CN108696276B - 相位调整电路、逆变电路及馈电设备 - Google Patents

相位调整电路、逆变电路及馈电设备 Download PDF

Info

Publication number
CN108696276B
CN108696276B CN201810058035.9A CN201810058035A CN108696276B CN 108696276 B CN108696276 B CN 108696276B CN 201810058035 A CN201810058035 A CN 201810058035A CN 108696276 B CN108696276 B CN 108696276B
Authority
CN
China
Prior art keywords
circuit
phase
signal
phase adjustment
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810058035.9A
Other languages
English (en)
Other versions
CN108696276A (zh
Inventor
宫崎弘行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumida Group Co ltd
Original Assignee
Sumida Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumida Group Co ltd filed Critical Sumida Group Co ltd
Publication of CN108696276A publication Critical patent/CN108696276A/zh
Application granted granted Critical
Publication of CN108696276B publication Critical patent/CN108696276B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0814Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the phase shifting device being digitally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • H03L7/107Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth
    • H03L7/1075Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth by changing characteristics of the loop filter, e.g. changing the gain, changing the bandwidth
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • H02M7/4818Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Inverter Devices (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本发明提供了一种相位调整电路、逆变电路及馈电设备,该相位调整电路包含PLL电路(13),该PLL电路(13)具有输入标准信号(Sr)的标准信号输入端子(13a),输入反馈信号(Sf)的反馈信号输入端子(13b),以及输出基于标准信号(Sr)与反馈信号(Sf)的相位差的输出信号(So)的输出端子(13c)。并且,还设置有滤波电路(25),该滤波电路(25)与标准信号输入端子(13a)以及输出端子(13c)相连接,在包含PLL电路(13)的逆变电路(3)的振荡频率为高频领域的情况下,使标准信号(Sr)的相位延迟,以及延迟电路(27),该延迟电路(27)与输出端子(13c)相连接,在逆变电路(3)的振荡频率为比高频领域低的低频领域的情况下,使输出信号(So)延迟。如此就可以在应该对应频率的全领域都能高精度地调整频率。

Description

相位调整电路、逆变电路及馈电设备
技术领域
本发明涉及一种具有调整相位功能的相位调整电路,使用此技术的逆变电路及馈电设备。
背景技术
逆变电路被用于电动机或高频电力的发生设备等中,用于将直流或交流电变成希望的频率的交流电。在逆变电路连接的负荷为谐振负荷的情况下,负荷的谐振频率会产生偏离。为了防止逆变电路的变换效率降低,在逆变电路中设置有追随负荷的谐振频率来调整振荡频率的电路。公知的调整振荡频率的电路,例如,在专利文献1有所记载。
现有技术文献:
专利文献:
专利文献1:日本专利申请公开公报特开2005-318509号
发明内容
要解决的技术问题:
然而,众所周知的振荡频率的调整中,如果谐振频率大幅地(例如从逆变电路的可调频率的最小值到最大值)变化的话,那么逆变电路的振荡频率与负荷的谐振频率之间就会产生误差,进而会有逆变电路的变换效率低下的问题。这样的误差是由于负荷或逆变电路,甚至是调整振荡频率的电路自身的元器件等的性能的偏差而产生的,每个个体的大小都会有所不同。
本发明正式鉴于上述的点而做出的,以提供一种可以在对应频率的全领域都能高精度地调整频率的相位调整电路、逆变电路及馈电设备作为目的。
技术方案:
本发明的相位调整电路,其特征为:包含相位同步电路,该相位同步电路包括输入标准信号的标准信号输入端子,输入反馈信号的反馈信号输入端子,以及基于上述标准信号与上述反馈信号的相位差来输出输出信号的输出端子,第1电路,该第1电路与上述标准信号输入端子及上述输出端子相连接,在包括上述相位同步电路的电路本体的振荡频率为第1级别的情况下,使上述标准信号的相位延迟,以及第2电路,该第2电路与上述输出端子相连接,在包括上述电路本体的振荡频率为比上述第1级别低的第2级别的情况下,使上述输出信号延迟。
本发明的逆变电路的特征为其包含上述的相位调整电路。
本发明的馈电设备的特征为其包含上述的逆变电路。
有益效果:
因此就可以提供一种在对应频率的全领域都可以高精度地调整频率的相位调整电路、逆变电路及馈电设备。
附图说明
图1是表示本发明的一个实施形态的相位调整电路、逆变电路及馈电设备的模式的电路图。
图2是将图1所表示的相位调整电路扩大表示的图。
图3是与图1所表现的相位调整电路相比较的,比较例的现有型号的相位调整电路的电路图。
图4是表示流经如图2、图3所表现的相位调整电路的各个信号的图。
图5是表示通过图2的相位调整电路来调整相位的情况下的各个信号的图。
图6是表示在变更如图2表示的滤波电路的可变电阻元件的电阻的情况下,逆变电路的振荡频率与反馈信号f的相位的关系图。
图7是把图3所表示的逆变的振荡频率与负荷的谐振频率进行比较的图。
图8是把图2所表示的逆变的振荡频率与负荷的谐振频率进行比较的图。
图9是表现把比较例子的逆变电路与本实施形态的逆变电路的匹配频率与变换效率进行比较的图。
符号说明:
1···馈电设备
3···逆变电路
5···负荷
10···相位调整电路
11···NOT电路
13···PLL电路
13a···标准信号输入端子
13b···反馈信号输入端子
13c···输出端子
15···线圈元件
16···电容元件
17,19···可变电阻元件
21···电容元件
22···缓冲电路
25···滤波电路
27···延迟电路
33···PWM控制电路
31···逆变电路电源
51,52···谐振线圈
53,54···谐振电容器
311,312,313,314···驱动电路
具体实施方式
以下,通过附图来说明本发明的实施形态。另外,在全部的附图中对于同样的成分赋予同样的符号,并适宜地省略重复叙述。
图1是表示本发明的一个实施形态的相位调整电路10、逆变电路3及馈电设备1的模式电路图。图2是把图1所表示相位调整电路10扩大表示的图。以下将按照馈电设备1、逆变电路3及相位调整电路10的顺序进行说明。
-馈电设备
图1所表现的馈电设备1是电场耦合的无线型馈电设备。馈电设备1具有逆变电路3、相位调整电路10及负荷5。
负荷5具有谐振线圈51、52,谐振电容器53、54及电阻元件55。负荷5的谐振频率可以通过谐振线圈51、52的电感及谐振电容器53、54的电容来决定。馈电设备1的电力的供应是通过电阻元件55来进行的。
谐振电容器53、54的电容,在负荷5一定的条件下,可以根据流经负荷5的电流变化直线性地推算出来。另外,作为无线型的馈电设备的馈电设备1中,谐振电容器53、54的数值根据馈电设备1与被馈电侧的设备的接触状态也会发生变化。本实施形态的馈电设备1可以高精度地追随此种起因于各个元件的功能误差以外的原因所导致的谐振频率的变化,并一直维持着较高的逆变电路的变换效率。
-逆变电路
逆变电路3包含相位调整电路10。并且,除了相位调整电路10以外还包含把从逆变电路电源31所供给的直流电力变成高频交流的驱动电路311、312、313、314,以及控制驱动电路313、312、313、314的PWM(Pulse Width Modulation)控制电路33。另外,本实施形态中,逆变电路电源31提供了直流电压、直流电流。
逆变电路3是可以变更在预先规定的范围通过驱动电路311、312、313、314变换后的频率(振荡频率)的振荡频率可调元件。另外,本实施形态中,逆变电路3为例如从1.5MHz到2.0MHz可变的元件。
-相位调整电路
相位调整电路10如图1、图2所示,具有相位同步电路PLL(Phase Locked Loop)电路13,该相位同步电路PLL(Phase Locked Loop)电路13包括输入标准信号(REF)Sr的标准信号输入端子13a,输入反馈信号(F/B)Sf的反馈信号输入端子13b,输出基于标准信号与反馈信号的相位差的输出信号(PLLout)So的输出端子13c。
另外,相位调整电路10具有滤波电路25,该滤波电路25作为第1电路与标准信号输入端子13a以及输出端子13c连接,并且在PLL电路13的电路本体的振荡频率为第1级别的情况下,使标准信号Sr的相位延迟。并且,相位调整电路10具有延迟电路27,该延迟电路27作为第2电路与输出端子13c连接,并且在电路本体的振荡频率为比第1级别低的第2级别的情况下,使输出信号So延迟。
在上述组成中,所谓“电路本体”是指相位调整电路10所连接的被连接侧的电路,在本实施形态中是指包含相位调整电路10的逆变电路3。如上所述,逆变电路3在从1.5MHz2MHz的范围频率可调,所以“第1级别”为2MHz,“第2级别”为1.5MHz。
滤波电路25包含作为第1电容元件的电容元件16,线圈元件15及作为电阻值可调的第1电阻元件的可变电阻元件17。滤波电路25是RLC串联电路,电容元件16的作用是使得电流的相位相对于输出信号(PLLout)So提前90°。线圈元件15的作用是使得电流的相位相对于输出信号(PLLout)So推迟90°。另外,电阻元件55让RLC过滤器特性的GAIN变化。电流是提前还是延迟,是通过电容元件16电容C与电流的角速度ω的乘积Cω的倒数(1/Cω),以及线圈元件15电感L和角速度ω的乘积(Lω)的大小关系来决定的,其相位差由电阻元件的电阻R所决定。并且,把1/Cω和Lω的差与电阻元件的电阻R进行矢量合成,可以通过此矢量的方向来决定电流的相位。
通过上述组成,就可以通过使得线圈元件15的电感L为定值,并使得可变电阻元件17的电阻变化,从而任意地调整滤波电路25中的标准信号Sr的相位。
延迟电路27包含作为第2电容元件的电容元件21,以及作为电阻值可调的第2电阻元件的可变电阻元件19。在延迟电路27中,被输入的输出信号So被延迟了相当于时间常数τ的时间后才被输出,该时间常数τ是由电容元件21的电容以及可变电阻元件19的电阻R所决定的。因此,延迟电路27中,可以通过变化可变电阻元件19的电阻值来使得时间常数τ发生变化,从而可以随意延迟输出输出信号So。被延迟的信号经过缓冲电路22输出到逆变电路3。另外,缓冲电路22是延迟反馈信号Sf的主要原因的元件。
另外,关于上述电容元件、线圈元件及可变电阻元件的具体的组成,只要具有通过滤波电路25、延迟电路27来调整信号的相位的功能,无论是什么组成都行。
在这里,就相位调整电路10动作进行说明。相位调整电路10中,标准信号Sr被输入到PLL电路13的标准信号输入端子13a。另外,反馈信号Sf被输入到反馈信号输入端子13b。PLL电路13还包含未图示的相位比较器,低通滤波器及电压控制振荡器等。通过PLL电路13的相位比较器位来比较标准信号Sr及反馈信号Sf,并根据其差分,将输出信号So从输出端子13c输出。这时,在本实施形态中,通过设置滤波电路25,在负荷5谐振频率靠近2MHz的范围(高频领域)使标准信号Sr延迟。因此,相位比较器可以比较延迟了的反馈信号Sf与标准信号Sr的相位差。
另外,输出信号So,通过流经延迟电路27,在负荷5的谐振频率靠近1.5MHz的范围(低频领域)被延迟。延迟的输出信号So通过分歧,从标准信号输入端子13a作为PLL电路13的标准信号Sr被输入。
输出信号So从缓冲电路22输入到控制电路33,被用于由逆变电路3所进行的频率的随动控制。从逆变电路3被输出到负荷5的信号被分歧,并在NOT电路11处被反转,并被脉冲化之后,作为反馈信号Sf从反馈信号输入端子13b被输入到PLL电路13。
通过以上的动作,相位调整电路10可以基于负荷5实际输出的信号与控制电路33输出的控制信号之间的差异,来生成输出信号So。并且,通过控制电路33的反复反馈控制使得两者的差异变小,由此使得输出信号So的频率成为希望的频率。
其次,关于以上说明的相位调整电路10的作用,一边举出比较例子一边进行说明。图3是用于与本实施形态的相位调整电路10相比较的现有型的相位调整电路70(比较例子的电路)的电路图。相位调整电路70包含PLL电路73、NOT电路71、可变电阻元件75及电容元件76、以及缓冲电路72,而PLL电路73包含标准信号输入端子73a、反馈信号输入端子73b以及输出端子73c。PLL电路73与PLL电路13同样,将被分歧的输出信号So作为标准信号Sr输入到标准信号输入端子73a,反转反馈信号,将反馈信号脉冲化后,作为反馈信号Sf输入到反馈信号输入端子73b。另外,在相位调整电路70中,为了调整从NOT电路71输出的脉冲信号的相位,由可变电阻元件75及电容元件76构成了RC电路。
图4(a)、图4(b)表示流经本实施形态的相位调整电路10的各个信号。图4(a)、图4(b)的任何一个当中,横轴都表示时间,纵轴都表示标准信号Sr(i)、输出信号So(PLL OUT∶ii)、谐振电流波形(通过NOT电路11之前的反馈信号Sf∶iii)、谐振电流波形的反转波形(iv)、脉冲化反馈信号Sf(v)以及PLL电路13中的被比较反馈信号Sf(F/B比较波形∶vi)。
图4(a)表示的波形是把仿真负荷连接到逆变电路3,并把仿真负荷的谐振频率设定在1.5MHz(低频领域)所测得的。另外,图4(b)所表示的波形是把仿真负荷连接到逆变电路3,并把仿真负荷的谐振频率设定在2.0MHz(高频领域)所测得的。图4(a)表示在低频领域所测量的信号,图4(b)表示着在高频领域所测量的信号。
首先,使用说明图4(a)、图4(b)来说明比较例子的现有型相位调整电路70中发生的课题。无论是在低频领域,还是在高频领域,都会发生标准信号Sr及输出信号So之间的相位偏离。这种偏离是由构成缓冲电路22和逆变电路3的元件的功能上的误差和偏差所导致的。在PLL电路73中,反馈信号Sf(谐振电流)被反转,并被脉冲化。这时,如果输出信号So和谐振电流的相位之间如果产生偏离的话,把反馈信号Sf与一定的阈值th相比较的情况下,被脉冲化的F/B脉冲的脉动幅度就会产生误差。一旦F/B脉冲的幅度产生误差的话,那么反馈信号Sf的脉动幅度也就会产生误差,因此作为PLL电路73中的反馈信号Sf以及标准信号Sr的结果所生成的输出信号So的谐振频率的追随性就会下降。随着相位调整电路70追随性的降低,会导致逆变电路的变频效率下降,因此不可取。
鉴于以上各点,本实施形态的相位调整电路10,如图4(a)的(ii)所示,在低频领域可以推迟输出信号So的相位,让输出信号So的相位与反馈信号Sf(谐振电流)的相位一致。这样做的话,被脉冲化做的反馈信号Sf的脉动幅度就不会产生误差,在PLL电路13中就可以正确地比较反馈信号Sf与标准信号Sr(输出信号So)的相位。
推迟输出信号So的相位可以通过变更延迟电路27中的可变电阻元件19的电阻值来进行。在本实施形态中,通过调整可变电阻元件19的电阻值,实质上可以使如图4(a)所示的标准信号Sr与谐振电流波形的差分d1为0。另外,差分d1是输出信号So的上升沿与谐振电流的过零点之间的差分。通过本实施形态的延迟电路27的相位调整,就可以使得输出信号So的上升沿与谐振电流的过零点交汇在一起。
另外,本实施形态的相位调整电路10,如图4(b)(i)所示,在高频领域延迟标准信号Sr的相位,并使得标准信号Sr的相位与反馈信号Sf(谐振电流)的相位一致。这样做的话,被脉冲化的反馈信号Sf的脉冲幅度就不会产生误差,也就可以准确地对比在PLL电路13中的反馈信号Sf与标准信号Sr(输出信号So)的相位。
延迟标准信号Sr的相位可以通过变更滤波电路25的可变电阻元件17电阻值来进行。本实施形态中,把可变电阻元件17的电阻值调整为使得如图4(b)所表示的标准信号Sr与谐振电流波形的差分d2实质上为0。另外,差分d2是标准信号Sr的上升沿和谐振电流的过零点之间的差分。通过本实施形态的滤波电路25的调整,就可以把标准信号Sr的上升沿与谐振电流的过零点汇合在一起。
图5是表示流经得到如图4(a)所示的调整结果的相位调整电路10的各个信号。图5的横轴表示时间,纵轴表示标准信号Sr(i)、输出信号So(PLL OUT∶ii)、谐振电流波形(通过NOT电路11以前的反馈信号Sf∶iii)、谐振电流波形的反转波形(iv),被脉冲化的反馈信号Sf(v)以及在PLL电路13中用于比较的,反馈信号Sf(F/B比较波形∶vi)。如图5所示,因为标准信号Sr的相位与谐振电流波形的相位一致,所以可以把谐振电流波形的适宜的值与阈值th进行比较。因此,如图5(iv)所示的F/B脉冲的脉冲幅度就可以维持适宜的时间。
图6表示滤波电路25可变电阻元件17电阻值为高电阻值VRh的情况,以及为低电阻值VRu的情况下的逆变电路3中的振荡频率与反馈信号Sf的相位关系。图6中横轴表示振荡频率,纵轴表示反馈信号Sf的相位。从图6可以看出,滤波电路25的可变电阻元件17可以有效地在振荡频率比较高的领域内,使得反馈信号Sf的相位发生变化。
这样,要实现通过延迟电路27来调整在低频领域的相位的偏移,用滤波电路25来调整在高频领域的相位偏移,就可以通过选择延迟电路27及滤波电路25中线圈的电感值或者电容元件的电容值,及设定可变电阻元件的电阻值来实现。
本实施形态中,例如,在如图2所示的相位调整电路10中,把可变电阻元件17的电阻值设为100Ω,可变电阻元件19的电阻值设为10Ω,线圈元件15的电感值设为120μH,电容元件21的电容值设为100pF,电容元件16的电容值设为22pF的情况下,无论是在低频领域或者高频领域的任意一个,都可以得到85%以上的变频效率。
图7是比较包含相位调整电路70的逆变的振荡频率与负荷的谐振频率的图。另外,图8是比较包含相位调整电路10的逆变电路3的振荡频率与负荷5的谐振频率的图。无论在图7、图8的任何一个当中,横轴都表示负荷的谐振频率,纵轴都表示逆变的振荡频率。如果谐振频率与振荡频率一致的话,逆变电路就能得到最大的变频效率。
如图7所示的直线Ro表示在相位调整电路70中,实际上所得到的谐振频率与振荡频率之间的关系。另外,直线I表示理想的谐振频率与振荡频率的关系。通过在相位调整电路70中以中心频率fM为基准来调整可变电阻元件75及电容元件C76,虽然使得谐振频率与振荡频率在一点相交,但是在低频领域及高频领域,直线I与直线Ro会发生误差。
另一方面,通过本实施形态的相位调整电路10,在如图8中所示的实际特性为直线R1的情况下,通过调整可变电阻元件19,使其在低频领域的误差变小,从而使其呈现直线R2的特性,并且还可以通过可变电阻元件17来使得高频领域的误差变小。由此,从低频领域到高频领域,比起现有型的相位调整电路70特性而言,变得可以更加接近理想特性I。
图9是表示比较包含相位调整电路70的逆变电路(比较例子的电路)与本实施形态的逆变电路中,负荷5的匹配频率以及变换效率的图。图9中横轴表示匹配频率,纵轴表示变换效率。图9中的菱形的标识是表示包含相位调整电路70的逆变电路的数据,而正方形的标识则是本实施形态的逆变电路3的数据。从图9可以明显看出,本实施形态的逆变电路3的变换效率,从低频领域到高频领域都高于比较例子的电路。
具体而言,如图9所示,比较例子的现有型的相位调整电路70中,在振荡频率在1.57MHz时能得85.5%的比较高的变频效率,不过振荡频率在1.7MHz时为85.1%,振荡频率在1.79MHz时为76.1%,振荡频率在1.93MHz时为63.6%,即越进入高频领域,变频效率越会下降。另一方面,本实施形态的相位调整电路10,振荡频率在1.62MHz时变频效率为89.2%,荡频率在1.74MHz时为88%,振荡频率在1.83MHz时为86.5%,振荡频率在1.95MHz时为85%,从低频领域到高频领域变频效率都很高。
如同以上说明的那样,无论在低频领域,还是在高频领域本实施形态都可以分别独立调整相位,从而从低频领域到高频领域的范围都能得到足够高的频率的追随性。
另外,以上的调整都是在逆变电路3或馈电设备1出货之前进行检验的时候进行的。由于标准信号Sr与反馈信号Sf之间的相位偏差,对于每个产品都是不同的,所以可变电阻元件17、19的调整量也是每个产品都不同。因此,关于可变电阻元件17、19调整,最好每个产品分别进行。
上述实施形态及实施例子包含以下的技术思想。
(1)一种相位调整电路,其包含相位同步电路,该相位同步电路包括输入标准信号的标准信号输入端子,输入反馈信号的反馈信号输入端子,以及基于上述标准信号与上述反馈信号的相位差来输出输出信号的输出端子,第1电路,该第1电路与上述标准信号输入端子及上述输出端子相连接,在包括上述相位同步电路的电路本体的振荡频率为第1级别的情况下,使上述标准信号的相位延迟,以及第2电路,该第2电路与上述输出端子相连接,在包括上述电路本体的振荡频率为比上述第1级别低的第2级别的情况下,使上述输出信号延迟。
(2)根据(1)所记述的相位调整电路,上述第1电路是包含第1电容元件、线圈元件及电阻的滤波电路,其中上述电阻包括电阻值可调的第1电阻元件。
(3)根据(1)或(2)所记述的相位调整电路,上述第2电路是包含第2电容元件及电阻的延迟电路,该电阻包括电阻值可调的第2电阻元件。
(4)一种逆变电路,其包含根据从(1)至(3)的任意一个所记述的相位调整电路。
(5)一种馈电设备,其包含根据(4)所记述的逆变电路。

Claims (5)

1.一种相位调整电路,其包含:
相位同步电路,该相位同步电路包括输入标准信号的标准信号输入端子,输入反馈信号的反馈信号输入端子,以及基于上述标准信号与上述反馈信号的相位差来输出输出信号的输出端子;
滤波电路,该滤波电路与上述标准信号输入端子及上述输出端子相连接,在包括上述相位同步电路的逆变电路的振荡频率为第1级别的情况下,使上述标准信号的相位延迟;以及
延迟电路,该延迟电路与上述输出端子相连接,在上述逆变电路的振荡频率为比上述第1级别低的第2级别的情况下,使上述输出信号的相位延迟,使得上述输出信号的相位与上述反馈信号的相位一致,
来自上述相位同步电路的输出信号被上述延迟电路延迟之后通过分歧,从上述相位同步电路的上述标准信号输入端子作为标准信号被输入至上述相位同步电路。
2.根据权利要求1所述的相位调整电路,上述滤波电路是包含第1电容元件、线圈元件及电阻的滤波电路,其中上述电阻包括电阻值可调的第1电阻元件。
3.根据权利要求1或2所述的相位调整电路,上述延迟电路是包含第2电容元件及电阻的延迟电路,该电阻包括电阻值可调的第2电阻元件。
4.一种逆变电路,其包含根据从权利要求1至3的任意一个所述的相位调整电路。
5.一种馈电设备,其包含根据权利要求4所述的逆变电路。
CN201810058035.9A 2017-03-31 2018-01-22 相位调整电路、逆变电路及馈电设备 Active CN108696276B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017070730A JP6866729B2 (ja) 2017-03-31 2017-03-31 位相調整回路、インバータ回路及び給電装置
JP2017-070730 2017-03-31

Publications (2)

Publication Number Publication Date
CN108696276A CN108696276A (zh) 2018-10-23
CN108696276B true CN108696276B (zh) 2023-08-29

Family

ID=61192806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810058035.9A Active CN108696276B (zh) 2017-03-31 2018-01-22 相位调整电路、逆变电路及馈电设备

Country Status (5)

Country Link
US (1) US10447281B2 (zh)
EP (1) EP3382883B1 (zh)
JP (1) JP6866729B2 (zh)
KR (1) KR101970205B1 (zh)
CN (1) CN108696276B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345193A (en) * 1993-07-28 1994-09-06 Wiltron Company Phase locked loop with loop gain stabilization circuit
CN1427547A (zh) * 2001-12-21 2003-07-02 三菱电机株式会社 Pll电路
CN1745518A (zh) * 2002-12-30 2006-03-08 诺基亚公司 包括可变延迟和离散延迟的锁相环

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3398172B2 (ja) 1993-04-09 2003-04-21 電気興業株式会社 高周波誘導加熱における加熱温度制御方法及び高周波誘導加熱温度制御装置
JP3284501B2 (ja) * 1997-03-05 2002-05-20 日本ビクター株式会社 高圧安定化回路
JPH10268964A (ja) * 1997-03-25 1998-10-09 Canon Inc クロック発生装置
JP2005151608A (ja) 2003-11-11 2005-06-09 Hitachi Ltd 共振型コンバータ及びその制御方法
JP4471849B2 (ja) 2004-03-31 2010-06-02 Necエレクトロニクス株式会社 Pll周波数シンセサイザ回路及びその周波数チューニング方法
JP5202653B2 (ja) * 2010-08-16 2013-06-05 エンパイア テクノロジー ディベロップメント エルエルシー コンバータおよびコンバータ制御方法
WO2013089454A1 (en) 2011-12-13 2013-06-20 Samsung Electronics Co., Ltd. Induction heating fusing device and image forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345193A (en) * 1993-07-28 1994-09-06 Wiltron Company Phase locked loop with loop gain stabilization circuit
CN1427547A (zh) * 2001-12-21 2003-07-02 三菱电机株式会社 Pll电路
CN1745518A (zh) * 2002-12-30 2006-03-08 诺基亚公司 包括可变延迟和离散延迟的锁相环

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Pao-Chuan Lin et al.Implementation of a PLL-based High Frequency Resonant AC Power Supply.2008 SICE Annual Conference.2008,1329-1334. *

Also Published As

Publication number Publication date
EP3382883A1 (en) 2018-10-03
CN108696276A (zh) 2018-10-23
JP6866729B2 (ja) 2021-04-28
EP3382883B1 (en) 2020-07-29
JP2018174414A (ja) 2018-11-08
US20180287619A1 (en) 2018-10-04
KR101970205B1 (ko) 2019-04-18
US10447281B2 (en) 2019-10-15
KR20180111461A (ko) 2018-10-11

Similar Documents

Publication Publication Date Title
JP5202653B2 (ja) コンバータおよびコンバータ制御方法
CN103095120B (zh) 电源转换器的混合式补偿电路及方法
KR101287166B1 (ko) 리플 조정기의 제어 회로 및 방법
CN106537767B (zh) 限幅振荡电路
US20090261876A1 (en) Voltage controlled oscillator
US20080036504A1 (en) Constant Phase Angle Control for Frequency Agile Power Switching Systems
US9467048B2 (en) Voltage generator
CN105187055A (zh) 具有宽带宽的锁相环电路
US10153728B2 (en) Semiconductor device and method
US9843266B2 (en) Method for damping resonant component of common-mode current of multi-phase power converter
KR101824535B1 (ko) 벅 조정기에서 등가 직렬 인덕턴스(esl)를 보상하기 위한 회로 및 방법
JP6754667B2 (ja) 半導体装置
US9450558B2 (en) Controlled large signal capacitor and inductor
JP2004072650A (ja) 変調機能付き電圧制御発振器
US6947514B1 (en) Phase-locked loop circuit, information processing apparatus, and information processing system
US10833665B2 (en) Phase error correction for clock signals
CN114124041A (zh) 晶体振荡器与其相位噪声抑制方法
CN108696276B (zh) 相位调整电路、逆变电路及馈电设备
JP6285457B2 (ja) 共振器、位相同期回路及び半導体集積回路装置
US20220021361A1 (en) Timing circuit for locking a voltage controlled oscillator to a high frequency by use of low frequency quotients and resistor to switched capacitor matching
US7609123B2 (en) Direct modulation type voltage-controlled oscillator using MOS varicap
CN102474219A (zh) 对电子振荡器精调的改善
US9554423B2 (en) Induction heating system
US11012078B1 (en) IQ signal source
US9847756B1 (en) Wireless communication device and wireless communication method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant