CN108585830A - 一种高介电可调的反铁电陶瓷及其制备方法和应用 - Google Patents

一种高介电可调的反铁电陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN108585830A
CN108585830A CN201810589701.1A CN201810589701A CN108585830A CN 108585830 A CN108585830 A CN 108585830A CN 201810589701 A CN201810589701 A CN 201810589701A CN 108585830 A CN108585830 A CN 108585830A
Authority
CN
China
Prior art keywords
adjustable
antiferroelectric ceramics
ball milling
high dielectric
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810589701.1A
Other languages
English (en)
Inventor
王修才
陈建文
朱珍
谭海曙
于盺梅
王东
段志奎
樊耘
周月霞
李学夔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan University
Original Assignee
Foshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan University filed Critical Foshan University
Priority to CN201810589701.1A priority Critical patent/CN108585830A/zh
Publication of CN108585830A publication Critical patent/CN108585830A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于功能陶瓷技术领域,公开了一种高介电可调的反铁电陶瓷及其制备方法和应用。所述高介电可调性的反铁电陶瓷是将氧化镧、氧化钡、氧化铅、氧化锆、氧化锡和氧化钛按照化学计量比配料后进行球磨,预烧后再球磨、烘干和过筛,所得粉体加入粘合剂,压片后形成素坯片,排胶后经烧结镀银电极制得,所述反铁电陶瓷的分子式为(Pb0.97‑xLa0.02Bax)(Zr0.5Sn0.4Ti0.1)O3,其中0.08≤x≤0.1。本发明的制备方法简单易行,所得反铁电陶瓷具有较低的反铁电‑铁电相变电场,优异的介电可调性,可作为低成本的微波介质陶瓷材料应用于介质谐振器、滤波器及双工器等微波器件中。

Description

一种高介电可调的反铁电陶瓷及其制备方法和应用
技术领域
本发明属于功能陶瓷技术领域,更具体地,涉及一种高介电可调的反铁电陶瓷及其制备方法和应用。
背景技术
随着现代通信技术的迅速发展,小型化、集成化和低成本化成为移动通信和移动终端的发展方向。为此需要开发一系列适合于微波范围内具有高性能、高可靠工作特性的电子材料与元器件。微波介电陶瓷是指应用于微波频段电路中作为介质材料是现代通信技术的关键基础材料,在通讯工具的小型化和集成化过程中发挥着越来越重要的作用。但目前的介电陶瓷是传统的铁电体材料,这类材料最大的缺点就是需要在很高的偏压电场才能表现出较高的介电可调性,这就为人们的使用带来了不便。
介电可调性是指材料的介电常数随着外加直流电场变化的非线性特性,即将介电常数随着外加直流电场变化的相对变化率作为一个参数来衡量这种非线性效应。反铁电材料在一定的条件下可表现出优异的双向可调特性,但大部分都是在高温环境同时需要较高的应用电场下才能获得,使得其应用受到限制,本发明的目的是在较低电场下获得高的介电可调性。
发明内容
为了解决上述现有技术存在的不足和缺点,提供一种高介电可调的反铁电陶瓷。
本发明的另一目的在于提供上述高介电可调的反铁电陶瓷的制备方法。
本发明的再一目的在于提供上述高介电可调的反铁电陶瓷的应用。
本发明的目的通过下述技术方案来实现:
一种高介电可调性的反铁电陶瓷,所述反铁电陶瓷是将氧化镧、氧化钡、氧化铅、氧化锆、氧化锡和氧化钛按照化学计量比配料后进行球磨,预烧后再球磨、烘干和过筛,所得粉体加入粘合剂,压片后形成素坯片,排胶后经烧结镀银电极制得,所述反铁电陶瓷的分子式为(Pb0.97-xLa0.02Bax)(Zr0.5Sn0.4Ti0.1)O3,其中0.08≤x≤0.1。
优选地,所述粘合剂为粉料质量的15~30%。
优选地,所述粘合剂为含量为8~10wt.%的PVA水溶剂。
优选地,所述预烧的温度为800~900℃,所述排胶的温度为600~700℃,所述烧结的温度为1200~1280℃。
所述的高介电可调的反铁电陶瓷的制备方法,包括如下具体步骤:
S1.将氧化镧,氧化铅,氧化钡,氧化锆,氧化锡和氧化钛按照化学计量比配料,将配料进行球磨;
S2.将球磨后的料烘干,在800~900℃预烧,将预烧后粉料打碎后再次球磨,取出后,烘干,过筛;
S3.将步骤S2过筛后的粉料加入粘合剂,在压片机上进行一次压制成型,形成素坯片;
S4.将素坯片置于炉中升温至600~700℃排胶后保温;
S5.将步骤S4所得排胶后的坯片在1200~1280℃烧结,自然降至室温后取出,烧结后的坯片两面镀银或金电极,制得高介电可调的反铁电陶瓷。
优选地,步骤S1中所述球磨的转速为300~500转/分钟,所述球磨的时间为6~24h。
优选地,步骤S2中所述烘干的温度为100~120℃,所述烘干的时间为2~3h,所述预烧的时间为2~4h,所述球磨的转速为300~500转/分钟,所述球磨的时间为6~12h。
优选地,步骤S3中所述粘合剂含量为粉料质量的15~30%。
优选地,步骤S4中所述升温的速率为1~3℃/分钟,所述保温的时间为2~5h,步骤S5中所述烧结的时间为3~6h。
所述的高介电可调的反铁电陶瓷在介质谐振器、滤波器及双工微波器件领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明的高介电可调的反铁电陶瓷在室温、充足电场下均可发生可逆的反铁电-铁电相变。
2.本发明的反铁电陶瓷具有较低的相变电场,在电场强度低于20kV/cm时即能获得高的介电可调性能,随着钡含量的增加,介电可调率从38%增加到91%。
附图说明
图1为实施例1所得(Pb0.87La0.02Ba0.1)(Zr0.5Sn0.4Ti0.1)O3的电滞回线。
图2为实施例1所得(Pb0.87La0.02Ba0.1)(Zr0.5Sn0.4Ti0.1)O3的介电可调性能。
图3为实施例2所得(Pb0.89La0.02Ba0.08)(Zr0.5Sn0.4Ti0.1)O3的介电可调性能。
图4为实施例3所得(Pb0.88La0.02Ba0.09)(Zr0.5Sn0.4Ti0.1)O3的介电可调性能。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.按照化学计量比(Pb0.87La0.02Ba0.1)(Zr0.5Sn0.4Ti0.1)O3将氧化铅,氧化钡,氧化镧,氧化钛,氧化锆和氧化锡进行称量配料,将配好的料放入球磨罐中,球磨时间12h;
2.球磨后取出烘干,在900℃下预烧2h,接着再次球磨12h,过筛。加入10%PVA粘结剂,在自动压片机上压制成型为直径为10mm,厚度为0.5mm的圆片,压力为4MPa;
3.放入炉中在600℃排胶4h,升温速率1℃/分钟,最后将排胶后的坯片,至于密闭的氧化铝干锅内,其底部加入适量氧化铅粉末,以避免铅的流失;
4.然后将排胶后的坯片,置于氧化铝干锅中,密闭,然后放入烧结炉中,在1240℃下烧结3h。
5.将烧结后的陶瓷片抛光处理,然后双面均镀银浆,在600℃下保温15分钟,制得高介电可调的反铁电陶瓷。
图1为本实施所得反铁电陶瓷的电滞回线,从图1可知,该组分为铁电体。图2为本实施所得反铁电陶瓷的介电可调性能,从图2中可知,所得反铁电陶瓷的介电可调性能高达91%。
实施例2
1.按照化学计量比(Pb0.89La0.02Ba0.08)(Zr0.5Sn0.4Ti0.1)O3将氧化铅,氧化钡,氧化镧,氧化钛,氧化锆和氧化锡进行称量配料,将配好的料放入球磨罐中,球磨时间12h;
2.球磨后取出烘干,在900℃下预烧2h,接着再次球磨12h,过筛。加入10%PVA粘结剂,在自动压片机上压制成型为直径为10mm,厚度为0.5mm的圆片,压力为4MPa;
3.放入炉中在600℃排胶4h,升温速率1℃/分钟,最后将排胶后的坯片,至于密闭的氧化铝干锅内,其底部加入适量氧化铅粉末,以避免铅的流失;
4.然后将排胶后的坯片,置于氧化铝干锅中,密闭,然后放入烧结炉中,在1240℃下烧结的3h。
5.将烧结后的陶瓷片抛光处理,然后双面均镀银浆,在600℃下保温15分钟,制得高介电可调的反铁电陶瓷。
图3为本实施所得反铁电陶瓷的介电可调性能,从图3可知,该反铁电陶瓷的介电可调性能高达38%。
实施例3
1.按照化学计量比(Pb0.88La0.02Ba0.09)(Zr0.5Sn0.4Ti0.1)O3将氧化铅,氧化钡,氧化镧,氧化钛,氧化锆和氧化锡进行称量配料,将配好的料放入球磨罐中,球磨时间12h;
2.球磨后取出烘干,在900℃下预烧2h,接着再次球磨12h,过筛。加入10%PVA粘结剂,在自动压片机上压制成型为直径为10mm,厚度为0.5mm的圆片,压力为4MPa;
3.放入炉中在600℃排胶4小时,升温速率1℃/分钟,最后将排胶后的坯片,至于密闭的氧化铝干锅内,其底部加入适量氧化铅粉末,以避免铅的流失;
4.然后将排胶后的坯片,置于氧化铝干锅中,密闭,然后放入烧结炉中,在1240℃下烧结3h;
5.将烧结后的陶瓷片抛光处理,然后双面均镀银浆,在600℃下保温15分钟,制得高介电可调的反铁电陶瓷。
图4为本实施所得反铁电陶瓷的介电可调性能,从图4可知,该反铁电陶瓷的介电可调性能高达70%。
实施例4
1.按照化学计量比(Pb0.88La0.02Ba0.09)(Zr0.5Sn0.4Ti0.1)O3将氧化铅,氧化钡,氧化镧,氧化钛,氧化锆和氧化锡进行称量配料,将配好的料放入球磨罐中,球磨时间24h;
2.球磨后取出烘干,在800℃下预烧4h,接着再次球磨6h,过筛。加入30%PVA粘结剂,在自动压片机上压制成型为直径为10mm,厚度为0.5mm的圆片,压力为4MPa;
3.放入炉中在700℃排胶2h,升温速率3℃/分钟,最后将排胶后的坯片,至于密闭的氧化铝干锅内,其底部加入适量氧化铅粉末,以避免铅的流失;
4.然后将排胶后的坯片,置于氧化铝干锅中,密闭,然后放入烧结炉中,在1200℃下烧结6h;
5.将烧结后的陶瓷片抛光处理,然后双面均镀银浆,在600℃下保温30min,制得高介电可调的反铁电陶瓷。
实施例5
1.按照化学计量比(Pb0.875La0.02Ba0.095)(Zr0.5Sn0.4Ti0.1)O3将氧化铅,氧化钡,氧化镧,氧化钛,氧化锆和氧化锡进行称量配料,将配好的料放入球磨罐中,球磨时间24h;
2.球磨后取出烘干,在900℃下预烧2h,接着再次球磨12h,过筛。加入15%PVA粘结剂,在自动压片机上压制成型为直径为10mm,厚度为0.5mm的圆片,压力为4MPa;
3.放入炉中在600℃排胶4h,升温速率3℃/分钟,最后将排胶后的坯片,至于密闭的氧化铝干锅内,其底部加入适量氧化铅粉末,以避免铅的流失;
4.然后将排胶后的坯片,置于氧化铝干锅中,密闭,然后放入烧结炉中,在1280℃下烧结的3h。
5.将烧结后的陶瓷片抛光处理,然后双面均镀银浆,在600℃下保温15分钟,制得高介电可调的反铁电陶瓷。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种高介电可调的反铁电陶瓷,其特征在于,所述高介电可调的反铁电陶瓷是将氧化镧、氧化钡、氧化铅、氧化锆、氧化锡和氧化钛按照化学计量比配料后进行球磨,预烧后再球磨、烘干和过筛,所得粉体加入粘合剂,压片后形成素坯片,排胶后经烧结镀银电极制得,所述反铁电陶瓷的分子式为(Pb0.97-xLa0.02Bax)(Zr0.5Sn0.4Ti0.1)O3,其中0.08≤x≤0.1。
2.根据权利要求1所述的高介电可调的反铁电陶瓷,其特征在于,所述粘合剂为粉体质量的15~30%。
3.根据权利要求1所述的高介电可调的反铁电陶瓷,其特征在于,所述粘合剂为含量为8~10wt.%的PVA水溶剂。
4.根据权利要求1所述的高介电可调的反铁电陶瓷,其特征在于,所述预烧的温度为800~900℃,所述排胶的温度为600~700℃,所述烧结的温度为1200~1280℃。
5.根据权利要求1-4任一项所述的高介电可调的反铁电陶瓷的制备方法,其特征在于,包括如下具体步骤:
S1.将氧化镧,氧化铅,氧化钡,氧化锆,氧化锡和氧化钛按照化学计量比配料,将配料进行球磨;
S2.将球磨后的料烘干,在800~900℃预烧,将预烧后粉料打碎后再次球磨,取出后,烘干,过筛;
S3.将步骤S2过筛后的粉料加入粘合剂,在压片机上进行一次压制成型,形成素坯片;
S4.将素坯片置于炉中升温至600~700℃排胶后保温;
S5.将步骤S4所得排胶后的坯片在1200~1280℃烧结,自然降至室温后取出,烧结后的坯片两面镀银或金电极,制得高介电可调的反铁电陶瓷。
6.根据权利要求5中所述的高介电可调的反铁电陶瓷的制备方法,其特征在于,步骤S1中所述球磨的转速为300~500转/分钟,所述球磨的时间为6~24h。
7.根据权利要求5中所述的高介电可调的反铁电陶瓷的制备方法,其特征在于,步骤S2中所述烘干的温度为100~120℃,所述烘干的时间为2~3h,所述预烧的时间为2~4h,所述球磨的转速为300~500转/分钟,所述球磨的时间为6~12h。
8.根据权利要求5中所述的高介电可调的反铁电陶瓷的制备方法,其特征在于,步骤S3中所述粘合剂含量为粉料质量的15~30%。
9.根据权利要求5中所述的高介电可调的反铁电陶瓷的制备方法,其特征在于,步骤S4中所述升温的速率为1~3℃/分钟,所述保温的时间为2~5h,步骤S5中所述烧结的时间为3~6h。
10.权利要求1-4任一项所述的高介电可调的反铁电陶瓷在介质谐振器、滤波器及双工微波器件领域中的应用。
CN201810589701.1A 2018-06-08 2018-06-08 一种高介电可调的反铁电陶瓷及其制备方法和应用 Pending CN108585830A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810589701.1A CN108585830A (zh) 2018-06-08 2018-06-08 一种高介电可调的反铁电陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810589701.1A CN108585830A (zh) 2018-06-08 2018-06-08 一种高介电可调的反铁电陶瓷及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN108585830A true CN108585830A (zh) 2018-09-28

Family

ID=63623330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810589701.1A Pending CN108585830A (zh) 2018-06-08 2018-06-08 一种高介电可调的反铁电陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108585830A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110342925A (zh) * 2019-06-25 2019-10-18 同济大学 一种反铁电陶瓷材料及其制备方法
CN111393149A (zh) * 2020-04-01 2020-07-10 广东工业大学 一种锆锡酸镧铅反铁电陶瓷及其制备方法和应用
CN112062559A (zh) * 2020-08-11 2020-12-11 同济大学 一种反铁电陶瓷材料及其低温烧结方法
CN113213923A (zh) * 2021-05-07 2021-08-06 重庆文理学院 一种铪钛酸铅基反铁电陶瓷材料及其制备方法
CN115894019A (zh) * 2022-12-13 2023-04-04 西安交通大学 一种反铁电陶瓷材料及其低温烧结制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491102A (en) * 1992-04-13 1996-02-13 Ceram Incorporated Method of forming multilayered electrodes for ferroelectric devices consisting of conductive layers and interlayers formed by chemical reaction
CN1688004A (zh) * 2005-04-18 2005-10-26 西安交通大学 介电非线性电容器陶瓷材料及其制作工艺
CN102643090A (zh) * 2011-11-07 2012-08-22 同济大学 低居里点的高介电电场双向可调的pzt基反铁电陶瓷材料及其制备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491102A (en) * 1992-04-13 1996-02-13 Ceram Incorporated Method of forming multilayered electrodes for ferroelectric devices consisting of conductive layers and interlayers formed by chemical reaction
CN1688004A (zh) * 2005-04-18 2005-10-26 西安交通大学 介电非线性电容器陶瓷材料及其制作工艺
CN102643090A (zh) * 2011-11-07 2012-08-22 同济大学 低居里点的高介电电场双向可调的pzt基反铁电陶瓷材料及其制备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PENG LIU等: "Dielectric properties and phase transitions of (Pb0.87La0.02Ba0.1)(Zr0.6Sn0.4KxTix)O3 ceramics with compositions near AFE/RFE phase boundary", 《SOLID STATE COMMUNICATIONS》 *
郑琼娜等: "低相变场细电滞回线(Pb,La)(Zr,Sn,Ti)O3反铁电陶瓷的研究", 《功能材料》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110342925A (zh) * 2019-06-25 2019-10-18 同济大学 一种反铁电陶瓷材料及其制备方法
CN110342925B (zh) * 2019-06-25 2021-10-08 同济大学 一种反铁电陶瓷材料及其制备方法
CN111393149A (zh) * 2020-04-01 2020-07-10 广东工业大学 一种锆锡酸镧铅反铁电陶瓷及其制备方法和应用
CN111393149B (zh) * 2020-04-01 2022-08-12 广东工业大学 一种锆锡酸镧铅反铁电陶瓷及其制备方法和应用
CN112062559A (zh) * 2020-08-11 2020-12-11 同济大学 一种反铁电陶瓷材料及其低温烧结方法
CN113213923A (zh) * 2021-05-07 2021-08-06 重庆文理学院 一种铪钛酸铅基反铁电陶瓷材料及其制备方法
CN115894019A (zh) * 2022-12-13 2023-04-04 西安交通大学 一种反铁电陶瓷材料及其低温烧结制备方法
CN115894019B (zh) * 2022-12-13 2023-09-22 西安交通大学 一种反铁电陶瓷材料及其低温烧结制备方法

Similar Documents

Publication Publication Date Title
CN108585830A (zh) 一种高介电可调的反铁电陶瓷及其制备方法和应用
CN104177083B (zh) 用于中温烧结具有偏压特性的温度稳定x8r型mlcc介质材料
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN107244898B (zh) 钛酸锶钡掺杂的锆钛酸钡钙基压电陶瓷材料及制备方法
CN101531510A (zh) 高温稳定无铅电容器陶瓷及其制备方法
CN106145933A (zh) 一种高居里温度(Tc > 190℃)低铅PTCR陶瓷材料制备方法
CN101811866A (zh) 新型无铅x8r型电容器陶瓷材料及其制备方法
CN107827452B (zh) 一种利用空气淬火降低钛酸铜钙陶瓷损耗的方法
CN107089832A (zh) 一种基于铌锌、铌镍锆钛酸铅的压电陶瓷及其制备方法
CN107021751A (zh) 一种高电位梯度避雷器用氧化锌压敏电阻陶瓷
CN104311004B (zh) Ptc陶瓷材料及提高ptc陶瓷材料居里点以下电阻温度稳定性的方法
CN107244916A (zh) 一种铌酸盐系低温烧结微波介质陶瓷材料及其制备方法
CN107827451B (zh) 一种利用水淬火降低钛酸铜钙陶瓷损耗的方法
CN102584232B (zh) 一种微波介质陶瓷及其制备方法
CN105669193A (zh) 铌酸钾钠锂钛酸钡基无铅压电陶瓷及其低温烧结制备方法
CN103864416A (zh) 一种低烧结温度钛酸钡基陶瓷电容器介质的制备方法
CN111747740B (zh) 钐离子掺杂锆钛酸铅基高性能压电陶瓷及其制备方法
CN105541319A (zh) 一种中高介电常数微波介质陶瓷材料及其制备方法
CN101792312A (zh) SrTiO3陶瓷电介质材料及其电容器的制备方法
CN101030478B (zh) 一种高介金属-电介质复合陶瓷电容器介质及其制备方法
CN107759217A (zh) 一种高储能密度和高储能效率的无铅陶瓷材料及制备方法
CN107500756A (zh) 一种高介电常数低损耗SrTiO3基介质材料及其制备方法
CN101798214A (zh) (Na1/2Bi1/2)TiO3/BaTiO3陶瓷介质材料及其电容器的制备方法
CN103922733A (zh) 一种低温烧结高调谐率钛酸锶钡陶瓷的制备方法
CN102633500B (zh) 一种介电可调的低温共烧陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180928