CN108557812A - 一种氧化石墨烯接枝聚偏氟乙烯的制备方法 - Google Patents

一种氧化石墨烯接枝聚偏氟乙烯的制备方法 Download PDF

Info

Publication number
CN108557812A
CN108557812A CN201810270709.1A CN201810270709A CN108557812A CN 108557812 A CN108557812 A CN 108557812A CN 201810270709 A CN201810270709 A CN 201810270709A CN 108557812 A CN108557812 A CN 108557812A
Authority
CN
China
Prior art keywords
graphene oxide
vinyl fluoride
preparation
grafted polyvinylidene
polyvinylidene vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810270709.1A
Other languages
English (en)
Other versions
CN108557812B (zh
Inventor
徐琳
张炉青
张书香
宗传永
张亚彬
翟丛丛
朱忠凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201810270709.1A priority Critical patent/CN108557812B/zh
Publication of CN108557812A publication Critical patent/CN108557812A/zh
Application granted granted Critical
Publication of CN108557812B publication Critical patent/CN108557812B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明公开了一种氧化石墨烯接枝聚偏氟乙烯的制备方法,属于材料领域。所述氧化石墨烯接枝聚偏氟乙烯的制备方法,包括:(1)采用改进Hummer′s方法制备氧化石墨烯;(2)氧化石墨烯的表面修饰;(3)制备氧化石墨烯接枝聚偏氟乙烯的聚合物。本发明可显著提高接枝率,制备工艺简单,适合工业化生产;本发明制备出的材料具有拉伸强度高、热稳定性好、机械强度高的特点。

Description

一种氧化石墨烯接枝聚偏氟乙烯的制备方法
技术领域
本发明涉及材料领域,特别是指一种氧化石墨烯接枝聚偏氟乙烯的制备方法。
背景技术
石墨烯是由单层碳原子以sp2杂化结构形式紧密堆积形成的新型二维纳米材料,是最薄的材料,也是最强韧的材料,具有高的力学强度和电学性能,引起人们对生命科学、电子器件及增强材料等应用领域的广泛研究。但是石墨烯表面呈现惰性,化学稳定性较高,易堆积而难以剥离分散,因此选用活性较高的氧化石墨烯用于聚合物的接枝。
氧化石墨烯作为石墨烯的前体,早在1958年就被William S.Hummers发现,近年来随着石墨烯研究的开展,氧化石墨烯的性能和应用也引起研究人员的关注,并在复合材料、电化学材料及生物传感器等方面取得进展。氧化石墨烯表面大量的含氧基团使其具有优异的性能,作为氧化石墨烯-高分子复合材料的填料,能够有效增强聚合物的力学和电学性能,提高其亲水性及拉伸强度。但其柔性较低,且与聚合物之间的相容性也较差,因此提高氧化石墨烯与聚合物的相容性,增强在溶剂中的溶解性,成为重要研究。
聚偏氟乙烯作为含氟聚合物的重要功能材料,由于材质柔韧、低密度、加工性能优、操作温度范围宽及高介电常数等优点使其成为复合材料基体的良好选择,较广的温度范围使其加工容易,有较好的成型性。另外,聚偏氟乙烯膜具有质轻、耐弯曲、压电性能高等一系列优势,在热监测器、震动传感器和信号检验系统等领域有广泛应用。
因此,一种氧化石墨烯接枝聚偏氟乙烯的制备方法对于拓宽氧化石墨烯在高分子材料领域中的应用研究及产业化生产,提高聚偏氟乙烯的应用范围是十分重要的。
发明内容
本发明要解决的技术问题是提供一种分散性能好、不容易团聚的氧化石墨烯接枝聚偏氟乙烯的制备方法。
为解决上述技术问题,本发明提供技术方案如下:
本发明提供一种氧化石墨烯接枝聚偏氟乙烯的制备方法,包括:
(1)采用改进Hummer’s方法制备氧化石墨烯
冰水浴条件下,将石墨粉、高锰酸钾加入到质量浓度为98%的浓硫酸中搅拌,升温反应一段时间,将反应产物倒入盛有蒸馏水的大烧杯中,滴加30%体积浓度的过氧化氢,溶液颜色由黑褐色变为金棕色;用摩尔浓度为1mol/L的稀硫酸及蒸馏水反复洗涤至溶液呈中性,真空干燥,得到GO;
其中石墨粉与高锰酸钾的质量比为1∶5~10;石墨粉与浓硫酸的质量比为1∶50~80;升温温度至45-50℃反应12~18h;过氧化氢与浓硫酸的体积为1∶5~10;
(2)氧化石墨烯的表面修饰
将步骤(1)得到的氧化石墨烯加入到溶剂A中,冰水浴条件下超声分散,然后,搅拌条件下,依次加入羧基黄原酸酯、催化剂和失水剂,室温反应,过滤,真空干燥,得到表面修饰的氧化石墨烯;
(3)制备氧化石墨烯接枝聚偏氟乙烯的聚合物
将步骤(2)得到的表面修饰后的氧化石墨烯加入到溶剂B中,超声分散,然后转移至反应釜中,再依次加入引发剂及偏氟乙烯气体单体,加热条件下搅拌,由于氧化石墨烯表面黄原酸酯基的存在,使其作为链转移剂发生可逆加成-断裂链转移聚合,反应结束后干燥得氧化石墨烯接枝聚偏氟乙烯的聚合物。
进一步的,所述步骤(2)中,所述溶剂A为四氢呋喃、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二氯甲烷、甲苯、环己烷、二甲基亚砜的一种或几种混合。
进一步的,所述步骤(2)中,羧基黄原酸酯的制备方法包括:
步骤21:冰水浴条件下,以丙酮为溶剂,使乙基黄原酸钾与2-溴丙酸在烧瓶中搅拌反应,反应进行12h
步骤22:将步骤21反应所得到的产物进行浓缩,以二氯甲烷为溶剂,以水为萃取剂将产物提纯,然后用无水硫酸镁干燥后再进行浓缩得羧基黄原酸酯。
进一步的,所述步骤22中,2-溴丙酸与乙基黄原酸钾的质量比为1∶1~1.5。
进一步的,所述步骤(2)中,所述催化剂为浓硫酸、浓盐酸、对甲基苯磺酸、4-二甲氨基吡啶或氯化亚砜;所述失水剂为二环己基碳二亚胺、N,N′-二异丙基碳二亚胺或1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐。
进一步的,所述步骤(2)中氧化石墨烯与溶剂A的比例为5~50g∶1L,氧化石墨烯与羧基黄原酸酯的质量比为1∶0.1~5;氧化石墨烯与催化剂的质量比为1~10∶1;氧化石墨烯与失水剂的质量比为1~3∶1。。
进一步的,所述步骤(2)中,超声分散时间为5-30min,室温反应12-72h。
进一步的,所述步骤(3)中,所述溶剂B为三氟三氯乙烷、N-甲基吡咯烷酮、碳酸二甲酯的一种或几种。
进一步的,所述步骤(3)中,引发剂为过氧化特戊酸叔丁酯、过氧化苯甲酰、偶氮二异丁腈、偶氮二异庚腈、过硫酸钾或过硫酸铵。
进一步的,所述步骤(3)中,所述表面修饰后的氧化石墨烯与偏氟乙烯气体单体的质量比为1∶10~500,所述引发剂与偏氟乙烯气体单体的质量比为0.002~0.006∶1,所述偏氟乙烯气体单体的质量与溶剂B的比例为50~250g∶1L。
本发明具有以下有益效果:
本发明建立一种氧化石墨烯接枝聚偏氟乙烯的制备方法,该法工艺简单,工业化应用强,同时对氧化石墨烯表面的修饰有利于聚合物在氧化石墨烯上的接枝;制备出的聚合物功能材料分散性好、拉伸强度高、热稳定性好。
附图说明
图1为本发明中实施例1制备出的表面修饰后的氧化石墨烯的红外表征图;
图2为本发明中实施例1制备出氧化石墨烯接枝聚偏氟乙烯的红外表征图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明针对现有技术中石墨烯聚合物易团聚、相容性差、不易工业化生产的问题,提供一种氧化石墨烯接枝聚偏氟乙烯的制备方法。
实施例1
氧化石墨烯接枝聚偏氟乙烯的制备方法,包括以下步骤:
1)采用改进Hummer’s方法制备氧化石墨烯
冰水浴条件下,依次将3g石墨粉、15g KMnO4加入盛有115mL质量浓度为98%的浓H2SO4的烧杯中搅拌,升温至45℃,反应12h后停止;冰水浴条件下,将反应产物倒入盛有200mL蒸馏水的大烧杯中,滴加15mL 30%体积浓度的H2O2,溶液颜色由黑褐色变为金棕色;用100mL摩尔浓度为1mol/L的稀H2SO4及蒸馏水反复洗涤至溶液呈中性,真空干燥,得到氧化石墨烯;
(2)氧化石墨烯的表面修饰
冰水浴条件下,将步骤(1)得到的氧化石墨烯(0.2g)加入到除水的四氢呋喃(20mL)中,超声分散5min,加入到反应瓶中搅拌,依次加入0.3g羧基黄原酸酯、0.0453g 4-二甲氨基吡啶和0.1532g二环己基碳二亚胺,室温反应72h,过滤,60℃条件下真空干燥12h,得到表面修饰的氧化石墨烯;
所述羧基黄原酸酯的制备方法包括:
步骤21:冰水浴条件下,以丙酮为溶剂,使乙基黄原酸钾与2-溴丙酸在烧瓶中搅拌反应,反应进行12h;2-溴丙酸与乙基黄原酸钾的质量比为1∶1~1.5;
步骤22:将步骤21反应所得到的产物进行浓缩,以二氯甲烷为溶剂,以水为萃取剂将产物提纯,然后用无水硫酸镁干燥后再进行浓缩得羧基黄原酸酯;
(3)制备氧化石墨烯接枝聚偏氟乙烯的聚合物
将步骤(2)得到的表面修饰后的氧化石墨烯(0.01g)加入到三氟三氯乙烷(20mL)中,超声分散5min,加入到50mL反应釜中,再依次加入过氧化特戊酸叔丁酯(0.009g)及偏氟乙烯气体单体(3g),70℃加热条件下搅拌反应22h,以表面修饰的氧化石墨烯作为链转移剂使其发生可逆加成-断裂链转移聚合,反应结束后干燥得氧化石墨烯接枝的聚合物。
图1中红外表征图在1620cm-1处酯基的特征吸收峰说明氧化石墨烯的成功修饰。图2中红外表征图在大约1160cm-1和870cm-1处有-C-F-键的特征吸收峰,说明聚偏氟乙烯在氧化石墨烯上的成功接枝。所得氧化石墨烯接枝聚偏氟乙烯的聚合物提高了聚合物的性能,使用电化学工作站测试改性聚合物的电化学性能,通过对交流阻抗谱图的分析计算得到其离子电导率为2.6×10-3S·cm-1
实施例2
氧化石墨烯接枝聚偏氟乙烯的制备方法,包括以下步骤:
(1)采用改进Hummer’s方法制备氧化石墨烯,制备过程同上述实施例1;
(2)氧化石墨烯的表面修饰
冰水浴条件下,将步骤(1)得到的氧化石墨烯(0.2g)加入到除水的四氢呋喃(10mL)中,超声分散5min,加入到反应瓶中搅拌,依次加入0.3g羧基黄原酸酯、0.0453g 4-二甲氨基吡啶和0.1532g二环己基碳二亚胺,室温反应12h,过滤,60℃条件下真空干燥12h,得到表面修饰的氧化石墨烯;
所述羧基黄原酸酯的制备方法同实施例1;
(3)制备氧化石墨烯接枝聚偏氟乙烯的聚合物
将步骤(2)得到的表面修饰后的氧化石墨烯(0.01g)加入到三氟三氯乙烷(20mL)中,超声分散5min,加入到50mL反应釜中,再依次加入过氧化特戊酸叔丁酯(0.009g)及偏氟乙烯气体单体(3g),70℃加热条件下搅拌反应22h,以表面修饰的氧化石墨烯作为链转移剂使其发生可逆加成-断裂链转移聚合,反应结束后干燥得氧化石墨烯接枝的聚合物。
本实施例得到的改性聚合物通过在电化学工作站上交流阻抗谱图的测试分析计算其离子电导率3.0×10-3S·cm-1,适合作为聚合物电解质应用于锂离子电池中。
实施例3
氧化石墨烯接枝聚偏氟乙烯的制备方法,包括以下步骤:
(1)采用改进Hummer’s方法制备氧化石墨烯,制备过程同上述实施例1;
(2)氧化石墨烯的表面修饰
冰水浴条件下,将步骤(1)得到的氧化石墨烯(0.2g)加入到除水的四氢呋喃(10mL)中,超声分散5min,加入到反应瓶中搅拌,依次加入0.1g羧基黄原酸酯、0.0453g 4-二甲氨基吡啶和0.1532g二环己基碳二亚胺,室温反应12h,过滤,60℃条件下真空干燥12h,得到表面修饰的氧化石墨烯;
所述羧基黄原酸酯的制备方法同实施例1;
(3)制备氧化石墨烯接枝聚偏氟乙烯的聚合物
将步骤(2)得到的表面修饰后的氧化石墨烯(0.02g)加入到三氟三氯乙烷(20mL)中,超声分散5min,加入到50mL反应釜中,再依次加入过氧化特戊酸叔丁酯(0.009g)及偏氟乙烯气体单体(3g),70℃加热条件下搅拌反应22h,以表面修饰的氧化石墨烯作为链转移剂使其发生可逆加成-断裂链转移聚合,反应结束后干燥得氧化石墨烯接枝聚偏氟乙烯的聚合物。
本实施例得到的氧化石墨烯接枝聚偏氟乙烯的聚合物通过在电化学工作站上交流阻抗谱图的测试分析计算其离子电导率3.5×10-3S·cm-1
