CN108854948A - 一种同步去除放射性水中锶和铯的沸石改性方法 - Google Patents

一种同步去除放射性水中锶和铯的沸石改性方法 Download PDF

Info

Publication number
CN108854948A
CN108854948A CN201810792678.6A CN201810792678A CN108854948A CN 108854948 A CN108854948 A CN 108854948A CN 201810792678 A CN201810792678 A CN 201810792678A CN 108854948 A CN108854948 A CN 108854948A
Authority
CN
China
Prior art keywords
zeolite
caesium
strontium
modifying method
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810792678.6A
Other languages
English (en)
Inventor
于水利
上官宇飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weihai Qing Te Te Environmental Technology Co Ltd
Original Assignee
Weihai Qing Te Te Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weihai Qing Te Te Environmental Technology Co Ltd filed Critical Weihai Qing Te Te Environmental Technology Co Ltd
Priority to CN201810792678.6A priority Critical patent/CN108854948A/zh
Publication of CN108854948A publication Critical patent/CN108854948A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0259Compounds of N, P, As, Sb, Bi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0296Nitrates of compounds other than those provided for in B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种同步去除放射性水中锶和铯的沸石改性方法,所述方法步骤如下:1)先用蒸馏水对待改性天然沸石进行3~5次冲洗,然后烘干备用;2)将步骤1)所得的沸石加入NaOH溶液中,然后放入摇床中恒温震荡,最后用蒸馏水对沸石冲洗5~7次,烘干备用;3)将步骤2)所得的沸石加入Cu(NO3)2溶液中,然后放入摇床中恒温震荡,最后用蒸馏水对沸石冲洗5~7次,烘干备用;4)将步骤3)所得的沸石加入K4Fe(CN)6溶液中,然后放入摇床中恒温震荡,最后用蒸馏水对沸石冲洗5~7次,烘干得到改性沸石颗粒。本发明的方法能够使改性后的沸石同时具有高效去除放射性水中锶和铯的效果,提高了沸石的吸附容量和选择吸附性。

Description

一种同步去除放射性水中锶和铯的沸石改性方法
技术领域
本发明属于水处理技术领域,涉及一种沸石改性方法,具体涉及一种同步去除放射性水中锶和铯的沸石改性方法。
背景技术
随着科学技术的发展,核电占总能源的比例越来越高,但是随之而来的放射性污染也越来越严重。虽然核电站污水都是经过处理达标后才排放,但是排放的污水中会不可避免的含有少量的低浓度低放射性物质,90Sr和137Cs作为铀反应的主要产物,也是这些低浓度低放射性物质的主要成分。从目前来看,对含锶、铯放射性水进行处理的方法有化学沉淀法、离子交换法、吸附法、蒸发法、萃取法、生物法和膜法等,在这些处理方法的研究中,离子交换法是近年来最主要的研究方向。
在众多的无机离子交换剂中,沸石的稳定性好,交换容量高,材料低价易得,是处理低放射性水行之有效的方法之一。据相关专利文献报道,亚铁氰根(分子式为Fe(CN)6 4-)具有极高的化学稳定性,并且由于它对Cs和Sr有较强的结合能力,因此能够使金属亚铁氰化物对Cs和Sr有很强的选择吸附能力。然而因为它们存在粉末稠度问题,直接将这些吸附剂应用到固定柱模式下不可行。但是可以将亚铁氰化物负载到其他一些多孔载体上实现吸附柱应用,如硅胶、活性炭、聚氨酯(PU)泡沫、沸石和离子交换树脂等。
发明内容
为了克服现有沸石改性方法的不足,本发明提供了一种同步去除放射性水中锶和铯的沸石改性方法,该方法能够使改性后的沸石同时具有高效去除放射性水中锶和铯的效果,不仅提高了沸石的吸附容量和选择吸附性,而且可以简化现有去除锶和铯的工艺设备,对提升放射性水处理效果具有十分重要的意义。
本发明的目的是通过以下技术方案实现的:
一种同步去除放射性水中锶和铯的沸石改性方法,如图1所示,包括如下步骤:
1)先用蒸馏水对待改性天然沸石进行3~5次冲洗,然后烘干备用;
2)将步骤1)所得的沸石加入NaOH溶液中,然后放入摇床中恒温震荡,最后用蒸馏水对沸石冲洗5~7次,烘干备用;
3)将步骤2)所得的沸石加入Cu(NO3)2溶液中,然后放入摇床中恒温震荡,最后用蒸馏水对沸石冲洗5~7次,烘干备用;
4)将步骤3)所得的沸石加入K4Fe(CN)6溶液中,然后放入摇床中恒温震荡,最后用蒸馏水对沸石冲洗5~7次,烘干得到改性沸石颗粒。
优选地,所述步骤1)中,待改性天然沸石的粒径为300~500μm。
优选地,所述步骤1)中,烘干温度为60~70℃,烘干时间为4~8h。
优选地,所述步骤2)中,NaOH溶液的浓度为0.1~2mol/L,震荡温度为25~40℃,震荡时间为4~8小时,摇床转速为60~120rpm,烘干温度为80~100℃,烘干时间为10~14h。
优选地,所述步骤3)中,Cu(NO3)2溶液的浓度为0.05~0.2mol/L,震荡温度为20~35℃,震荡时间为2~6小时,摇床转速为100~160rpm,烘干温度为80~100℃,烘干时间为10~14h。
优选地,所述步骤4)中,K4Fe(CN)6溶液的浓度为0.02~0.1mol/L,震荡温度为20~35℃,震荡时间为2~6小时,摇床转速为100~160rpm,烘干温度为80~100℃,烘干时间为10~14h。
优选地,所述步骤4)中,改性沸石颗粒的粒径为300~500μm。
本发明所制备的改性沸石对放射性水中锶和铯的去除效果很好,研究结果表明:在放射性水中锶浓度为10mg/L、铯浓度为10mg/L,改性沸石投加量为2g/L,25℃,磁力搅拌吸附时间为2h的条件下,锶和铯的剩余浓度分别为0.3~0.6mg/L、0.2~0.5mg/L。此外,该改性沸石还具有良好的再生效果。
本发明方法的改性原理如下:
天然沸石本身具有强吸附、强离子交换性、耐高温腐蚀等特性,但其吸附对象局限性大,离子交换容量较低。用亚铁氰化物改性沸石来去除废水中的锶和铯是一种比较新的处理方法。以过渡金属的亚铁氰化物和钛硅酸盐为代表的无机离子交换剂来去除放射性废水中锶和铯的效果很好,但是这些吸附剂的尺寸太小,不易沉淀,会造成固液分离困难,不利于柱式操作,而且对后续处理的要求较高。制备出的亚铁氰化铜由于颗粒尺寸较小,因此发生了团聚现象,影响处理效果。用沸石作为载体来负载亚铁氰化物可以有效地改善这些问题,能够用于柱状处理,简化处理流程,改善团聚现象,使亚铁氰化物分布均匀,提高处理效果。而且沸石本身作为一种无机离子交换剂,具有很强的化学稳定性和热力学稳定性,对锶和铯也具有一定的去除效果。所以从理论上来说,用亚铁氰化物来改性沸石可以对锶和铯的去除有比较好的效果。
本发明具有如下优点:
1、本发明的制备方法简单且环保,在充分考虑沸石的反复利用问题上,降低了在实际工程运用中的成本。
2、沸石颗粒较大,能够用于柱状处理,简化处理流程。
3、沸石成本低,因该沸石颗粒球不易随着出水流失,可回收再进行吸附脱附,有效利用率高,大大降低了材料成本。
4、相较于一般沸石,本发明所制备的改性沸石对放射性水中锶和铯的吸附能力得到了大大的提升,对锶和铯的去除效果很好,将其用于锶铯污染物的静态吸附实验和动态吸附试验,验证了该改性材料的高效吸附性,为改性沸石同步去除锶和铯的研究应用奠定了良好的基础。
附图说明
图1为本发明同步去除放射性水中锶和铯的沸石改性工艺流程图。
具体实施方式
下面结合附图对本发明的技术方案作进一步的说明,但并不局限如此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
实施例1
本实施例提供了一种同步去除放射性水中锶和铯的沸石改性方法,所述方法具体步骤如下:
1)先用蒸馏水将适量粒径为400μm的待改性天然沸石进行5次冲洗,然后60℃烘干8h;
2)将步骤1)所得的沸石加入0.5mol/L NaOH溶液中,放入摇床中恒温30℃震荡6h,摇床转数为100rpm,然后用蒸馏水对沸石冲洗6次,90℃烘干12h,备用;
3)将步骤2)所得的沸石加入0.1mol/L Cu(NO3)2溶液中然后,放入摇床中恒温25℃震荡4h,摇床转数为140rpm,最后用蒸馏水对沸石冲洗7次,100℃烘干12h,备用;
4))将步骤3)所得的沸石加入0.05mol/L K4Fe(CN)6溶液中,然后放入摇床中恒温25℃震荡4h,摇床转数为140rpm,最后用蒸馏水对沸石冲洗7次,100℃烘干12h,得到改性沸石颗粒。
本实施例制备得到的改性后沸石的粒径为400μm,对放射性水中锶和铯的去除效果很好,在放射性水中锶浓度为10mg/L、铯浓度为10mg/L,改性沸石投加量为2g/L,25℃,磁力搅拌吸附时间为2h的条件下,锶和铯的剩余浓度分别为0.38mg/L、0.35mg/L,去除率高达96.2%和96.5%。
实施例2
本实施例提供了一种同步去除放射性水中锶和铯的沸石改性方法,所述方法具体步骤如下:
1)先用蒸馏水将适量粒径为300μm的待改性天然沸石进行4次冲洗,然后70℃烘干8h;
2)将步骤1)所得的沸石加入1mol/L NaOH溶液中,然后放入摇床中恒温35℃震荡5h,摇床转数为90rpm,最后用蒸馏水对沸石冲洗7次,80℃烘干12h,备用;
3)将步骤2)所得的沸石加入0.2mol/L Cu(NO3)2溶液中,然后放入摇床中恒温25℃震荡4h,摇床转数为130rpm,最后用蒸馏水对沸石冲洗7次,90℃烘干12h,备用;
4)将步骤3)所得的沸石加入0.1mol/L K4Fe(CN)6溶液中,然后放入摇床中恒温25℃震荡4h,摇床转数为130rpm,最后用蒸馏水对沸石冲洗7次,90℃烘干12h,得到改性沸石颗粒。
本实施例制备得到的改性后沸石的粒径为500μm,对放射性水中锶和铯的去除效果很好,在放射性水中锶浓度为10mg/L、铯浓度为10mg/L,改性沸石投加量为2g/L,25℃,磁力搅拌吸附时间为2h的条件下,锶和铯的剩余浓度分别为0.36mg/L、0.34mg/L,去除率高达96.4%和96.6%。
实施例3
本实施例提供了一种同步去除放射性水中锶和铯的沸石改性方法,所述方法具体步骤如下:
1)先用蒸馏水对适量粒径为500μm的待改性天然沸石进行6次冲洗,然后然后80℃烘干8h;
2)将步骤1)所得的沸石加入0.8mol/L NaOH溶液中,然后放入摇床中恒温30℃震荡6h,摇床转数为80rpm,最后用蒸馏水对沸石冲洗7次,85℃烘干12h,备用;
3)将步骤2)所得的沸石加入0.15mol/L Cu(NO3)2溶液中,然后放入摇床中恒温25℃震荡4h,摇床转数为140rpm,最后用蒸馏水对沸石冲洗7次,95℃烘干12h,备用;
4)将步骤3)所得的沸石加入0.075mol/L K4Fe(CN)6溶液中,然后放入摇床中恒温25℃震荡4h,摇床转数为150rpm,最后用蒸馏水对沸石冲洗7次,95℃烘干12h,得到改性沸石颗粒。
本实施例制备得到的改性后沸石的粒径为500μm,对放射性水中锶和铯的去除效果很好,在放射性水中锶浓度为10mg/L、铯浓度为10mg/L,改性沸石投加量为2g/L,25℃,磁力搅拌吸附时间为2h的条件下,锶和铯的剩余浓度分别为0.40mg/L、0.38mg/L,去除率高达96.0%和96.2%。

Claims (7)

1.一种同步去除放射性水中锶和铯的沸石改性方法,其特征在于所述方法步骤如下:
1)先用蒸馏水对待改性天然沸石进行3~5次冲洗,然后烘干备用;
2)将步骤1)所得的沸石加入NaOH溶液中,然后放入摇床中恒温震荡,最后用蒸馏水对沸石冲洗5~7次,烘干备用;
3)将步骤2)所得的沸石加入Cu(NO3)2溶液中,然后放入摇床中恒温震荡,最后用蒸馏水对沸石冲洗5~7次,烘干备用;
4)将步骤3)所得的沸石加入K4Fe(CN)6溶液中,然后放入摇床中恒温震荡,最后用蒸馏水对沸石冲洗5~7次,烘干得到改性沸石颗粒。
2.根据权利要求1所述的同步去除放射性水中锶和铯的沸石改性方法,其特征在于所述步骤1)中,待改性天然沸石的粒径为300~500μm。
3.根据权利要求1所述的同步去除放射性水中锶和铯的沸石改性方法,其特征在于所述步骤1)中,烘干温度为60~70℃,烘干时间为4~8h。
4.根据权利要求1所述的同步去除放射性水中锶和铯的沸石改性方法,其特征在于所述步骤2)中,NaOH溶液的浓度为0.1~2mol/L,震荡温度为25~40℃,震荡时间为4~8小时,摇床转速为60~120rpm,烘干温度为80~100℃,烘干时间为10~14h。
5.根据权利要求1所述的同步去除放射性水中锶和铯的沸石改性方法,其特征在于所述步骤3)中,Cu(NO3)2溶液的浓度为0.05~0.2mol/L,震荡温度为20~35℃,震荡时间为2~6小时,摇床转速为100~160rpm,烘干温度为80~100℃,烘干时间为10~14h。
6.根据权利要求1所述的同步去除放射性水中锶和铯的沸石改性方法,其特征在于所述步骤4)中,K4Fe(CN)6溶液的浓度为0.02~0.1mol/L,震荡温度为20~35℃,震荡时间为2~6小时,摇床转速为100~160rpm,烘干温度为80~100℃,烘干时间为10~14h。
7.根据权利要求1所述的同步去除放射性水中锶和铯的沸石改性方法,其特征在于所述步骤4)中,改性沸石颗粒的粒径为300~500μm。
CN201810792678.6A 2018-07-18 2018-07-18 一种同步去除放射性水中锶和铯的沸石改性方法 Pending CN108854948A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810792678.6A CN108854948A (zh) 2018-07-18 2018-07-18 一种同步去除放射性水中锶和铯的沸石改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810792678.6A CN108854948A (zh) 2018-07-18 2018-07-18 一种同步去除放射性水中锶和铯的沸石改性方法

Publications (1)

Publication Number Publication Date
CN108854948A true CN108854948A (zh) 2018-11-23

Family

ID=64303149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810792678.6A Pending CN108854948A (zh) 2018-07-18 2018-07-18 一种同步去除放射性水中锶和铯的沸石改性方法

Country Status (1)

Country Link
CN (1) CN108854948A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327876A (zh) * 2019-07-29 2019-10-15 福建海峡环保集团股份有限公司 一种应用于含磷废水处理的吸附材料的制备方法
CN111217416A (zh) * 2019-11-29 2020-06-02 南华大学上虞高等研究院有限公司 一种使用沸石材料处理含放射性元素废水的方法
CN111646484A (zh) * 2020-07-07 2020-09-11 洛阳建龙微纳新材料股份有限公司 一种改性4a型分子筛及其制备方法和应用
CN112028164A (zh) * 2020-08-25 2020-12-04 广西桂林新大桂工环境科技中心(有限合伙) 污水处理用沸石液剂的制备方法
CN112742343A (zh) * 2020-11-13 2021-05-04 烟台大学 亚铁氰化铜镍/蒙脱土复合材料及其制备方法和吸附用途
CN116586029A (zh) * 2023-06-08 2023-08-15 兰州大学 一种改性MXene吸附材料及其制备方法与用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480328A (zh) * 2013-09-05 2014-01-01 上海交通大学 用于分离放射性铯元素的复合吸附剂及其制备方法
CN103548094A (zh) * 2011-04-28 2014-01-29 学校法人慈惠大学 除污用磁性复合粒子、及其制造方法、以及放射性物质类除污系统、及放射性物质类的除污方法
CN104973655A (zh) * 2014-04-03 2015-10-14 北京国投盛世科技股份有限公司 一种天然沸石水处理剂
JP2016176742A (ja) * 2015-03-19 2016-10-06 日立造船株式会社 放射性セシウムの固定化方法、及び放射性セシウム吸着無機鉱物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103548094A (zh) * 2011-04-28 2014-01-29 学校法人慈惠大学 除污用磁性复合粒子、及其制造方法、以及放射性物质类除污系统、及放射性物质类的除污方法
CN103480328A (zh) * 2013-09-05 2014-01-01 上海交通大学 用于分离放射性铯元素的复合吸附剂及其制备方法
CN104973655A (zh) * 2014-04-03 2015-10-14 北京国投盛世科技股份有限公司 一种天然沸石水处理剂
JP2016176742A (ja) * 2015-03-19 2016-10-06 日立造船株式会社 放射性セシウムの固定化方法、及び放射性セシウム吸着無機鉱物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王哲、李海峰: "新疆沸石对放射性核素锶和铯的吸附性能研究", 《河南化工》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327876A (zh) * 2019-07-29 2019-10-15 福建海峡环保集团股份有限公司 一种应用于含磷废水处理的吸附材料的制备方法
CN111217416A (zh) * 2019-11-29 2020-06-02 南华大学上虞高等研究院有限公司 一种使用沸石材料处理含放射性元素废水的方法
CN111646484A (zh) * 2020-07-07 2020-09-11 洛阳建龙微纳新材料股份有限公司 一种改性4a型分子筛及其制备方法和应用
CN112028164A (zh) * 2020-08-25 2020-12-04 广西桂林新大桂工环境科技中心(有限合伙) 污水处理用沸石液剂的制备方法
CN112742343A (zh) * 2020-11-13 2021-05-04 烟台大学 亚铁氰化铜镍/蒙脱土复合材料及其制备方法和吸附用途
CN116586029A (zh) * 2023-06-08 2023-08-15 兰州大学 一种改性MXene吸附材料及其制备方法与用途
CN116586029B (zh) * 2023-06-08 2024-01-02 兰州大学 一种改性MXene吸附材料及其制备方法与用途

Similar Documents

Publication Publication Date Title
CN108854948A (zh) 一种同步去除放射性水中锶和铯的沸石改性方法
Chen et al. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade
CN108160048B (zh) 高稳定性除铯吸附剂的规模化制备方法及其产品与应用
US5397476A (en) Purification of solutions
Ding et al. Highly efficient extraction of thorium from aqueous solution by fungal mycelium-based microspheres fabricated via immobilization
CN102079823A (zh) 一种乙二胺改性壳聚糖复合磁性微球的制备方法及其用途
CN103447013A (zh) 一种石墨烯/壳聚糖吸附剂的制备方法及其应用方法
CN107265548A (zh) 一种利用负载水合氧化铁的凹凸棒石深度吸附除磷的方法
Bai et al. Magnetic Fe3O4@ chitosan carbon microbeads: removal of doxycycline from aqueous solutions through a fixed bed via sequential adsorption and heterogeneous Fenton-like regeneration
CN103831090A (zh) 一种铯选择性吸附剂及其制备方法
JP4168172B2 (ja) ヘキサシアノ鉄酸塩の製造方法
Huang et al. Efficient and selective capture of uranium by polyethyleneimine-modified chitosan composite microspheres from radioactive nuclear waste
WO2018129773A1 (zh) 一种高锝酸根吸附剂及其合成方法与在处理放射性废水中的应用
CN107469769A (zh) 一种磁性吸附材料的制备方法及其应用
CN113070036A (zh) 一种生物质基功能炭及其制备方法和在去除水体中微塑料的应用
WO2017114354A1 (zh) 一种颗粒态除铯无机离子吸附剂的制备方法及产品与应用
CN101279249B (zh) 以小球硅胶为载体的亚铁氰化锆钾的制备方法
Ding et al. Biosorption of U (VI) by active and inactive Aspergillus niger: equilibrium, kinetic, thermodynamic and mechanistic analyses
Liu et al. Amino-modified magnetic glucose-based carbon composites for efficient Cr (VI) removal
Fang et al. Amidoximated orange peel as a specific uranium scavenger
Meshram et al. Adsorption of Pb (II) form battery recycling unit effluent using granular activated carbon (GAC) and steam activated GAC
CN106964333A (zh) 用于处理污水的稀土负载催化剂及其制备方法和应用以及臭氧催化氧化处理污水的方法
Wang et al. Highly efficient removal of uranium (VI) from aqueous solution using the Chitosan-Hexachlorocyclotriphosphazene composite
CN113457618A (zh) 一种环境修复用镧掺杂有序介孔分子筛及其制备方法和应用
CN104998624A (zh) 一种除磷吸附剂的造粒方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181123