12-22 | Snecma | Avion propulse par une turbomachine muni d'un ecran acoustique |
US10246184B2 (en) * | 2015-12-02 | 2019-04-02 | Jon M. Ragland | Aircraft with internally housed propellor units |
US10570926B2 (en) | 2015-12-03 | 2020-02-25 | The Boeing Company | Variable-geometry ducted fan |
US20180162525A1 (en) * | 2016-12-08 | 2018-06-14 | Aurora Flight Sciences Corporation | Double-Blown Wing Vertical Takeoff and Landing Aircraft |
US20170327219A1 (en) | 2015-12-11 | 2017-11-16 | Sikorsky Aircraft Corporation | Vertical take-off and landing aircraft with hybrid power and method |
US10926874B2 (en) * | 2016-01-15 | 2021-02-23 | Aurora Flight Sciences Corporation | Hybrid propulsion vertical take-off and landing aircraft |
US20170234447A1 (en) | 2016-02-12 | 2017-08-17 | United Technologies Corporation | Methods and systems for modulating airflow |
CN105857624A (zh) * | 2016-04-08 | 2016-08-17 | 南京航空航天大学 | 一种基于航空活塞发动机的分布式混合动力系统 |
CN105775119B (zh) * | 2016-04-08 | 2018-01-23 | 南京航空航天大学 | 组合涵道飞行器 |
CN105818980A (zh) * | 2016-05-06 | 2016-08-03 | 刘行伟 | 新型高升力垂直起降飞行器 |
CN106005391A (zh) * | 2016-06-13 | 2016-10-12 | 李宁 | 一种涵道直升飞机 |
US10106265B2 (en) * | 2016-06-24 | 2018-10-23 | General Electric Company | Stabilizer assembly for an aircraft AFT engine |
CN206087295U (zh) * | 2016-07-08 | 2017-04-12 | 袁洪跃 | 一种内旋翼飞行器结构 |
CN106167096A (zh) * | 2016-07-17 | 2016-11-30 | 龙川 | 改进型近似水平转动推进器襟翼增升连接翼飞机 |
FR3054526B1 (fr) * | 2016-07-26 | 2018-08-03 | Safran Aircraft Engines | Aeronef comportant un turboreacteur integre au fuselage arriere comportant un carenage permettant l'ejection de pales |
DE202016005012U1 (de) | 2016-08-16 | 2016-09-15 | Maximilian Salbaum | Senkrechtstartendes und -landendes Flugzeug mit Schwenkflügeln |
GB201615900D0 (en) * | 2016-09-19 | 2016-11-02 | Rolls Royce Plc | Aircraft propulsion system |
CN106184741B (zh) * | 2016-09-30 | 2020-04-07 | 中国科学院工程热物理研究所 | 一种飞翼式涵道风扇垂直起降无人机 |
US10364024B2 (en) * | 2016-10-18 | 2019-07-30 | Kitty Corporation | Multicopter with angled rotors |
GB2555440A (en) * | 2016-10-27 | 2018-05-02 | Mono Aerospace Ip Ltd | Vertical take off and landing aircraft |
GB2555439A (en) * | 2016-10-27 | 2018-05-02 | Mono Aerospace Ip Ltd | Vertical take-off and landing aircraft and control method |
EP4001106B1 (en) * | 2016-11-02 | 2024-07-31 | Joby Aero, Inc. | Vtol aircraft using rotors to simulate rigid wing aero dynamics |
CN106628120B (zh) * | 2016-12-06 | 2019-08-27 | 湖南星思科技有限公司 | 一种高效气动涵道体 |
KR101938459B1 (ko) * | 2016-12-15 | 2019-01-14 | 한국항공우주연구원 | 비행체 |
CN106904271B (zh) * | 2017-03-03 | 2019-05-07 | 北京航空航天大学 | 一种用于垂直起降无人机的变体机构 |
US10273019B2 (en) * | 2017-03-06 | 2019-04-30 | Rolls-Royce Corporation | Distributed propulsion system power unit control |
US10723470B2 (en) * | 2017-06-12 | 2020-07-28 | Raytheon Technologies Corporation | Aft fan counter-rotating turbine engine |
US10006375B1 (en) * | 2017-07-11 | 2018-06-26 | General Electric Company | Propulsion system for an aircraft |
US10737797B2 (en) * | 2017-07-21 | 2020-08-11 | General Electric Company | Vertical takeoff and landing aircraft |
EP3470332B1 (en) * | 2017-10-13 | 2020-04-22 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | A multirotor aircraft with an airframe and at least one wing |
KR102502582B1 (ko) * | 2018-04-23 | 2023-02-22 | 삼성전자주식회사 | 세이프티 가드를 구비한 무인 비행기 |
US11352132B2 (en) * | 2018-07-23 | 2022-06-07 | General Electric Company | Lift fan with diffuser duct |
-
2017
- 2017-09-08 US US15/699,315 patent/US10737797B2/en active Active
- 2017-09-08 US US15/699,349 patent/US10822101B2/en active Active
-
2018
- 2018-07-23 CN CN201810811734.6A patent/CN109279003B/zh active Active
- 2018-07-23 CN CN201810811056.3A patent/CN109279000B/zh active Active
- 2018-07-23 CN CN201810811060.XA patent/CN109279002B/zh active Active
- 2018-07-23 CN CN201810811735.0A patent/CN109279004B/zh active Active
- 2018-07-23 US US16/042,328 patent/US11124306B2/en active Active
- 2018-07-23 CN CN201810811057.8A patent/CN109279001B/zh active Active
- 2018-07-23 CN CN202211205636.0A patent/CN115535231A/zh active Pending
- 2018-07-23 US US16/042,370 patent/US11040779B2/en active Active
- 2018-07-23 CN CN201810810661.9A patent/CN109278997B/zh active Active
- 2018-07-23 US US16/042,403 patent/US11124307B2/en active Active
- 2018-07-23 US US16/042,267 patent/US11117676B2/en active Active
- 2018-07-23 EP EP18184890.4A patent/EP3431385B1/en active Active
- 2018-07-23 US US16/042,439 patent/US10710735B2/en active Active
- 2018-07-23 US US16/042,487 patent/US11084595B2/en active Active
- 2018-07-23 CN CN201810811789.7A patent/CN109279005B/zh active Active
- 2018-07-23 CN CN201810811040.2A patent/CN109278999B/zh active Active
- 2018-07-23 US US16/042,216 patent/US11117675B2/en active Active
- 2018-07-23 US US16/042,522 patent/US11124308B2/en active Active
- 2018-07-23 CN CN201810810711.3A patent/CN109278998B/zh active Active
- 2018-07-23 US US16/042,299 patent/US11053014B2/en active Active
- 2018-08-15 EP EP23198080.6A patent/EP4306427A3/en active Pending
- 2018-08-23 CA CA3015096A patent/CA3015096C/en active Active
- 2018-09-07 CN CN201811044142.2A patent/CN109466764B/zh active Active
-
2021
- 2021-07-02 US US17/366,749 patent/US12006031B2/en active Active
-
2024
- 2024-06-10 US US18/738,167 patent/US20240326995A1/en active Pending
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1305028A (fr) * | 1961-11-06 | 1962-09-28 | English Electric Co Ltd | Avion à décollage vertical |
US4469294A (en) * | 1982-05-20 | 1984-09-04 | Clifton Robert T | V/STOL Aircraft |
CN87105599A (zh) * | 1986-07-16 | 1988-02-03 | 金伯利·维尔·萨德利阿 | 垂直起落飞机及其部件 |
US4828203A (en) * | 1986-12-16 | 1989-05-09 | Vulcan Aircraft Corporation | Vertical/short take-off and landing aircraft |
US6561456B1 (en) * | 2001-12-06 | 2003-05-13 | Michael Thomas Devine | Vertical/short take-off and landing aircraft |
US20100224721A1 (en) * | 2008-06-06 | 2010-09-09 | Frontline Aerospace, Inc. | Vtol aerial vehicle |
CN102076560A (zh) * | 2008-06-27 | 2011-05-25 | 马丁飞机有限公司 | 包括有散热器冷却通道的个人飞行设备 |
US20120280091A1 (en) * | 2009-08-26 | 2012-11-08 | Manuel Munoz Saiz | Lift, propulsion and stabilising system for vertical take-off and landing aircraft |
US20130251525A1 (en) * | 2010-09-14 | 2013-09-26 | Manuel M. Saiz | Lift Propulsion and Stabilizing System and Procedure For Vertical Take-Off and Landing Aircraft |
CN103448910A (zh) * | 2013-08-31 | 2013-12-18 | 西北工业大学 | 一种可垂直起降的高速飞行器 |
US20160311529A1 (en) * | 2013-12-18 | 2016-10-27 | Neva Aerospace, Ltd. | Modular Electric VTOL Aircraft |
WO2016018486A2 (en) * | 2014-05-07 | 2016-02-04 | XTI Aircraft Company | Vtol aircraft |
US20170158321A1 (en) * | 2014-07-18 | 2017-06-08 | Pegasus Universal Aerospace (Pty) Ltd. | Vertical take-off and landing aircraft |
DE202015003815U1 (de) * | 2015-05-27 | 2015-07-22 | Maximilian Salbaum | Senkrecht startend- und landendes Flugzeug mit elektrischen Mantelpropellern |
CN204916182U (zh) * | 2015-07-29 | 2015-12-30 | 王志冲 | 高速垂直起降飞机 |
CN106915458A (zh) * | 2015-12-26 | 2017-07-04 | 赵润生 | 双模式升降载人/无人型多用途飞机 |
US20170197711A1 (en) * | 2016-01-11 | 2017-07-13 | The Boeing Company | Ducted fan doors for aircraft |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11875914B2 (en) | 2018-06-20 | 2024-01-16 | The Boeing Company | Conductive compositions of conductive polymer and metal coated fiber |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109279003A (zh) | 竖直起飞和降落的飞行器 | |
US11673661B2 (en) | Tiltrotor propulsion system for an aircraft | |
CN109641647B (zh) | 用于飞行器的倾转旋翼推进系统 | |
CN109661346B (zh) | 用于飞行器的倾转旋翼推进系统 | |
CN109661345B (zh) | 用于飞行器的倾转旋翼推进系统和具有此系统的飞行器 | |
US10392106B2 (en) | Tiltrotor propulsion system for an aircraft | |
CN109110138A (zh) | 用于飞行器的推进系统和用于操作其的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TG01 | Patent term adjustment | ||
TG01 | Patent term adjustment |