实施例4
氧化石墨烯接枝聚偏氟乙烯的制备方法,包括以下步骤:
(1)采用改进Hummer’s方法制备氧化石墨烯,制备过程同上述实施例1;
(2)氧化石墨烯的表面修饰
冰水浴条件下,将步骤(1)得到的氧化石墨烯(0.2g)加入到除水的四氢呋喃(20mL)中,超声分散10min,加入到反应瓶中搅拌,依次加入0.02g羧基黄原酸酯、0.1032g4-二甲氨基吡啶和0.101g二环己基碳二亚胺,室温反应12h,过滤,60℃条件下真空干燥12h,得到表面修饰的氧化石墨烯;
所述羧基黄原酸酯的制备方法同实施例1;
(3)制备氧化石墨烯接枝聚偏氟乙烯的聚合物
将步骤(2)得到的表面修饰后的氧化石墨烯(0.1g)加入到三氟三氯乙烷(20mL)中,超声分散5min,加入到50mL反应釜中,再依次加入过氧化特戊酸叔丁酯(0.018g)及偏氟乙烯气体单体(3g),70℃加热条件下搅拌反应22h,以表面修饰的氧化石墨烯作为链转移剂使其发生可逆加成-断裂链转移聚合,反应结束后干燥得氧化石墨烯接枝聚偏氟乙烯的聚合物。
本实施例得到的氧化石墨烯接枝聚偏氟乙烯的聚合物通过在电化学工作站上交流阻抗谱图的测试分析计算其离子电导率3.3×10-3S·cm-1
实施例5
氧化石墨烯接枝聚偏氟乙烯的制备方法,包括以下步骤:
(1)采用改进Hummer’s方法制备氧化石墨烯,制备过程同上述实施例1;
(2)氧化石墨烯的表面修饰
冰水浴条件下,将步骤(1)得到的氧化石墨烯(0.2g)加入到除水的四氢呋喃(10mL)中,超声分散5min,加入到反应瓶中搅拌,依次加入1g羧基黄原酸酯、0.0891g 4-二甲氨基吡啶和0.1012g二环己基碳二亚胺,室温反应12h,过滤,60℃条件下真空干燥12h,得到表面修饰的氧化石墨烯。
所述羧基黄原酸酯的制备方法同实施例1;
(3)制备氧化石墨烯接枝聚偏氟乙烯的聚合物
将步骤(2)得到的表面修饰后的氧化石墨烯(0.1g)加入到三氟三氯乙烷(20mL)中,超声分散5min,加入到50mL反应釜中,再依次加入过氧化特戊酸叔丁酯(0.006g)及偏氟乙烯气体单体(3g),70℃加热条件下搅拌反应22h,以表面修饰的氧化石墨烯作为链转移剂使其发生可逆加成-断裂链转移聚合,反应结束后干燥得氧化石墨烯接枝聚偏氟乙烯的聚合物。
本实施例得到的氧化石墨烯接枝聚偏氟乙烯的聚合物通过在电化学工作站上交流阻抗谱图的测试分析计算其离子电导率2.9×10-3S·cm-1
实施例6
氧化石墨烯接枝聚偏氟乙烯的制备方法,包括以下步骤:
(1)采用改进Hummer’s方法制备氧化石墨烯,制备过程同上述实施例1;
(2)氧化石墨烯的表面修饰
冰水浴条件下,将步骤(1)得到的氧化石墨烯(0.2g)加入到N,N-二甲基甲酰胺(40mL)中,超声分散10min,加入到反应瓶中搅拌,依次加入0.05g羧基黄原酸酯、0.1g对甲基苯磺酸和0.1g N,N′-二异丙基碳二亚胺,室温反应20h,过滤,60℃条件下真空干燥12h,得到表面修饰的氧化石墨烯。
所述羧基黄原酸酯的制备方法同实施例1;
(3)制备氧化石墨烯接枝聚偏氟乙烯的聚合物
将步骤(2)得到的表面修饰后的氧化石墨烯(0.1g)加入到N-甲基吡咯烷酮(100mL)中,超声分散20min,加入到200mL反应釜中,再依次加入过氧化苯甲酰(0.02g)及偏氟乙烯气体单体(5g),70℃加热条件下搅拌反应22h,以表面修饰的氧化石墨烯作为链转移剂使其发生可逆加成-断裂链转移聚合,反应结束后干燥得氧化石墨烯接枝聚偏氟乙烯的聚合物。
本实施例得到的氧化石墨烯接枝聚偏氟乙烯的聚合物通过在电化学工作站上交流阻抗谱图的测试分析计算其离子电导率3.1×10-3S·cm-1
实施例7
氧化石墨烯接枝聚偏氟乙烯的制备方法,包括以下步骤:
(1)采用改进Hummer’s方法制备氧化石墨烯,制备过程同上述实施例1;
(2)氧化石墨烯的表面修饰
冰水浴条件下,将步骤(1)得到的氧化石墨烯(0.2g)加入到N,N-二甲基甲酰胺(20mL)、N,N-二甲基乙酰胺(20mL)中,超声分散30min,加入到反应瓶中搅拌,依次加入1g羧基黄原酸酯、0.1g浓硫酸和0.1g1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐,室温反应24h,过滤水洗至中性,60℃条件下真空干燥12h,得到表面修饰的氧化石墨烯;
所述羧基黄原酸酯的制备方法同实施例1;
(3)制备氧化石墨烯接枝聚偏氟乙烯的聚合物
将步骤(2)得到的表面修饰后的氧化石墨烯(0.1g)加入到N-甲基吡咯烷酮(50mL)、碳酸二甲酯(50mL)中,超声分散30min,加入到200mL反应釜中,再依次加入偶氮二异丁腈(0.15g)及偏氟乙烯气体单体(50g),70℃加热条件下搅拌反应22h,以表面修饰的氧化石墨烯作为链转移剂使其发生可逆加成-断裂链转移聚合,反应结束后干燥得氧化石墨烯接枝聚偏氟乙烯的聚合物。
本实施例得到的氧化石墨烯接枝聚偏氟乙烯的聚合物通过在电化学工作站上交流阻抗谱图的测试分析计算其离子电导率3.6×10-3S·cm-1
实施例8
氧化石墨烯接枝聚偏氟乙烯的制备方法,包括以下步骤:
(1)采用改进Hummer’s方法制备氧化石墨烯,制备过程同上述实施例1;
(2)氧化石墨烯的表面修饰
冰水浴条件下,将步骤(1)得到的氧化石墨烯(0.2g)加入到二甲基亚砜(40mL)中,超声分散25min,加入到反应瓶中搅拌,依次加入0.5g羧基黄原酸酯、0.1g对甲基苯磺酸和0.1g N,N′-二异丙基碳二亚胺,室温反应36h,过滤,60℃条件下真空干燥12h,得到表面修饰的氧化石墨烯;
所述羧基黄原酸酯的制备方法同实施例1;
(3)制备氧化石墨烯接枝聚偏氟乙烯的聚合物
将步骤(2)得到的表面修饰后的氧化石墨烯(0.1g)加入到碳酸二甲酯(50mL)、三氟三氯乙烷(50mL)中,超声分散25min,加入到200mL反应釜中,再依次加入过氧化特戊酸叔丁酯(0.009g)及偏氟乙烯气体单体(25g),70℃加热条件下搅拌反应22h,以表面修饰的氧化石墨烯作为链转移剂使其发生可逆加成-断裂链转移聚合,反应结束后干燥得氧化石墨烯接枝聚偏氟乙烯的聚合物。
本实施例得到的氧化石墨烯接枝聚偏氟乙烯的聚合物通过在电化学工作站上交流阻抗谱图的测试分析计算其离子电导率3.2×10-3S·cm-1
针对上述各实施例中所得氧化石墨烯与氧化石墨烯接枝的聚合物的红外表征图,可以证明氧化石墨烯上聚合物链的成功接枝。通过对比各实施例所得聚合物的表征结果及最大程度接枝分子个数,氧化石墨烯的表面修饰在氧化石墨烯与羧基黄原酸酯的质量比为2∶1时,所得聚合物的接枝程度最高。
对比例1
将实施例中的氧化石墨烯制备及其修饰过程省略,利用溶液聚合的方式制备聚偏氟乙烯:在50mL反应釜中加入20mL三氟三氯乙烷、0.009g过氧化特戊酸叔丁酯、0.02g全氟碘己烷及3g偏氟乙烯气体单体,70℃加热条件下搅拌反22h其中以全氟碘己烷作为链转移剂使其发生70℃加热条件下搅拌反应22h,反应结束后干燥聚偏氟乙烯。
所得到的聚合物通过在电化学工作站上测试其交流阻抗,分析计算所制得聚偏氟乙烯的离子电导率为4.75×10-4S·cm-1,远远小于本发明制备的氧化石墨烯接枝聚偏氟乙烯的聚合物的电导率。
通过拉伸强度测试,氧化石墨烯接枝聚偏氟乙烯拉伸强度有所提高,为3.8MPa,是聚偏氟乙烯的1.5倍。通过热失重测试,氧化石墨烯接枝聚偏氟乙烯的分解温度为460℃,比聚偏氟乙烯高50℃,说明稳定性增强。所得聚合物能够很好的在N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜、N-甲基吡咯烷酮、碳酸二甲酯这些极性非质子溶剂中溶解分散,改善了氧化石墨烯易团聚、不易与溶剂相容的缺点。
由此可见本发明制备的氧化石墨烯接枝聚偏氟乙烯的聚合物具有优异的电化学性能,提高了聚偏氟乙烯的应用范围,且聚合物成膜后仍具有很高的柔性,有望应用于锂离子电池、超级电容器等领域。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种氧化石墨烯接枝聚偏氟乙烯的制备方法,其特征在于,包括:
(1)采用改进Hummer’s方法制备氧化石墨烯;
(2)氧化石墨烯的表面修饰
将步骤(1)得到的氧化石墨烯加入到溶剂A中,冰水浴条件下超声分散,然后,搅拌条件下,依次加入羧基黄原酸酯、催化剂和失水剂,室温反应,过滤,真空干燥,得到表面修饰的氧化石墨烯;
(3)制备氧化石墨烯接枝聚偏氟乙烯的聚合物
将步骤(2)得到的表面修饰后的氧化石墨烯加入到溶剂B中,超声分散,然后转移至反应釜中,再依次加入引发剂及偏氟乙烯气体单体,加热条件下搅拌,使其发生可逆加成-断裂链转移聚合,反应结束后干燥得氧化石墨烯接枝聚偏氟乙烯的聚合物。
2.根据权利要求1所述的氧化石墨烯接枝聚偏氟乙烯的制备方法,其特征在于,所述步骤(2)中,所述溶剂A为四氢呋喃、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二氯甲烷、甲苯、环己烷、二甲基亚砜的一种或几种混合。
3.根据权利要求1所述的氧化石墨烯接枝聚偏氟乙烯的制备方法,其特征在于,所述步骤(2)中,羧基黄原酸酯的制备方法包括:
步骤21:冰水浴条件下,以丙酮为溶剂,使乙基黄原酸钾与2-溴丙酸在烧瓶中搅拌反应,反应进行12h;
步骤22:将步骤21反应所得到的产物进行浓缩,以二氯甲烷为溶剂,以水为萃取剂将产物提纯,然后用无水硫酸镁干燥后再进行浓缩得羧基黄原酸酯。
4.根据权利要求3所述的氧化石墨烯接枝聚偏氟乙烯的制备方法,其特征在于,所述步骤22中,2-溴丙酸与乙基黄原酸钾的质量比为1∶1~1.5。
5.根据权利要求1所述的氧化石墨烯接枝聚偏氟乙烯的制备方法,其特征在于,所述步骤(2)中,所述催化剂为浓硫酸、浓盐酸、对甲基苯磺酸、4-二甲氨基吡啶或氯化亚砜;所述失水剂为二环己基碳二亚胺、N,N′-二异丙基碳二亚胺或1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐。
6.根据权利要求1所述的氧化石墨烯接枝聚偏氟乙烯的制备方法,其特征在于,所述步骤(2)中,氧化石墨烯与溶剂A的比例为5~50g∶1L,氧化石墨烯与羧基黄原酸酯的质量比为1∶0.1~5;氧化石墨烯与催化剂的质量比为1~10∶1;氧化石墨烯与失水剂的质量比为1~3∶1。
7.根据权利要求1所述的氧化石墨烯接枝聚偏氟乙烯的制备方法,其特征在于,所述步骤(2)中,超声分散时间为5-30min,室温反应12-72h。
8.根据权利要求7所述的氧化石墨烯接枝聚偏氟乙烯的制备方法,其特征在于,所述步骤(3)中,所述溶剂B为三氟三氯乙烷、N-甲基吡咯烷酮、碳酸二甲酯的一种或几种。
9.根据权利要求7所述的氧化石墨烯接枝聚偏氟乙烯的制备方法,其特征在于,所述步骤(3)中,引发剂为过氧化特戊酸叔丁酯、过氧化苯甲酰、偶氮二异丁腈、偶氮二异庚腈、过硫酸钾或过硫酸铵。
10.根据权利要求7所述的氧化石墨烯接枝聚偏氟乙烯的制备方法,其特征在于,所述步骤(3)中,所述表面修饰后的氧化石墨烯与偏氟乙烯气体单体的质量比为1∶10~500,所述引发剂与偏氟乙烯气体单体的质量比为0.002~0.006∶1,所述偏氟乙烯气体单体的质量与溶剂B的比例为50~250g∶1L。
CN201810270709.1A 2018-03-29 2018-03-29 一种氧化石墨烯接枝聚偏氟乙烯的制备方法 Active CN108557812B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810270709.1A CN108557812B (zh) 2018-03-29 2018-03-29 一种氧化石墨烯接枝聚偏氟乙烯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810270709.1A CN108557812B (zh) 2018-03-29 2018-03-29 一种氧化石墨烯接枝聚偏氟乙烯的制备方法

Publications (2)

Publication Number Publication Date
CN108557812A true CN108557812A (zh) 2018-09-21
CN108557812B CN108557812B (zh) 2022-01-04

Family

ID=63533305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810270709.1A Active CN108557812B (zh) 2018-03-29 2018-03-29 一种氧化石墨烯接枝聚偏氟乙烯的制备方法

Country Status (1)

Country Link
CN (1) CN108557812B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111232967A (zh) * 2020-03-17 2020-06-05 北京化工大学 一种氨基化氧化石墨烯的制备方法
CN113224305A (zh) * 2021-05-10 2021-08-06 衢州德联环保科技有限公司 一种用于锂离子电池中改性聚偏氟乙烯的制备方法
CN113457472A (zh) * 2021-03-15 2021-10-01 波塞冬(江苏)新材料科技有限公司 一种石墨烯改性pvdf高性能复合膜及其制备方法
CN114188538A (zh) * 2021-11-30 2022-03-15 厦门凯纳石墨烯技术股份有限公司 聚偏氟乙烯/石墨烯复合材料、导电浆料、制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796333A (zh) * 2012-09-06 2012-11-28 哈尔滨工业大学 具有负温度系数效应的聚偏氟乙烯基温敏电阻材料的制备方法
CN103965663A (zh) * 2014-05-25 2014-08-06 桂林理工大学 一种聚酯液晶接枝氧化石墨烯化合物的制备方法
CN104028115A (zh) * 2014-06-03 2014-09-10 上海应用技术学院 一种羧基化氧化石墨烯/聚偏氟乙烯复合超滤膜及制备方法
CN104597009A (zh) * 2014-12-10 2015-05-06 温州医科大学 一种石墨烯改性材料的制备方法及用于银离子检测的石墨烯改性材料乙醇水混合溶剂
CN105838183A (zh) * 2016-04-01 2016-08-10 常州华科聚合物股份有限公司 改性石墨烯水性耐腐蚀涂层材料及其制备方法和应用
CN106607012A (zh) * 2015-10-23 2017-05-03 中国人民大学 聚偏氟乙烯纳米复合材料及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796333A (zh) * 2012-09-06 2012-11-28 哈尔滨工业大学 具有负温度系数效应的聚偏氟乙烯基温敏电阻材料的制备方法
CN103965663A (zh) * 2014-05-25 2014-08-06 桂林理工大学 一种聚酯液晶接枝氧化石墨烯化合物的制备方法
CN104028115A (zh) * 2014-06-03 2014-09-10 上海应用技术学院 一种羧基化氧化石墨烯/聚偏氟乙烯复合超滤膜及制备方法
CN104597009A (zh) * 2014-12-10 2015-05-06 温州医科大学 一种石墨烯改性材料的制备方法及用于银离子检测的石墨烯改性材料乙醇水混合溶剂
CN106607012A (zh) * 2015-10-23 2017-05-03 中国人民大学 聚偏氟乙烯纳米复合材料及其制备方法与应用
CN105838183A (zh) * 2016-04-01 2016-08-10 常州华科聚合物股份有限公司 改性石墨烯水性耐腐蚀涂层材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
REDA FLEET ET AL.: "Preparation of New Multiarmed RAFT Agents for the Mediation of Vinyl Acetate Polymerization", 《MACROMOL. SYMP.》 *
杨文韬等: "羧基化氧化石墨烯/聚偏氟乙烯杂化膜合成及其水处理研究", 《实验技术与管理》 *
韩笑等: "氧化石墨烯/聚偏氟乙烯复合涂层的机械性能与防腐性研究", 《涂料工业》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111232967A (zh) * 2020-03-17 2020-06-05 北京化工大学 一种氨基化氧化石墨烯的制备方法
CN113457472A (zh) * 2021-03-15 2021-10-01 波塞冬(江苏)新材料科技有限公司 一种石墨烯改性pvdf高性能复合膜及其制备方法
CN113224305A (zh) * 2021-05-10 2021-08-06 衢州德联环保科技有限公司 一种用于锂离子电池中改性聚偏氟乙烯的制备方法
CN113224305B (zh) * 2021-05-10 2022-04-01 山东天瀚新能源科技有限公司 一种用于锂离子电池中改性聚偏氟乙烯的制备方法
CN114188538A (zh) * 2021-11-30 2022-03-15 厦门凯纳石墨烯技术股份有限公司 聚偏氟乙烯/石墨烯复合材料、导电浆料、制备方法和应用
CN114188538B (zh) * 2021-11-30 2023-11-24 厦门凯纳石墨烯技术股份有限公司 聚偏氟乙烯/石墨烯复合材料、导电浆料、制备方法和应用

Also Published As

Publication number Publication date
CN108557812B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
CN108557812A (zh) 一种氧化石墨烯接枝聚偏氟乙烯的制备方法
JP4789368B2 (ja) スルホンフッ素化イオノマー
CN102496732B (zh) 聚偏氟乙烯接枝对苯乙烯磺酸质子交换膜的制备方法
Wang et al. Fabrication and evaluation of aminoethyl benzo-12-crown-4 functionalized polymer brushes adsorbents formed by surface-initiated ATRP based on macroporous polyHIPEs and postsynthetic modification
CN106587009B (zh) 一种超高比表面积介孔炭纳米球及其制备方法和应用
CN110156999B (zh) 一种点击化学合成两亲性含氟嵌段共聚物的制备方法
CN111900393A (zh) 一种高离子电导率的粘结剂及含有该粘结剂的锂离子电池
CN102363647B (zh) 一种均相阴离子交换膜及其制备方法
CN103342777B (zh) 掺杂纳米颗粒的锂离子电池凝胶聚合物电解质的制备方法
JPH1074521A (ja) 正極用組成物、その製造方法及びLiOHを中和するための有機酸化合物の使用
Tian et al. Preparation of poly (acrylonitrile–butyl acrylate) gel electrolyte for lithium-ion batteries
CN109762106A (zh) 一种“三明治”结构的硫化氢分子印迹聚合物的制备方法
CN107161979A (zh) 一种碳基纳米带多孔材料以及制备方法与应用
CN108122690B (zh) 一种硫氮共掺碳纳米球电极材料的制备方法
Liu et al. Preparation of LCST regulable DES-lignin-g-PNVCL thermo-responsive polymer by ARGET-ATRP
CN101353435A (zh) 一种活化型凝胶态锂离子电池聚合物电解质薄膜及其制备方法和应用
JP7237606B2 (ja) 4-スチレン誘導体を重合したポリマー並びに、これを用いたマグネシウム二次電池用バインダーもしくはコート剤、及びマグネシウム二次電池
CN107698914A (zh) 一种柔性记忆高分子导电复合水凝胶的制备方法
CN109850871B (zh) 一种氮掺杂多孔碳纳米片及其制备方法
CN102694203B (zh) 一种凝胶聚合物电解质的制备方法
CN102757643B (zh) 一种氮取代氧化石墨烯/聚吡咯复合材料的制备方法
CN102199261B (zh) 聚乙二醇-b-聚苯乙烯-b-聚全氟己基乙基丙烯酸酯及其制备方法
CN103755851B (zh) 锂电池电极粘结剂用聚偏氟乙烯的无皂乳液聚合方法
CN110371973B (zh) 一种聚对苯二胺/石墨烯基氮掺杂多孔碳材料制备方法
JP2011213586A (ja) 炭素材料及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant