CN108780823A - 多井硒器件及其制造方法 - Google Patents

多井硒器件及其制造方法 Download PDF

Info

Publication number
CN108780823A
CN108780823A CN201780015785.1A CN201780015785A CN108780823A CN 108780823 A CN108780823 A CN 108780823A CN 201780015785 A CN201780015785 A CN 201780015785A CN 108780823 A CN108780823 A CN 108780823A
Authority
CN
China
Prior art keywords
layer
dielectric layer
conductive gate
well
gate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780015785.1A
Other languages
English (en)
Other versions
CN108780823B (zh
Inventor
阿米尔侯赛因·戈登
赵伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Foundation of State University of New York
Original Assignee
Research Foundation of State University of New York
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Foundation of State University of New York filed Critical Research Foundation of State University of New York
Publication of CN108780823A publication Critical patent/CN108780823A/zh
Application granted granted Critical
Publication of CN108780823B publication Critical patent/CN108780823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14659Direct radiation imagers structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14696The active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)

Abstract

提供了一种场成形多井探测器及其制造方法。通过在衬底上沉积像素电极、沉积第一介电层、在第一介电层上沉积第一导电栅极层、在第一导电栅极层上沉积第二介电层,在第二电介质层上沉积第二导电栅极层、在第二导电栅层上沉积第三电介质层、在第三电介质层上沉积蚀刻掩模来配置该探测器。通过蚀刻第三介电层、第二导电栅极层、第二介电层、第一导电栅极层和第一介电层来形成两个柱。通过蚀刻到像素电极而不蚀刻像素电极来形成两个柱之间的井,并且用a‑Se填充井。

Description

多井硒器件及其制造方法
优先权
本申请要求于2016年1月7日向美国专利商标局提交的美国临时专利申请No.62/275,919的优先权,其全部内容通过引用并入本申请。
政府支持
本发明是在国立卫生研究院给予的基金号为1R21EB01952601A1的政府支持下完成的。美国政府对本发明具有一定权利。
技术领域
本发明通常涉及固态辐射成像探测器领域,尤其涉及具有场成形多井探测器结构的非晶硒辐射探测器。
背景技术
由Charpak在1968年发明的充气多丝正比室赢得诺贝尔奖之后不久,与微电子学的发展并行,开发了微结构气体探测器用于提高位置分辨率。然而,辐射诱导光电子的范围是微米到毫米,对于气体固态探测器,由于其高得多的密度,其具有的光电子范围低三个数量级。因此,固态探测器产生具有实质上更高的空间/时间分辨率的图像。由于低载流子迁移率和渡越时间限制的光响应,比单晶固体研制更容易且更便宜的无序固体没有用作光子计数模式检测介质。
之前为影印机研制的非晶硒(a-Se)已经作为平板探测器(FPD)的直接X射线光电导体商业复苏,因为a-Se具有高的X射线灵敏度,并且能够在大块区域上均匀蒸发为厚膜。
无序固体中,强场存在的情况下,可能发生非欧姆效应,具有从局域态转变为扩展态的传输机制,在扩展态中,迁移率可以增加100至1000倍。在扩展态中这样的热载流子具有接近迁移率边的迁移率,相比它们对声子失去能量能够更快地获得能量。因此,碰撞电离导致的雪崩是可能的[2],例如,在a-Se[3-5]中的热空穴,与非晶硅中的热电子[6]。a-Se中已经显示出连续稳定的雪崩倍增,这一特点使得具有比人眼更高灵敏度,即为人眼光圈F8的11倍,或者比CCD相机灵敏100倍[7]的光学相机能够发展。对于高能贯穿辐射,挑战在于雪崩模式硒不能是大块介质,因为雪崩层不能非常厚(<25μm),并且在大块中,均匀的雪崩场导致与深度相关的增益变化。
正电子发射断层造影术(PET)是一种核医学成像模式,其生成三维(3D)图像,以查看人体内的功能过程。PET最常在临床肿瘤学中用于检测癌症和用于心脏问题和/或大脑疾病的临床诊断。在被引入体内后,发射正电子的放射性核素随着每次湮灭而衰减,每次湮灭在正好相反的方向上发射出两个光子。可以利用渡越时间(TOF)测量来测量电磁波穿过介质行进一段距离的时间。TOF PET系统检测光子,并使用TOF信息来确定两个配准的光子是否在时间上重合,即,属于同一正电子湮灭事件。TOF PET系统使用到达时间差来定位每个湮灭事件。在没有TOF定位数据时,使用计算上昂贵的迭代重建算法来估计事件的3D分布,该事件的3D分布提供与测量的投影数据的最佳匹配。
TOF PET系统的定位精度Δx根据等式(1)由辐射探测器的时间分辨率Δt确定:
Δx=cΔt/2………………………(1)
,其中c是光速。TOF PET探测器的目标是Δt<10皮秒(ps)。但是,这个目标还没有实现。
现有系统利用昂贵的基于复杂的平凹光电阴极的光电倍增管(PMT),仍然仅能获得~500ps的Δt。基于盖革模式运行雪崩光电二极管的硅光电倍增管(SiPM)正在迅速发展。SiPM实现了比PMT更好的Δt,即SiPM获得~100ps的Δt。然而,SiPM具有较差的光子探测效率、光学串扰、面积小、均匀性差且成本高。
已经提出了具有分开的吸收区域和雪崩增益区域的直接转换型a-Se FPD[8,9],并且已经分析了理论成像性能[4]。已经表明,与大部雪崩即整个a-Se中的雪崩相比,分开的局部雪崩倍增区域使增益变化最小化[10]。然而,由于场热点的形成,其中施加的电场(F)超过150V/μm,将导致不可逆的材料击穿,因此这样的直接转换型a-Se FPD尚未实现。
直接转换型a-Se FPD的限制包括由于电子噪声导致的低剂量成像性能降低,因为在10V/微米时,在a-Se中产生电子-空穴对所需的能量为50eV。尽管已经研究了具有更高转换的其他光电导材料,但由于电荷俘获和制造问题,直接转换型a-Se FPD仍远未商业化。通过使电场增加到高于30V/微米,即在1000微米层上为30,000V,可能改善a-Se的转换。然而,此电场增加对于可靠的探测器构造和运行极具挑战性,并且是不切实际的。
由于低载流子迁移率和越渡时间限制的脉冲响应导致时间分辨率低且高能辐射转换为电荷的转换增益低,非晶固体即无序的非晶固体作为光子计数模式下的可行的辐射成像探测器已被排除。已经提议了具有分开的吸收区域和雪崩区域的直接转换a-Se层,但是重大障碍阻碍了具有分开的吸收区域和雪崩区域的直接转换a-Se层的实际实施。
已经提出了具有Frisch栅的单极固态探测器[11-13]。然而,这种探测器结构对于直接转换雪崩增益是不实用的,因为井中的最高电场在半导体和像素电极之间的界面处发展,导致了大电荷注入引起的高暗电流和对探测器潜在的不可逆转的损坏。
已经使用高粒度微观结构多井结构,即多井固态探测器(MWSD)制造了单极时间差分(UTD)固态探测器,如图1所示,其是通过扫描电子显微镜(SEM)获得的MWSD的横截面[12]。如图1所示,公共电极110设置在其上部,衬底160设置在相对的下部。像素电极130在衬底160的上表面上形成为集电极,并且多个绝缘体在像素电极130的上表面上形成,在多个绝缘体的每个绝缘体150的顶部形成有防护罩120。多个井140,142设置在多个绝缘体的各个绝缘体之间。
渡越时间实验结果表明了由UTD电荷感应引起的探测器的时间分辨率的实质性改善。此外,实现了由光生载流子包的传播所设定的信号上升时间的最终物理限制[12,13,15-17]。然而,传统的系统不会在井的底部蚀刻电介质,也不会在其每一侧上提供用介电层封装的栅极。
已经提出将其他非晶硒多井雪崩探测器制造方法用于纳米电极多井高增益雪崩冲击光电导体和场成形多井雪崩探测器[15,16]。然而,这些方法需要对准,即在光刻期间对准,以用绝缘体/电介质封装栅极,同时去除井底部的绝缘体/电介质。
发明内容
为了克服常规系统的缺点,本发明提供的多井硒探测器及其制造方法去除了所需的对准并用绝缘体/电介质封装栅极。
因此,本发明的各方面处理了上述问题和缺点,并提供了以下优点。本发明的一个方面提供了没有场热点的实用探测器结构,以实现直接转换雪崩a-Se。
本发明的一个方面提供了一种制造多井非晶硒(a-Se)探测器的方法,包括:在衬底上沉积像素电极;沉积第一介电层;在第一介电层上沉积第一导电栅极层;在第一导电栅极层上沉积第二介电层;在第二介电层上沉积第二导电栅极层;在第二导电栅极层上沉积第三介电层;在第三介电层上沉积蚀刻掩模;执行第一蚀刻以形成至少两个柱,其间具有至少一个井;在该至少两个柱上和该至少一个井的底部上沉积氧化物介电层;以及执行第二蚀刻以从该至少一个井的底部去除氧化物介电层。
本发明的另一方面提供纳米结构的多井固态a-Se辐射探测器,包括半导体、像素电极、第一介电层、第二介电层、第三介电层、第一导电栅极层和第二导电栅极层。像素电极沉积在衬底上,第一导电栅极层沉积在第一介电层上,第二介电层沉积在第一导电栅极层上,第二导电栅极层沉积在第二介电层上,第三介电层沉积在第二导电栅极层上,蚀刻掩模沉积在第三介电层上,第一蚀刻形成至少两个柱,其间具有至少一个井,氧化物介电层沉积于该至少两个柱上以及至少一个井的底部上,并且第二蚀刻从该至少一个井的底部移除氧化物介电层。
附图说明
通过以下结合附图的详细描述,本发明的某些实施例的上述方面和其他方面、特征和优点将更加明显,其中:
图1是常规微观井固态探测器的SEM截面图;
图2(a)-2(l)示出了根据本发明实施例的制造具有封装柱的多井衬底的方法;
图3(a)是根据本发明实施例的柱阵列的爆炸图,该柱阵列具有形成在像素电极阵列上的封装的栅极;
图3(b)是图3(a)的柱阵列的组装图;
图4是常规器件的俯视图;
图5(a)是根据本发明实施例的多像素衬底上的微带栅极的线性阵列的俯视图;
图5(b)是组装的图5(a)的柱阵列的侧视图;
图6是根据本发明的在多像素衬底上使用六边形/蜂巢状的微孔栅极二维阵列的另一实施例的俯视图;以及
图7(a)-7(d)示出了根据本发明实施例的具有两个栅极的多井结构的制造。
具体实施方式
下面将参考附图对本发明的某些实施例进行详细描述。在描述本发明时,为了清楚理解本发明的概念,省略了对本领域已知的相关函数或结构的说明,以避免不必要的细节模糊本发明。
本发明公开了一种固态雪崩辐射探测器及其构造方法,使用非晶材料作为没有场热点的光电导层,以提供直接转换雪崩a-Se。固态雪崩辐射探测器基于场成形,通过将两个低场区域之间的高场雪崩区域局域化,改进了Sauli,Lee和Goldan的器件[9,11,14-16]。
本发明优化了固态探测器结构,以在直接转换型非晶硒辐射探测器中提供稳定的雪崩倍增增益。探测器结构被称为场成形多井雪崩探测器(SWAD),通过改变低场相互作用区域的厚度阻止高能辐射并通过优化用于雪崩倍增的高场多井探测区域,提供了在大面积直接辐射探测器中实现稳定雪崩的实用方法。
通过使用具有绝缘壁的高密度雪崩井消除场热点,在每个井内具有场成形,实现稳定的雪崩倍增增益。
高密度绝缘井和场成形消除了雪崩区域中场热点的形成,并消除了金属-半导体界面处的高场。金属-半导体界面处的电场比发生雪崩处的峰值低一个数量级。场成形电极、高密度绝缘井和场成形在每个井内提供半高斯场分布。
图2(a)-2(l)示出了根据本发明实施例的制造具有封装柱的多井衬底的方法。图2(a)-2(l)示出了制造中的相关顺序步骤。为了简洁,图2(a)-2(l)仅示出了两个栅层,将其重复使其能够沉积两个以上的绝缘介电层和导电栅极。
图2(a)示出了通过光刻在衬底260上图案化的导电像素电极230。优选地,衬底260是玻璃,例如石英、钠钙玻璃、熔融石英或硅。或者,薄膜晶体管(TFT)衬底或互补金属氧化物半导体(CMOS)衬底可以与先前图案化的像素电极一起使用。像素电极230被配置为收集产生的电荷,并且优选地由包括铝(Al)、铬(Cr)、钨(W)、氧化铟锡(ITO)和氧化锌(ZnO)的导电材料形成。
图2(b)示出了沉积在衬底260上的第一介电层241,即绝缘层。介电材料是电流的不良导体,并且沉积优选地通过物理气相沉积(PVD)、旋转涂膜、等离子体增强化学气相沉积(PECVD)和原子层沉积(ALD)中的一种执行。PVD可包括热蒸发、电子束蒸发或溅射。第一介电层241由非导电材料或导电率非常低的材料形成,例如聚酰亚胺(PI)、氧化硅(SiO)、氮化硅(SiN)和氧化铝(AlO)。
图2(c)示出了沉积在第一介电层241上的第一导电栅极层,即栅-1。图2(d)示出了沉积在第一导电栅极层251上的第二介电层242。图2(e)示出了沉积在第二介电层242上的第二导电栅极层252,即栅-2。图2(f)示出了沉积在第二导电栅极层252上的第三介电层243。
如图2(g)所示,在第二导电栅极层252上沉积第三导电介电层243之后,在第三介电层243上沉积掩模层280,作为蚀刻掩模。掩模层280是金属、有机光刻胶或具有高蚀刻抗性的其他材料。图2(h)示出了使用光学接触光刻、光学光刻例如步进光刻或电子束光刻(EBL)使得图案化的掩模层280。
图2(i)示出了保持图案的各向异性蚀刻的结果。各向异性蚀刻连续穿过层状的电介质和栅,直到到达像素电极230,并且不蚀刻像素电极230。优选地,干蚀刻用于电介质和栅极。
可以使用反应离子蚀刻(RIE)或深RIE来执行干蚀刻。优选地,有机聚合物电介质的各向异性蚀刻以深RIE工具在低压和低温下使用感应充电等离子体(ICP)蚀刻系统来执行。优选地使用氟化各向异性蚀刻来执行氧化物电介质,例如SiO的各向异性蚀刻,其中每个干法蚀刻后续紧接着二次等离子体沉积,其在侧壁上提供氟碳聚合物钝化层。可以使用其他各向异性蚀刻技术,只要氧化物仅在井底部垂直蚀刻而没有在侧壁蚀刻,由此在蚀刻期间在侧壁处保留氧化物以将栅极封装在井内。
图2(j)示出了氧化物电介质介电层285(例如SiO,AlO)的沉积,其共形地封装柱271,272和井290。共形氧化物沉积方法包括原子层沉积(ALD)和基于硅烷的PECVD。液体四乙氧基硅烷(TEOS)可代替硅烷气体用作Si的来源(TEOS-PECVD)。
图2(k)示出了使用干RIE将剩余的掩模层280的上表面和井底部的氧化物进行各向异性蚀刻。各向异性蚀刻去除了在井290的底部的柱271,272之间的封装。氧化物电介质,例如SiO的各向异性蚀刻可以使用氟化各向异性蚀刻来完成,其中每个干蚀刻后续紧接着二次等离子体沉积,其在侧壁上提供非常薄的氟碳聚合物钝化处理。
图2(l)示出通过干法蚀刻或湿法蚀刻去除蚀刻掩模,从而形成具有至少两个封装的在衬底260上形成的栅极的多井衬底。各向异性蚀刻产生大致垂直的侧壁,并形成至少两个柱271,272,每个柱宽度为W(图2(h)),其间具有间隙G。
图3(a)是根据本发明实施例的柱阵列的爆炸图,该柱阵列具有形成在像素电极阵列上的封装栅极。
图3(b)是图3(a)的柱阵列的组装图。图3(c)是图3(a)组装的柱阵列的侧视图。
图3(a)至3(c)示出了配置用于扫描控制的器件和用于以TFT或CMOS读出电子器件等从像素电极阵列输出到成像器件衬底的多个总线。如图3(a)和3(b)所示,多井结构340形成在衬底360的顶部。a-Se层320填充多井结构340的井,直到公共电极310。a-Se层320是n-i-p层或p-i-n层,其中p-或类似层作为沉积在衬底,即多井衬底上的第一层,接着是i-层,然后是n-或类似层,接着是高压电极。一旦衬底上形成多井结构,就在多井衬底上沉积非晶硒光电导体。硒沉积可以包括p-i-n过程,其中首先在多井衬底上沉积类p-的电子阻挡层。然后蒸发本征稳定的硒以形成大块的半导体层。然后沉积类n-,即n-型空穴阻挡层,然后沉积导电高压(HV)电极。对于光学光探测器,导电HV电极是透明或半透明的。例如,ITO或ZnO是导电层,其也能够针对高光透明度进行优化。
如图2(k)、2(l)、3(a)和3(b)所示,蚀刻掉每个井底部的氧化物。
图4是常规器件的俯视图。如图4所示,在常规器件中,每个井490a-490p对应于不超过一个像素431-426,每个井的形状为方形的,每个井在X和Y维度上都被像素边界包围,并且井必须对齐到像素电极的中心轴。
图5(a)是根据本发明的实施例的多像素衬底上的微带栅极的线性阵列的俯视图。图5(b)是组装的图5(a)柱阵列的侧视图。将图4与图5(a)和5(b)比较,显示本发明允许每个井590a-590i被许多,即至少两个像素电极531,532共享;每个井590a-590i不受像素电极形状的限制,并且能够跨像素边界延伸;并且井590a-590i由电极550和电介质540的微带栅形成。如图5(b)所示,电极包括顶部栅550a和底部栅550b。在多像素衬底上提供具有不需要与任何像素电极对准的井的微带栅极线性阵列,提供了彼此自对准的重叠栅极。
图6是根据本发明的在多像素衬底上使用六边形/蜂巢状的二维微孔栅极阵列的另一实施例的俯视图。如图6所示,像素631-634形成多像素衬底,具有在介电层内具有微孔栅极的多个井690a、690b、690c、690d。将图4与图6比较表明,本发明使得一些井能够由许多即至少两个像素电极共享;每个井不受像素电极形状的限制,并且可以横跨像素边界延伸;并且井也可以由蜂巢状的微孔栅极形成。
图7(a)-7(d)示出了根据本发明实施例的具有两个栅极的多井结构的制造。图7(a)-7(d)的多井结构通过以下步骤在玻璃衬底上制造:
通过溅射铝将像素电极230沉积在衬底260上;
使用接触光刻,使像素电极230图案化;
通过旋转涂覆聚酰亚胺,沉积第一介电层241;
固化聚酰亚胺;
通过溅射钨在第一介电层241上沉积第一导电栅极层251;
通过溅射钨在第一导电栅极层251上沉积第二介电层242;
通过旋转涂覆聚酰亚胺,在第二导电栅极层252上沉积第三介质层243;
固化聚酰亚胺;
通过溅射铬在第三介电层243上沉积蚀刻掩模层280;
使用接触光刻,使蚀刻掩模层280图案化;
使用RIE系统进行Cr蚀刻;和
蚀刻井直到到达像素电极。
优选地,蚀刻井直到像素电极通过以下方式执行:
在ICP深RIE系统内使用氧等离子体(O2等离子体)各向异性地蚀刻第三介电层243;
通过用SF6等离子体干蚀刻W来蚀刻第二导电栅极层252;
在ICP深RIE系统内使用O2等离子体各向异性地蚀刻第二介电层;
通过用SFG等离子体干蚀刻W来蚀刻第一导电栅极层;和
在ICP深RIE系统内使用O2等离子体各向异性地蚀刻第一介电层241。
在蚀刻井之后,使用TEOS-PECVD系统共形地沉积SiO2,图7(a)示出了蚀刻井之后的理想结构,用氧化物介电层共形地封装柱和井。图7(b)是显示使用本发明所述工艺制造的结构的SEM截面图。图7(b)和图7(d)分别对应于图2(j)和图2(l)中所示的步骤。
如图7(c)所示,氧化物介电层的各向异性蚀刻仅从井底部和掩模顶部去除氧化物,而不蚀刻侧壁处的氧化物。将氧化物留在侧壁上确保了通过所有侧面上的介电层完全封装栅极。优选地,SiO2的各向异性蚀刻使用氟化各向异性蚀刻来执行,每个干法蚀刻后续紧接着是二次等离子体沉积,其在侧壁上提供非常薄的氟-碳聚合物钝化层。
优选地,使用湿蚀刻来蚀刻Cr掩模。图7(d)是显示优选的各向异性氧化物蚀刻的SEM截面图,其中SiO2保持完整,没有蚀刻侧壁。
如图7(b)和如图7(d)所示,在井290的底部和掩模的顶部处的各向异性,即垂直去除氧化物,而柱的侧壁上的氧化物未被蚀刻,使得栅极能够完全封装在介电层内。
提供一种纳米结构、多井、固态a-Se辐射探测器,其包括半导体、像素电极、至少三个电介质层和至少两个导电栅极层。像素电极邻近衬底沉积,并且至少两个导电栅极层的第一导电栅极层沉积在至少三个介电层的第一介电层上。至少三个介电层的第二介电层沉积在第一导电栅极层上。至少两个导电栅极层的第二导电栅极层沉积在第二介电层上。所述至少三个介电层的第三介电层沉积在所述第二导电栅极层上,并且蚀刻掩模沉积在所述第三介电层上。第一蚀刻形成至少两个柱,其间具有至少一个井,氧化物介电层沉积在所述至少两个柱上和所述至少一个井的底部上,并且第二蚀刻从至少一个井的底部去除氧化物介电层。也可以使用两个以上的导电栅极层。如果,例如使用三个导电栅极层,则在第二导电栅极层上形成第三介电层,在第三介电层上形成第三导电栅极层,在第三导电栅极上形成第四介电层,由此在第n导电栅极层上形成第n+1介电层,而蚀刻掩模沉积在第n+1介电层上。然后执行第一蚀刻以形成至少两个柱,其间具有至少一个井,如上所述。
本发明提供的器件提供UTD电荷感应,其使探测器能够在电荷扩散的理论极限下运行,在雪崩模式下改进超过三个数量级。
虽然已经参考本发明的某些方面示出和描述了本发明,但是本领域技术人员应当理解的是,在不背离本发明所附权利要求及其等同物所限定的精神和范围的情况下,可以在形式和细节上进行各种改变。
参考文献
[1]J.A.Rowlands and S.Kasap;Amorphous Semiconductors Usher in DigitalX-Ray Imaging.Phys.Today,50(11):24-30,1997.
[2]N.F.Mott;Conduction in non-crystalline systems.VII.Non-ohmicbehavior and switching.Phil.Mag.,24(190):91 1-934,1971.
[3]G.Juska and K.Arlauskas;Impact ionization and mobilities of chargecarriers at high electric fields in amorphous selenium.Phys.Stat.Sol.(a),59(l):389-393,1980.
[4]M.M.Wronski and J.A.Rowlands;Direct-conversion flat-panel imagerwith avalanche gain:Feasibility investigation for HARP-AMFPI.Medical Physics,35(12):5207-5218,2008.
[5]M.M.Wronski,W.Zhao,A.Reznik,G.DeCrescenzo,K.Tanioka,andJ.A.Rowlands;A solid-state amorphous selenium avalanche technology for lowphoton flux imaging applications.Med.Phys.,37(9):4982,2010.
[6]G.Juska,K.Arlauskas,J.Kocka,M.Hoheisel,and P.Chabloz;Hot Electronsin Amorphous Silicon.Physical Review Letters,75:2984-2987,1995.
[7]K.Tanioka;The ultrasensitive TV pickup tube from conception torecent development.J.Mater.Sci.:Mater.Electron.,18(0):321-325,2007.
[8]U.S.Pat.No.6,437,339to Lee,et al.,the content of which isincorporated herein by reference.
[9]D.L.Y.Lee;Selenium detector with a grid for selenium chargegain.Proceedings of SPIE,5745:216-222,2005.
[10]D.C.Hunt,K.Tanioka,and J.A.Rowlands.X-ray imaging using avalanchemultiplication in amorphous selenium:Investigation of depth dependentavalanche noise.Med,Phys.,34(3):976-986,2007.
[11]U.S.Pat.No.8,129,688 to A.H.Goldan,et al,the content of which isincorporated herein by reference.
[12]A.H.Goldan,O.Tousignant,K.S.Karim,and J.A.Rowlands;Unipolar time-differential pulse response with a solid-state Charpakphotoconductor.Appl.Phys.Lett.,101(21):213503,2012.
[13]A.H.Goldan,J.A.Rowlands,O.Tousignant,and K.S.Karim;Unipolar time-differential charge sensing in non-dispersive amorphous solids.J.Appl.Phys.,113(22):224502,2013.
[14]F.Sauli;GEM:A new concept for electron amplification in gasdetectors.Nucl.Instr.and Meth.A,386(2-3):531-534,1997.
[15]U.S.Pat.Publ.No.2016/00871 13 Al of U.S.Appl.No.14,888,879 toA.H.Goldan,et al.,其内容通过引用并入本申请。.
[16]U.S.Pat.Publ.No.2015/0171232 Al of U.S.Appl.No.14/414,607 toA.H.Goldan,et al.,其内容通过引用并入本申请。.
[17]A.H.Goldan,J.A.Rowlands,M.Lu,and W.Zhao;Nanopattern multi-wellavalanche selenium detector with picosecond time resolution.InProc.Conf.Rec.IEEE NSS/MIC,pages N32-4,Seattle,2014.

Claims (20)

1.一种制造多井非晶硒(a-Se)探测器的方法,包括:
邻近衬底沉积像素电极;
沉积第一介电层;
在第一介电层上沉积第一导电栅极层;
在第一导电栅极层上沉积第二介电层;
在第二介电层上沉积第二导电栅极层;
在第二导电栅极层上沉积第三介电层;
在第三介电层上沉积蚀刻掩模;
执行第一蚀刻以形成至少两个柱,其间具有至少一个井;
在所述至少两个柱上和所述至少一个井的底部上沉积氧化物介电层;以及
执行第二蚀刻以从所述至少一个井的底部去除氧化物介电层。
2.根据权利要求1所述的方法,其特征在于,第一蚀刻执行为从第三介电层向第二导电栅极层、第二介电层、第一导电栅极、到第一介电层、并到像素电极。
3.根据权利要求1所述的方法,其特征在于,第一蚀刻是各向异性的,并且其中第一蚀刻不蚀刻像素电极。
4.根据权利要求1所述的方法,其特征在于,所述第二蚀刻不从具有所述至少一个井的所述至少两个柱的侧面移除所述氧化物介电层。
5.根据权利要求1所述的方法,其特征在于,所述第二蚀刻不蚀刻所述像素电极。
6.根据权利要求1所述的方法,其特征在于,所述至少两个柱中的每一个包括所述第一导电栅极层和所述第二导电栅极层,在所述至少一个井的相对侧上形成一对第一导电栅极层和一对第二导电栅极层。
7.根据权利要求6所述的方法,其特征在于,所述一对第一导电栅极层与所述像素电极间隔开第一距离,
其中,所述一对第二导电栅极层与所述像素电极隔开第二距离,并且
其中第一距离不同于第二距离。
8.根据权利要求6所述的方法,其特征在于,所述氧化物介电层完全封装所述一对第一导电栅极层中的每一个。
9.根据权利要求6所述的方法,其特征在于,所述氧化物介电层完全封装所述一对第二导电栅极层中的每一个。
10.根据权利要求6所述的方法,其特征在于,所述一对第一导电栅极层与所述一对第二导电栅极层对准,而不必在执行所述第一蚀刻之前对准所述第一导电栅极层和所述第二导电栅极层。
11.根据权利要求1所述的方法,其特征在于,所述第一导电栅极层和所述第二导电栅极层分别堆叠在所述第一介电层上或所述第二介电层上之前,未被图案化。
12.一种纳米结构的多井固态a-Se辐射探测器,包括:
半导体;
像素电极;
至少三个介电层;
至少两个导电栅极层,
其中像素电极邻近衬底沉积,
其中所述至少两个导电栅极层的第一导电栅极层沉积在所述至少三个介电层的第一介电层上,
其中所述至少三个介电层的第二介电层沉积在所述第一导电栅极层上,
其中所述至少两个导电栅极层的第二导电栅极层沉积在所述第二介电层上,
其中所述至少三个介电层的第三介电层沉积在所述第二导电栅极层上,
其中蚀刻掩模沉积在所述第三介电层上,
其中第一蚀刻形成至少两个柱,其间具有至少一个井,
其中氧化物介电层沉积在所述至少两个柱上和所述至少一个井的底部上,并且
其中第二蚀刻从所述至少一个井的底部去除氧化物介电层。
13.根据权利要求12所述的探测器,其特征在于,第一蚀刻执行为从第三介电层向第二导电栅极层、第二介电层、第一导电栅极层、第一介电层、并到像素电极,并且
其中第一蚀刻不蚀刻像素电极。
14.根据权利要求12所述的探测器,其特征在于,所述第二蚀刻不会从具有所述至少一个井的所述至少两个柱的侧壁移除所述氧化物介电层,并且
其中第二蚀刻不蚀刻像素电极。
15.根据权利要求12所述的探测器,其特征在于,所述至少两个柱中的每一个包括所述第一导电栅极层和所述第二导电栅极层,在所述至少一个井的相对侧上形成一对第一导电栅极层和一对第二导电栅极层。
16.根据权利要求15所述的探测器,其特征在于,所述一对第一导电栅极层与所述像素电极间隔第一距离,
其中,所述一对第二导电栅极层与所述像素电极间隔第二距离,并且
所述第一距离不同于所述第二距离。
17.根据权利要求15所述的探测器,其特征在于,所述氧化物介电层完全封装所述一对第一导电栅极层中的每一个。
18.根据权利要求15所述的探测器,其特征在于,所述氧化物介电层完全封装所述一对第二导电栅极层中的每一个。
19.根据权利要求15所述的探测器,其特征在于,所述一对第一导电栅电极层与所述一对第二导电栅极层对准,而不必在执行所述第一蚀刻之前对准所述第一导电栅极层和所述第二导电栅极层。
20.根据权利要求12所述的探测器,其特征在于,所述第一导电栅极层和所述第二导电栅极层分别堆叠在所述第一介电层上或在所述第二介电层上之前,未被图案化。
CN201780015785.1A 2016-01-07 2017-01-09 多井硒器件及其制造方法 Active CN108780823B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662275919P 2016-01-07 2016-01-07
US62/275,919 2016-01-07
PCT/US2017/012712 WO2017120582A1 (en) 2016-01-07 2017-01-09 Multi-well selenium device and method for fabrication thereof

Publications (2)

Publication Number Publication Date
CN108780823A true CN108780823A (zh) 2018-11-09
CN108780823B CN108780823B (zh) 2022-04-19

Family

ID=59274078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780015785.1A Active CN108780823B (zh) 2016-01-07 2017-01-09 多井硒器件及其制造方法

Country Status (8)

Country Link
US (3) US10658530B2 (zh)
EP (1) EP3400615A4 (zh)
JP (1) JP6924208B2 (zh)
KR (1) KR102255739B1 (zh)
CN (1) CN108780823B (zh)
AU (1) AU2017205207B2 (zh)
CA (1) CA3010852C (zh)
WO (1) WO2017120582A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3400616B1 (en) 2016-01-07 2020-12-30 The Research Foundation for The State University of New York Selenium photomultiplier
KR102255739B1 (ko) 2016-01-07 2021-05-27 더 리서치 파운데이션 포 더 스테이트 유니버시티 오브 뉴욕 멀티-웰 셀레늄 장치 및 이의 제조방법
US10763290B2 (en) 2017-02-22 2020-09-01 Elwha Llc Lidar scanning system
US11005186B2 (en) 2019-03-18 2021-05-11 Lumotive, LLC Tunable liquid crystal metasurfaces
US11092675B2 (en) 2019-11-13 2021-08-17 Lumotive, LLC Lidar systems based on tunable optical metasurfaces
EP4301232A1 (en) * 2021-03-01 2024-01-10 The Research Foundation for The State University of New York Dual-layer detector system and method for spectral imaging and contrast enhanced digital breast tomosynthesis
KR102567895B1 (ko) * 2021-08-19 2023-08-17 청주대학교 산학협력단 분산 마이크로 전극 그리드를 갖는 3차원 투명 태양전지
US11429008B1 (en) 2022-03-03 2022-08-30 Lumotive, LLC Liquid crystal metasurfaces with cross-backplane optical reflectors
US11487183B1 (en) 2022-03-17 2022-11-01 Lumotive, LLC Tunable optical device configurations and packaging
US11487184B1 (en) 2022-05-11 2022-11-01 Lumotive, LLC Integrated driver and self-test control circuitry in tunable optical devices
US11493823B1 (en) 2022-05-11 2022-11-08 Lumotive, LLC Integrated driver and heat control circuitry in tunable optical devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328701A (zh) * 1999-07-26 2001-12-26 埃德茨医疗设备有限公司 用于x-射线成像的数字检测器
US7256402B1 (en) * 2004-04-15 2007-08-14 Denny Lee Flat panel X-ray imager with a grid structure
WO2014015285A2 (en) * 2012-07-19 2014-01-23 The Research Foundation Field-shaping multi-well avalanche detector for direct conversion amorphous selenium
WO2014194071A1 (en) * 2013-05-29 2014-12-04 The Research Foundation For The State University Of New York Nano-electrode milti-well high-gain avalanche rushing photoconductor

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359406B2 (ja) * 1993-12-27 2002-12-24 三菱電機株式会社 半導体装置の製造方法
US6051446A (en) 1998-04-09 2000-04-18 National Semiconductor Corporation Thin liquid crystal transducer pixel cell having self-aligned support pillars
US5982472A (en) 1998-12-14 1999-11-09 National Semiconductor Corporation Self-aligned pixel with support pillars for a liquid crystal light valve
JP3479010B2 (ja) * 1999-11-04 2003-12-15 Necエレクトロニクス株式会社 不揮発性半導体記憶装置の製造方法
US6437339B2 (en) 2000-03-24 2002-08-20 Hologic, Inc. Flat panel x-ray imager with gain layer
JP2002353472A (ja) * 2001-05-28 2002-12-06 Fuji Photo Film Co Ltd 光検出装置および方法
JP3785501B2 (ja) * 2001-11-15 2006-06-14 財団法人新産業創造研究機構 ガス増幅型x線イメージング検出器及びガス増幅型x線イメージング検出方法
TWI343654B (en) 2007-07-25 2011-06-11 Au Optronics Corp Method for fabricating pixel structures
CA2615827A1 (en) 2008-01-22 2009-07-22 Karim S. Karim Method and apparatus for single-polarity charge sensing for semiconductor radiation detectors deposited by physical vapor deposition techniques
US7989275B2 (en) 2008-03-10 2011-08-02 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, manufacturing method thereof, display device, and manufacturing method thereof
KR100991255B1 (ko) * 2008-06-27 2010-11-04 주식회사 디알텍 디지털 방사선 영상 검출기의 기판 장치 및 방사선 영상검출기 기판 장치의 제조 방법
US8741702B2 (en) 2008-10-24 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5602598B2 (ja) * 2010-11-29 2014-10-08 富士フイルム株式会社 放射線検出器及び放射線検出器の製造方法
JP5849489B2 (ja) 2011-07-21 2016-01-27 セイコーエプソン株式会社 電気光学装置、投射型表示装置、電子機器、および電気光学装置の製造方法
CN105590897A (zh) 2011-07-26 2016-05-18 群创光电股份有限公司 显示面板及其制作方法
CN106486501A (zh) 2015-08-27 2017-03-08 中国科学院微电子研究所 一种x射线传感器及其制造方法
KR102491580B1 (ko) 2015-12-15 2023-01-25 삼성전자주식회사 이미지 센서 및 그 제조 방법
KR102255739B1 (ko) 2016-01-07 2021-05-27 더 리서치 파운데이션 포 더 스테이트 유니버시티 오브 뉴욕 멀티-웰 셀레늄 장치 및 이의 제조방법
CN107507834B (zh) 2016-06-14 2020-06-12 群创光电股份有限公司 显示装置及显示装置的制造方法
US10553733B2 (en) 2016-11-29 2020-02-04 Taiwan Semiconductor Manufacturing Co., Ltd. QE approach by double-side, multi absorption structure
CN108008583B (zh) 2017-12-04 2020-10-16 武汉华星光电半导体显示技术有限公司 柔性显示器件及其制备方法
CN108899327B (zh) 2018-06-29 2021-01-26 武汉华星光电技术有限公司 一种阵列基板及其制备方法、显示器
CN109786257B (zh) 2019-01-18 2022-04-01 惠科股份有限公司 薄膜晶体管的制作方法、阵列基板和显示面板
CN111048685A (zh) 2019-11-08 2020-04-21 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN111029344A (zh) 2019-11-19 2020-04-17 深圳市华星光电半导体显示技术有限公司 一种阵列基板及其制备方法
US11910617B2 (en) 2020-05-28 2024-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. Ferroelectric memory device and method of forming the same
US11729988B2 (en) 2020-06-18 2023-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device comprising conductive pillars and method of forming the same
US11696448B2 (en) 2020-06-18 2023-07-04 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device and method of forming the same
CN111968980B (zh) 2020-08-26 2021-11-23 无锡拍字节科技有限公司 一种存储器件的制造方法及其电容器
CN111968981B (zh) 2020-08-26 2021-12-24 无锡拍字节科技有限公司 一种fcob存储器件的制造方法及其电容器
US11844224B2 (en) 2021-01-13 2023-12-12 Taiwan Semiconductor Manufacturing Company, Ltd. Memory structure and method of forming the same
CN114512507A (zh) 2022-01-28 2022-05-17 长江先进存储产业创新中心有限责任公司 一种三维存储器及其形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328701A (zh) * 1999-07-26 2001-12-26 埃德茨医疗设备有限公司 用于x-射线成像的数字检测器
US7256402B1 (en) * 2004-04-15 2007-08-14 Denny Lee Flat panel X-ray imager with a grid structure
WO2014015285A2 (en) * 2012-07-19 2014-01-23 The Research Foundation Field-shaping multi-well avalanche detector for direct conversion amorphous selenium
WO2014194071A1 (en) * 2013-05-29 2014-12-04 The Research Foundation For The State University Of New York Nano-electrode milti-well high-gain avalanche rushing photoconductor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAMES R. SCHEUERMANN 等: "《Low dose digital X-ray imaging with avalanche amorphous selenium》", 《PROC.SPIE 9412, MEDICAL IMAGING 2015: PHYSICS OF MEDICAL IMAGING》 *

Also Published As

Publication number Publication date
WO2017120582A1 (en) 2017-07-13
CA3010852A1 (en) 2017-07-13
JP6924208B2 (ja) 2021-08-25
EP3400615A1 (en) 2018-11-14
US10868202B2 (en) 2020-12-15
US10658530B2 (en) 2020-05-19
CA3010852C (en) 2023-09-19
KR20180094117A (ko) 2018-08-22
JP2019508903A (ja) 2019-03-28
US20200243696A1 (en) 2020-07-30
US20210111286A1 (en) 2021-04-15
AU2017205207A1 (en) 2018-08-02
EP3400615A4 (en) 2019-08-14
KR102255739B1 (ko) 2021-05-27
CN108780823B (zh) 2022-04-19
US20190006533A1 (en) 2019-01-03
US11508858B2 (en) 2022-11-22
AU2017205207B2 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US11508858B2 (en) Multi-well selenium device and method for fabrication thereof
US8129688B2 (en) Method and apparatus for a radiation detector
KR101257699B1 (ko) 방사선 디텍터 및 그 제조방법
CN111202536B (zh) 射线探测器及其制造方法、电子设备
Akimov Silicon radiation detectors
EP2888764B1 (en) Photon counting semiconductor detectors
US9553220B2 (en) Field-shaping multi-well avalanche detector for direct conversion amorphous selenium
DaVia et al. 3D silicon detectors—status and applications
LaBella et al. Multi-well avalanche selenium detector for time-of-flight pet
Jia et al. Core–shell diodes for particle detectors
JP6921858B2 (ja) セレン光電子増倍管及びその製作方法
Hartmann et al. Advances in tracking detectors
Cervelli Status and Perspectives of Silicon Detectors
Budtz-Jørgensen et al. The X-ray imager on AXO
KR20140068386A (ko) 절연 패턴이 형성된 전하 수집층을 갖는 엑스-선 영상 검출기 및 이의 제조 방법
CN116936589A (zh) 一种背照式面阵探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant